抽汽冷凝式汽轮机(中压抽凝式汽机)-空透

抽汽冷凝式汽轮机(中压抽凝式汽机)-空透
抽汽冷凝式汽轮机(中压抽凝式汽机)-空透

KDON-12000/8000型空分设备

抽汽冷凝式汽轮机(中压抽凝式汽机)

技术操作部分

1、技术规范

型号:C6.4-3.43/0.8

型式:调整抽汽冷凝式

额定功率:6450kw

汽机额定转速:8426r/min

汽机一阶临界转速:4493r/min

压缩机额定转速:8426r/min

转向:汽机流方向看汽轮机为顺时针

进气压力:3.53(+0.37/-0.37)MPa(a)

进汽温度:435(+15/-15)℃

调整抽气压力:0.8MPa(a)

调整抽气量:45t/h

凝气压力:0.009MPa(a)

循环冷却水温:正常32℃

1

振动:正常运转量,最大允许振动值(外壳上)0.03mm 调节系统:调速范围:577~28847r/min

压力电调输入信号:4~20mA

保安系统:危急遮断器动作转速:9732r/min

油路系统:调节油压:(二层平台上测点)≥0.85MPa(a) 润滑油压:(润滑油总管)0.25MPa(g)

汽水系统:冷凝器

冷却面积:630m2

冷却水量:1925t/h

凝结水泵:

型号:100NB-45

流量:31m3/h

扬程:42m

电机型号:YB132S2-2

电压及功率:380V AC,7.5KW

两级射汽抽汽器:

工作蒸汽压力:0.784~0.98MPa

2

抽气器:20kg/h

耗气量:~200kg/h

2、机组结构及布置说明(参见我公司的该机型总布置及有关套图)

本汽轮机以调整抽汽为界高、低压两部分。高压部分具有一个复速级,并设有调整抽汽口及蒸汽回流口;低压部分由一个调节级和六个压力级叶轮组成。高、低压部分的调节汽阀,通过505E 调节器分别控制汽阀开度,实现热功负荷自治调节。

汽轮机前汽缸选用耐热铬钼合金铸钢材料,后汽缸则采用20号钢板焊接。前后汽缸用垂直中分面法兰螺栓连接,上下半汽缸,由水平中分面螺栓联接,前汽缸用半圆法兰与前轴承座连接,前轴承座可在前座加上滑动,作为机组向前膨胀的导向。后汽缸支承在后座架上。后轴承座与后轴承支架连接。在后汽缸下半处,后汽缸与两侧后座架设有径向齐缝圆注销,构成气缸的膨胀死点。后汽缸排汽口通过排汽接管与冷凝器连接。

高压调节气阀为提版式结构,由布置在前轴承座上的油动机控制,阀碟位于前汽缸的蒸汽室内。低压调节汽阀为双座阀,由低压油动机控制,两者属于同一部套安装在运行平台上。

3

前轴承座中装有椭圆径向止推联合球面轴承,危急遮断置于前轴承座内,前轴承座箱体上装油动机、危急遮断油门等。

后轴承座中装有汽轮机后轴承(椭圆径向轴承)。

该机组采用液压盘车。

3、汽水系统(见图HS3101-5)

1)、主蒸汽系统

来自锅炉的新蒸汽经隔离阀,速关阀进入汽轮机高压部分蒸汽室,然后由调节汽阀控制进入汽轮机通流部分作功。蒸汽经过一个复速级膨胀做功后,压力降到调整抽汽压力值,这时,一部分蒸汽经抽汽口、抽汽速关阀抽泣至热网。其余部分则经过低压调节汽阀进入汽机低压部分继续膨胀做功。乏汽排入凝汽器凝结成水,再由凝结水泵泵出经两级射汽抽气器加热后至除氧器。两极射汽抽气器出口引一路凝结水回凝气器热井作再循环管路。凝气器上有一接口与排气安全膜板相联接,当凝气器内压力过高时,可通过排气安全膜板自动向空排汽。

2)、工业抽气系统

工业用汽由开在气缸上的抽汽口抽出,经抽汽速关阀后并入热

4

网,抽汽口位置在复速级后。可根据需要在调整抽汽范围内增大或减少抽汽量。

3)、真空抽汽系统

为保证凝气器有一定的真空,及时抽出凝气器内不凝结气体,设置有启动抽气器和两级射汽抽气器。前者主要用在开机时,为快速建立凝汽真空以启动汽轮机使用。两级射汽抽气器作为主抽气器,及时抽出凝气器内不凝结气体,确保凝气真空。二种抽气器均为射汽式,其工作蒸汽由新蒸汽节流产生。两级射汽抽气器的第一级疏水需接一高度大于4.0米虹吸水封管(U型管)再接至凝汽器或疏水膨胀箱。第二级疏水则用疏水器疏水至凝汽器。4)、汽封系统

汽轮机前后汽封均采用高低齿齿封结构,可有效阻止蒸汽轴向外漏,前汽封第一段漏汽引至调整抽汽管。第二段漏汽和后汽封连用以封气。汽轮机开机启动时,汽封封气用蒸汽为新蒸汽节流产生。当漏汽量增大时,可开大汽封管路至凝汽器截止阀。5)、疏水系统

汽缸蒸汽,汽封管路疏水及抽汽管路疏水引至疏水膨胀箱。疏

5

水管不得绕过关闭阀,须注意,水或蒸汽切不可从疏水管倒流到汽轮机中。

6)、循环水系统

循环水系统用户可根据自身特点或条件选择开式或闭式循环系统,循环水由循环水泵加压打入凝汽器,形成水循环冷却系统。

4、供油系统概述(参看:润滑油系统图HS3101-6)

本机组使用集中供油方式的供油装置。该供油装置非汽轮机供货商供货。供油装置分别提供压力油和润滑油。

压力又主要有以下作用:

1)、保安:通过保安系统,作为速关阀,调节汽阀和抽汽速关逆止阀动作的动力油,可实现对机组的保护。

2)、调节:一路经电液转换成二次抽压的控制信号;一路引入油动机,作为动力油开启调节汽阀;一路引入速关组合装置开关速关阀。

3)、润滑油:压力油经节流、冷却及过滤后形成润滑油,供各轴承润滑油和冷却。

5、调节和保安系统

6

1)、调节和控制系统概述(参见调节系统图HS3101-7)调节系统主要有转速传感器(715)、数字式调节器WOODW ARD505E(1310)、电液转化器(1742)、电液转化器(1743)、油动机(1910)和调节汽阀(0801)、调节汽阀(0805)组成。

WOODW ARD505E同时接受来自二个转换传感器(715)的汽轮机转换信号,并与转速给定值进行比较后输出执行信号(4-20mA电流),经电液转换器转换成二次油压(0.15-0.45MPa),二次油压通过油动机操纵调节汽阀。

本调节系统为抽汽调节自治系统。当抽汽压力因抽汽量的改变而产生变化时,可实现压力的自治调节,使压力值回复到给定值,同时电功率维持不变。当抽汽用量改变时,抽汽压力值改变,这时因压力值偏离给定值,压力调节系统工作;调节器(505E)根据调节偏差(即抽汽压力给定值与测量值的偏差),通过电液转换器引起二次油压改变,相应使调节汽阀的开度增大或减小。如抽汽量减少,抽汽压力值升高,压力调节系统使高压调节汽阀关小,低压调节汽阀开大,抽气压力值回复到给定值。

本调节系统,当调节抽汽时,汽轮机高、低缸功率也相应改

7

变,但总功率却保持不变。因此,自治调节的抽汽式汽轮机也可以在无频率控制的情况下单机运行。

单机运行时,功率的变化要引起频率的改变。在转速变化时,调速器按转速——功率特性自动对汽轮机进行调节。

2)、启动系统

当开车条件具备以后,用速关组合装置(1111)开启速关阀(2310)。

启动时,旋转关闭阀(1830)手柄建立启动油(8bar),旋转启动阀(1839)手柄使速关油与回油接通。然后松开关闭阀(1830)手柄,建立速关油(8bar)。5秒钟后,松开启动阀(1839)手柄,则启动油缓慢下降,这时速关阀(2310)将自动开启。速关阀上的行程开关(ZS587)联锁WOODW ARD505E(1310),只有当速关阀完全开启后,才允许WOODW ARD505E(1310)启动汽轮机。3)、汽轮机运行监视和保护

汽轮机超速时,危急遮断其(2110)动作,使危急保安装置(2210)泄油,速关阀关闭,机组停机。按下速关组合装置(1111)上手动停机阀(2274)的手柄,可以使速关油泄掉,关闭速关阀。

8

蓄能器(4600)在调速器变工况瞬时补充动力油,起到油系统压力稳定的作用。

电磁阀(2225、2226)接受来自保护系统的停机信号,立即切断速关油路,关闭速关阀。

二、主要部套简介

(一)、速关组合装置

1、概述

1)、说明

速关控制装置是汽轮机保安系统和控制系统的集合。它将原来该系统中多个部套组合在一起。这样,克服了管路繁多、安装复杂的缺陷,在运行中也避免了监控困难和产生漏油着火的事故,增加了汽轮机运行可靠性和安全性。

速关控制装置能实现汽轮机正常启动和停机、电动与手动紧急停机、速关阀开启和关闭。为了增加安全性,速关控制装置还设置了电动紧急停机的冗余系统。

以上功能分别由基本模块、冗余模块、启动模块来实现。2)、技术参数

9

a、液压参数

油原压力 0.9MPa(0.8~1.2MPa) 工作介质透平油46#

过滤精度≤40μm

油温10~70℃

b、电参数

电源电压 24VDC(1±10%)

c、环境温度 -20~80℃

2、功能与原理

1)、基本模块

a、组成

手上停机阀(2274)

电磁阀(2225)

停机卸荷阀(2030)

调节油切换阀(2050)

速关阀在线试验阀(1845)

b、功能

10

手动紧急停机

电动紧急停机

速关阀在线试验

c、作用原理

高压油从“P”进入基本模块,在基本模块壳体内分为五路。

第一路经手动停机阀(2274)和电磁阀(2225)进入停机卸荷阀

(2030),克服弹簧力使阀处于关闭状态。正常运行时,通向停机

卸荷阀的速关油不泄油。速关油是由冗余模块内部管路引入的。

第二路油经调节切换阀(2050)变为调节控制油经冗余模块内部管路进入启动模块成为电液转换器供油。

第三路通向速关阀在线试验阀(1845)以供速关活塞灵活性试验。

第四路进入冗余模块及启动模块,成为该两个模块的高压油源。

11

第五路从“G1”引出,以供危急保安装置使用。通常保安装置直接从高压油源供油时,这时“G1”是被堵住的。

● 手动紧急停车

操纵手动停机阀(2247),使控制油与回油接通,卸合阀(2030)由于控制油压力下降迅速开启,这时速关油与回油接通,速关油压力下降使速关阀迅速关闭。同时,调节油切换阀(2050)动作切断了调节油源,调节油排放到油箱,使调节汽阀迅速关闭。

● 电动紧急停车

电磁阀(2225)接受了信号电源(手动或远程自动),根据用户需要,可以设计为常开(NO)状态或常闭(NC)状态。

在常开(NO)状态时,电磁阀不带电,高压油经电磁阀通向停机卸荷阀(2030)活塞中,油压力克服弹簧力使阀处于关闭状态。当接通电源信号后,电磁阀动作并切断通向停机卸荷阀(2030)的控制油源,这时控制油与回油接通,卸荷阀开启,速关油泄压,速关阀迅速关闭。同时,调节油切换阀(2050)动作切断了调节油源,调节油排放到油箱,使其调节汽阀迅速关闭。

在常闭(NC)状态时,电磁阀带电,高压油经电磁阀通向停机

12

卸荷阀(2030)活塞中,油压力克服弹簧力使阀处于关闭状态。当切断电源信号,电磁阀动作并切断通向通向停机卸荷阀(2030)的控制油源。这时控制油与回油接通。卸荷阀开启,速关油泄压,速关阀迅速关闭。同时,调节油切换阀(2050)动作切断了调节油源,调节油排放到油箱,使其调节汽阀迅速关闭。

● 速关阀在线试验

操作速关阀在线试验阀(1845)使滑阀移动,试验油流向速关阀“H”接口,油压使试验活塞产生一个压力,试验活塞将推动阀杆活塞——弹簧模块沿关闭方向移动一个试验行程。然后反方向移动滑阀恢复到中间位置,试验活塞的油与回油接通,这时速关阀恢复到正常工作位置。试验滑阀(1845)是三位阀,中间位置为“0”,平常不工作时处于中间位置。滑阀移动到“H1”检查一个速关阀。移动到“H2”检查另一个速关阀。用户只有一个速关阀时,可选用其中一位。标尺上

“H1”、“H2”与壳体油口“H1”、“H2”是相对位。

2)冗余模块

a 组成

13

电磁阀(2226)

停机卸荷阀(2040)

b 功能

电动紧急停机

c 作用原理

进入冗余模块的高压油是从基本模块内部供给的。高压油经电磁阀(2246)进入停机卸荷阀(2040),克服弹簧力使阀处于关闭状态。在正常运行时,通向停机卸荷阀的速关油不泄油。速关油是由启动模块引入的。

电动紧急停车时,电磁阀(2226)接受信号电源(手动或远程自动)。根据用户需要可以设计为常开(NO)或常闭( NC)状态.

以常开(NO)状态时,电磁阀不带电,高压油经电磁阀通向停机卸荷阀(2040)活塞中,油压力克服弹簧力使阀处于关闭状态。当接通电源信号后,电磁阀动作切断通向卸荷阀(2040)的控制油源,这时控制油与回油接通,卸荷阀开启后,速关油泄压,速关阀迅速关闭。同时基本模块中调节油切换阀(2050)动作切换了调节油源,调节油排放到油箱,使其调节汽阀迅速关闭。※

14

3)启动模块(手动)

a 组成

启动装置:启动阀(1839)

关闭阀(1830)

电液转换器(1742)

单向阻尼阀(5600)

b 功能

汽轮机正常启动与停机

汽轮机紧急停车时,速关油快速泄压

将调速器的控制电信号转换为二次油压

c 作用原理

进入启动模块的高压油是冗余模块内管路供给的.高压油经启动阀(1839)变为启动油,经装置“F”接口与速关阀活塞上腔连通,由危急保安装置来的油由“G2”接口通入,经关闭阀(1830)流入速关阀活塞盘下腔。

● 启动(手动)

①建立启动油

15

启动阀(1839)是两位阀。在停机状态时,启动阀处于启动油路和回油接通的位置,启动油不能建立。启动时,顺时针旋转启动阀手轮,启动阀在弹簧力作用下将滑阀向上移动到一位时,这时高压油经启动阀输出启动油从“F”接口通向速关阀活塞上腔,将速关阀活塞压向活塞盘。

②建立速关油

速关阀(1830)使两位阀。在停机状态时,关闭阀(1830)处于速关油路与回油接通的位置,速关油不能建立。

当起动油压建立后,逆时针旋转关闭阀(1830)手轮,滑阀随之在弹簧力作用下向上移动到另一位时。速关油路与“G2”油路接通,速关油建立。速关油从“E”接口通入速关阀活塞盘下腔。

③开启速关阀

速关油建立后,在逆时针缓慢旋转启动阀(1830)手轮,使启动油与回油接通,启动油经可调节流孔(可调节流孔设置在中间板上)回至油箱,起动油压下降,速关阀慢慢开启。调整可调节流孔开度,可调整开启时间。

● 停机(手动)

16

停机是操纵关闭阀(1830)进行的。顺时针旋转关闭阀手轮,使速关阀与回油接通,速关油压力下降,速关阀在弹簧力作用下自动关闭。关闭恢复到停机状态。与此同时,启动阀(1839)也处于停机状态中。

启动阀(1839)停机状态与运行是一致的。

● 说明

①电液转换器安装

电液转换器是作为外部设备固定在启动模块的中间板上,供油与回油都做成内部管路。

②液转换器作用原理

电液转换器将调节切换阀(2050)来的调节油转换成

0.15-0.45MPa的二次油,二次油由接口G接至错油门。

③单向阻尼阀

调整单向阻尼阀(5600),可减少二次油波动引起的汽轮机调节汽阀晃动。

(二)、速关阀

● 作用:速关阀是新蒸汽管网和汽轮机之间的主要关闭机构,在

17

运行中当出现事故时,它能在最短时间内切断进入汽轮机的蒸汽。

试验装置能在不影响汽轮机正常运行的情况下,检验阀杆动作是否灵活。

● 结构和作用原理:速关阀是水平安装在汽轮机气缸的进汽室上,它主要由阀体和滤网和油缸部分组成。

如果危急保安装置动作,速关油路中压力迅速下降。弹簧力大于活塞盘后油压力,于是活塞盘合阀杆、阀碟被迅速推向关闭位置,活塞盘后残留的部分速关油流入活塞和弹簧空间并经回油口排出。

(三)、错油门油动机

油动机是调节汽阀的执行机构,它将由电液转换器输入的二次油信号转换为有足够做功能力的行程输出以操纵调节阀。

油动机是断流双作用往复式油动机,以汽轮机油为工作介质,动力油用~0.8MPa的调节油。

油动机主要由油缸、错油门、连接体和反馈机构组成。(四)、危急保安器

18

危急保安器是汽轮机的机械式超速保护设备,当机组转速超出设定的脱扣转速时,它产生动作,通过遮断油门关闭和调节汽阀。

(五)、抽汽速关阀

在可调或非调整抽汽的汽轮其中,抽汽速关阀是汽轮机与抽汽管网之间主要的保护设备。在机组运行时过程中,当汽轮机负荷,低于规定值或是由于速关系统某一环节动作速关油失压时,抽汽速关阀即刻关闭,从而防止管网蒸汽倒流进入汽轮机,这对避免发生机组转速飞升及低压段另、部件免遭热应力冲击至关重要。

(六)、抽汽速关阀操纵座

抽汽速关阀操纵座用于开启或关闭非调整抽汽速关阀。(七)、液压盘车装置

1、概述

1)、说明

机组停机过程中,汽轮机因降温而受到冷却,由于汽缸及转子上、下部分冷却不均匀,转子在停止转动后,便会产生热弯曲,

19

在这样的情况下,如重新启动汽轮机就易引起起动、静部分碰擦,出现超出允许范围的振动,为避免这种事故的发生,汽轮机配置了盘车装置。

在停机后,通过操作盘车装置,使转子持续、不连续的转动,以避免或减少转子的热弯曲变形。

2)、技术参数

a、液压参数

盘秤泵进口压力:0.07~0.3MPa

压力油进口压力(P2):0.8~1.2MPa

盘车泵出口压力: 8~10MPa

工作介质透平油 32# 46#

过滤精度:≤40μm

b、电参数

电源电压 380VAC 50HZ/24VDC

c、功能与原理:

液压盘车装置由“冲击式盘车装置”与“冲击式盘车控制装置”构成。

20

汽轮机原理(附课后题答案)

汽轮机原理 第一章汽轮机的热力特性思考题答案 1.什么是汽轮机的级?汽轮机的级可分为哪几类?各有何特点? 解答:一列喷嘴叶栅和其后面相邻的一列动叶栅构成的基本作功单元称为汽轮机的级,它是蒸汽进行能量转换的基本单元。 根据蒸汽在汽轮机内能量转换的特点,可将汽轮机的级分为纯冲动级、反动级、带反动度的冲动级和复速级等几种。 各类级的特点: (1)纯冲动级:蒸汽只在喷嘴叶栅中进行膨胀,而在动叶栅中蒸汽不膨胀。它仅利用冲击力来作功。在这种级中:p1 = p2;Dhb =0;Ωm=0。 (2)反动级:蒸汽的膨胀一半在喷嘴中进行,一半在动叶中进行。它的动叶栅中不仅存在冲击力,蒸汽在动叶中进行膨胀还产生较大的反击力作功。反动级的流动效率高于纯冲动级,但作功能力较小。在这种级中:p1 > p2;Dhn≈Dhb≈0.5Dht;Ωm=0.5。 (3)带反动度的冲动级:蒸汽的膨胀大部分在喷嘴叶栅中进行,只有一小部分在动叶栅中进行。这种级兼有冲动级和反动级的特征,它的流动效率高于纯冲动级,作功能力高于反动级。在这种级中:p1 > p2;Dhn >Dhb >0;Ωm=0.05~0.35。 (4)复速级:复速级有两列动叶,现代的复速级都带有一定的反动度,即蒸汽除了在喷嘴中进行膨胀外,在两列动叶和导叶中也进行适当的膨胀。由于复速级采用了两列动叶栅,其作功能力要比单列冲动级大。 2.什么是冲击原理和反击原理?在什么情况下,动叶栅受反击力作用? 解答:冲击原理:指当运动的流体受到物体阻碍时,对物体产生的冲击力,推动物体运动的作功原理。流体质量越大、受阻前后的速度矢量变化越大,则冲击力越大,所作的机械功愈大。反击原理:指当原来静止的或运动速度较小的气体,在膨胀加速时所产生的一个与流动方向相反的作用力,称为反击力,推动物体运动的作功原理。流道前后压差越大,膨胀加速越明显,则反击力越大,它所作的机械功愈大。 当动叶流道为渐缩形,且动叶流道前后存在一定的压差时,动叶栅受反击力作用。 3.说明冲击式汽轮机级的工作原理和级内能量转换过程及特点。 解答:蒸汽在汽轮机级内的能量转换过程,是先将蒸汽的热能在其喷嘴叶栅中转换为蒸汽所具有的动能,然后再将蒸汽的动能在动叶栅中转换为轴所输出的机械功。具有一定温度和压力的蒸汽先在固定

背压式、抽背式及凝汽式汽轮机的区别

背压式、抽背式及凝汽式汽轮机的区别 1、背压式汽轮机 背压式汽轮机是将汽轮机的排汽供热用户运用的汽轮机。其排汽压力(背压)高于大气压力。背压式汽轮机排汽压力高,通流局部的级数少,构造简略,同时不用要巨大的凝汽器和冷却水编制,机组轻小,造价低。当它的排汽用于供热时,热能可得到充足使用,但这时汽轮机的功率与供热所需蒸汽量直接联系,因此不或许同时餍足热负荷和电(或动力)负荷变更的必要,这是背压式汽轮机用于供热时的部分性。 这种机组的主要特点是打算工况下的经济性好,节能结果昭着。其它,它的构造简略,投资省,运行可靠。主要缺点是发电量取决于供热量,不克独立调理来同时餍足热用户和电用户的必要。因此,背压式汽轮机多用于热负荷整年安稳的企业自备电厂或有安稳的根本热负荷的地区性热电厂。 2、抽汽背压式汽轮机 抽汽背压式汽轮机是从汽轮机的中间级抽取局部蒸汽,供必要较高压力品级的热用户,同时保留必定背压的排汽,供必要较低压力品级的热用户运用的汽轮机。这种机组的经济性与背压式机组相似,打算工况下的经济性较好,但对负荷改变的合适性差。 3、抽汽凝汽式汽轮机 抽汽凝汽式汽轮机是从汽轮机中间抽出局部蒸汽,供热用户运用的凝汽式汽轮机。抽汽凝汽式汽轮机从汽轮机中间级抽出具有必定压力的蒸汽提供热用户,平常又分为单抽汽和双抽汽两种。此中双抽汽汽轮机可提供热用户两种分别压力的蒸汽。 这种机组的主要特点是当热用户所需的蒸汽负荷猛然下降时,多余蒸汽可以通过汽轮机抽汽点以后的级持续扩张发电。这种机组的长处是灵敏性较大,也许在较大范畴内同时餍足热负荷和电负荷的必要。因此选用于负荷改变幅度较大,改变屡次的地区性热电厂中。它的缺点是热经济性比背压式机组的差,并且辅机较多,价钱较贵,编制也较庞杂。 背压式机组没有凝固器,凝气式汽轮机平常在复速机后设有抽气管道,用于产业用户运用。另一局部蒸汽持续做工,最后劳动完的乏汽排入凝固器、被冷却凝固成水然后使用凝固水泵把凝固水打到除氧器,除氧后提供汽锅用水。两者区别很大啊!凝气式的由于尚有真空,因此监盘时还要注意真空的境况。背压式的排气高于大气压。趁便简略说一下凝固器设置的作用:成立并维持汽轮机排气口的高度真空,使蒸汽在汽轮机内扩张到很低的压力,增大蒸汽的可用热焓降,从而使汽轮机有更多的热能转换为机械功,抬高热效果,收回汽轮机排气凝固水

背压式地抽汽背压式汽轮机电液调节系统

用户培训资料背压式汽轮机电液调节系统 哈尔滨汽轮机厂控制工程有限公司目录 1. 背压式汽轮机调节 (1) 1.1 背压式汽轮机工作过程 (1) 1.2 背压式汽轮机液压调节系统 (2) 1.3 背压式汽轮机电液调节系统(DEH) (3) 1.3.1 背压式汽轮机电液调节系统构成 (4) 1.3.2 背压式汽轮机电液调节系统的基本原理 (7) 1.3.3 背压式汽轮机电液调节系统的主要功能 (8) 1.3.4 背压式汽轮机电液调节系统的性能指标 (11) 1.3.5 DEH控制系统设计要求 (12) 1.3.6 调节保安系统 (12) 2. 抽背式汽轮机调节 (14) 2.1 抽背式汽轮机工作过程 (14) 2.2 抽背式汽轮机电液调节系统 (15) 2.2.1 工作原理 (15) 2.2.2 基本功能 (17) 2.2.3 性能指标 (17) 2.2.4 DEH控制系统要求 (17) 2.2.5 调节保安系统(见图11) (17)

1. 背压式汽轮机调节 1.1 背压式汽轮机工作过程 背压式汽轮机是一种既供电又供热的电热联供的汽轮机,背压式汽轮机工作原理示意图如图1所示 从锅炉来的新蒸汽经过主汽门TV 和调节阀门GV ,进 入背压式汽轮机中膨胀做功。从背压式汽轮机排出的具有一定压力的蒸汽通过阀门V2进入热用户的热网。这种以电热联供的背压式汽轮机,可以提高循环效率,降低煤耗, 达到充分利用能源的目的。 由于热用户对所需蒸汽的质量有一定的要求,即要求背压保持一定,而流量是变化的。但因背压式汽轮机排汽的压力是基本保持不变的,所以蒸汽流量的改变必将引起 发电量的变化。因此,电用户和热用户之间如何协调工作 是背压式汽轮机调节系统的任务 背压式汽轮机通常有两种运行方式,一种是按电负荷进行工作,另一种是按热负荷进行工作,根据不同的运行方式,对调节系统的要求也不尽相同。 按电负荷工作的背压式汽轮机通常与其它热源共同向热用户供汽。热用户所需要的蒸汽量除了由背压式汽轮机提供外,还应有其它汽源。例如:抽汽式汽轮机,低压锅炉或锅炉的高压蒸汽经减温减压器等方案。汽轮机供给热用户的蒸汽量取决于电负荷的要求,供汽量的变化由其它汽源加以补偿。在这种情况下,背压式汽轮机按照满足电用户需要的运行方式工作,其调节系统和凝汽式汽轮机没有差别,即转速或负荷调节。调速器的作用是调节背压式汽轮机的转速。热用户所需的一定蒸汽压力的蒸汽是通过调节其他汽源供汽量来保证。这时背压式汽轮机的调压器实际上是不起作用的。 大多数情况下,背压式汽轮机是按热负荷特性进行工作的,这时通过汽轮机的蒸汽量随热负荷变化而变化,汽轮机的功率由热负荷决定,电能的需要由并列运行的其他机组来承担。 按热负荷运行的机组,所需的蒸汽量由调压器进行调节。当热用户所需用蒸汽量 图 1

汽轮机原理及运行课程

汽轮机原理及运行课程自学辅导资料 二○○八年十月

汽轮机原理及运行课程自学进度表教材:汽轮机原理教材编者:沈士一康松庆贺庆庞立云 出版社:中国电力出版社出版时间:1992

接交给任课教师。总成绩中,作业占15分。

汽轮机原理及运行课程自学指导书 第1章汽轮机级的工作原理 一、本章的核心、重点及前后联系 (一)本章的核心 掌握蒸汽在汽轮机各种级内的流动过程和能量转换规律及计算,蒸汽在汽轮机级内能量转换过程中各种损失和各种级效率的物理概念及减少损失的措施,熟悉各种损失的计算;熟悉汽轮机级的热力设计原则和方法,扭叶片级;了解叶栅的气动特性。 (二)本章重点 级的概念,级的工作过程,级的反动度,动叶进出口速度三角形,蒸汽在喷嘴的膨胀过程,蒸汽在动叶中的流动和能量转换过程;蒸汽作用在动叶栅上的力和轮周功率,级的轮周效率,级的轮周效率与速比的关系,蒸汽在复速级内的能量转换特点;级内损失,级的相对内效率。 (三)本章前后联系 在前面学习完成工程热力学和流体力学的基础上,对级的工作原理进行学习;学习本章内容为后面分析多级汽轮机的工作原理打下基础。 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 级,反动度,压比,速比,最佳速比,轮周效率,轮周功率,级的相对内效率,扭叶片(二)本章难点及学习方法指导 级的轮周效率和速比的关系 学习方法:理论联系实际,熟悉汽轮机结构,多看书, 三、典型例题分析 1.汽轮机按工作原理分类可分为哪几种类型? 答:冲动式汽轮机和反动式汽轮机。 2.按热力性质分类,汽轮机可分为哪几种类型? 答:凝汽式汽轮机,背压式汽轮机,调节抽汽式汽轮机,抽汽背压式汽轮机,中间再热式汽轮机

汽轮机凝汽器系统真空查漏

汽轮机凝汽器系统真空查漏 机组真空是火力发电厂重要的监视参数之一,真空变化对汽轮机安全、经济运行都有影响,运行经验表明,凝汽器真空降低直接影响循环效率,每降低1KPa真空会使汽轮机热耗增加0.94%,机组煤耗增加 3.2g/kwh。真空下降使循环效率下同时会造成汽轮机排汽温度的升高,引起汽轮机转子上移,轴承中心偏离,严重时会引起汽轮机的振动。此外,凝汽器真空降低时为保证机组出力不变,必须增加蒸汽流量,导致轴向推力增大,变化严重时会影响汽轮机安全运行。另一方面,空气漏入凝结水中会使凝结水溶氧超标,腐蚀汽轮机、锅炉设备,影响机组的安全运行。因此在汽轮机运行中必须严格控制机组真空下降。机组运行中真空主要与循环水量水温及系统严密性有关。如果出现真空下降,排除比较常见的故障外,真空系统的泄漏是造成下降的主要原因。其现象主要表现为真空数值下降、排汽温度升高、主汽流量增加及凝汽器端差增大等,直接影响到机组运行的安全经济性。 我厂凝汽器是由东方汽轮机厂生产制造N17660型表面式换热器,水室采用对分制,便于运行中对凝汽器进行半面清洗,凝汽器、凝结水泵、射水抽汽器、循环水泵及这些部件之间所连接的管道称为凝汽设备,凝汽器真空的高低对汽轮机运行的经济性有着直接的关系,所以要求真空系统(包括凝汽器本体)要有高度的严密性。一般是通过定期进行真空严密性试验来检验真空系统的严密程度。通过试

验,可掌握真空系统严密性的变化情况,鉴定凝汽器工作的好坏,以便采取对策查找及消除漏点,防止空气漏入影响传热效果及真空,不同机组对真空严密性有不同的要求,真空严密性用每分钟真空下降值表示。 凝汽器真空系统的密封点很多,包括与凝汽器连接的负压管道的焊口、膨胀节、疏水扩容器、减温水管道、多级水封、水位计等涉及汽机、热控等多个专业,检修工艺要求严格,检修工艺要求严格,涉及范围广,要求责任心强。真空系统严密性应在机组检修期间得以保证,如果由于密封不严、检修工艺不合理及查漏不全面等在机组运行一段时间后发生泄漏,仍应该采取各种措施,积极进行真空严密泄漏查找工作。为保证汽轮机真空系统查漏工作的顺利进行,确保机组的安全经济运行,特制定如下措施: 一组织措施 1、本工作的开展需要运行、点检、检修及热力试验组协调完成。 2、准备好查漏工作所需要的氦质谱检漏仪、氦气瓶、便携式气袋、喷射用铜管及连接用胶管、对讲机等工器具,保证合格足量的氦气。 3 、査漏工作要确定一个工作负责人,负责査漏工作中各部门的协调联系工作以及査漏工作的分工安排。 4、查漏工作由设备部组织进行,发电部专工、热试组人员、汽机车间检修班组人员配合,运行当值人员保证机组稳定运行并配合进行各阶段严密性试验。

凝汽器真空查漏

凝汽器真空查漏 1 凝汽器真空的成因 凝汽器中形成真空的成因是汽轮机的排汽被冷却成凝结水,其比容急剧缩小。如蒸汽在绝对压力4KPa时,蒸汽的体积比水容积大3万多倍。 当排汽凝结成水后,体积就大为缩小,使凝汽器汽侧形成高度真空,它是汽水系统完成循环的必要条件。 正是因为凝汽器内部为极高的真空,所以所有与之相连接的设备都有可能因为不严而往凝汽器内部漏入空气,加上汽轮机排汽中的不凝结气体,如果不及时抽出,将会逐渐升高凝汽器内的压力值,真空下降,导致蒸汽的排汽焓值上升,有效焓降降低,汽轮机蒸汽循环的效率下降。 有资料显示,真空每下降1KPa,机组的热耗将增加70kj/kw,热效率降低%。射水抽气器或水环真空泵的作用就是抽出凝汽器的不凝结气体,以维持凝器的真空。 2 真空严密性差的危害 汽轮机真空严密性差的危害主要表现在以下三个方面: 一是真空严密性差时,漏入真空系统的空气较多,射水抽气器或水环真空泵不能够将漏入的空气及时抽走,机组的排汽压力和排汽温度就会上升,这无疑要降低汽轮机组的效率,增加供电煤耗,并可能威胁汽轮机的安全运行,另一方面,由于空气的存在,蒸汽与冷却水的换热系数降低,导致排汽与冷却水出水温差增大。 二是当漏入真空系统的空气虽然能够被及时地抽出,但需增加射水抽气器的负荷,浪费厂用电及循环水。

三是由于漏入了空气,导致凝汽器过冷度过大,系统热经济性降低,凝结水溶氧增加,可造成低压设备氧腐蚀。 3 真空查漏的方法 1.通常用灌水法查找真空系统不严密的方法的优缺点 真空系统包含大量的设备及系统,连接的动静密封点多,在轻微漏空气的情况下很难发现漏点,因为空气往里吸,不够直观,传统的运行中用火焰检查法较繁琐且效果不好,多数情况下使用的方法是在机组停机后对真空系统进行灌水找漏。这种方法比较直观,漏点极易被发现,缺点是由于设备的原因,灌水高度最高只能到汽缸的最低轴封洼窝处,高于轴封洼窝的地方因为水上不去而不易发现,特别是与汽轮机汽缸相连接的管道系统。 2.使用氦质谱查找真空系统不严密的方法的优缺点 使用氦质谱方法通常是在可疑点喷氦气,然后在真空泵端检测,看是否能检测到氦气,如果检测到氦气则说明此可疑点泄漏。此方法能确定泄漏大体位置,并有一个相对值数据。但设备使用较费力,需要三到四人操作;氦质谱法受环境影响较大,空气流动性适度都对确定漏点造成麻烦;另外,空冷岛上使用氦质谱检漏难度较大。在管道较多的位置基本难以确定漏点。 3.使用超声波查找真空系统不严密的方法的优缺点 超声波检漏法是一种方便快捷的方法,首先操作简单,一人即可操作;而且能准确确定漏点的位置,使堵漏较方便;应用在空冷岛上更是方便、快捷、准确。缺点是使用时需要一定的操作经验。 火烛法,涂抹肥皂泡,卤素检测等方法较为原始,在此不多描述。

C25_4.90.49_3_25MW抽汽式汽轮机(南汽)

Z50403.01/01 C25-4.9/0.49-3 25MW抽汽式汽轮机 产品说明书 汽轮电机(集团)有限责任公司

汽轮电机(集团)有限责任公司代号Z50403.01/01 代替 C25-4.9/0.49-3型 25MW 抽汽式汽轮机说明书共21 页第 1 页 编制朱明明 校对蔡绍瑞 审核方明 会签 标准审查郝思军 审定 批准 标记数量页次文件代号简要说明签名磁盘(带号) 底图号旧底图号归档

目次 1 汽轮机的应用围及主要技术规 2 汽轮机结构及系统的一般说明 3 汽轮机的安装 4 汽轮机的运行及维护

1 汽轮机的应用围及主要技术规 1.1 汽轮机的应用围 本汽轮机为中压、单缸、单抽汽、冲动式汽轮机,与锅炉、发电机及其附属设备组成一个成套供热发电设备,用于联片供热或炼油、化工、轻纺、造纸等行业的大中型企业中自备热电站,以提供电力和提高供热系统的经济性。 汽轮机在一定围,电负荷与热负荷能够调整以满足企业对电负荷与热负荷变化时的不同要求。本汽轮机的设计转速为3000r/min,不能用于拖动不同转 速或变转速机械。 1.2 汽轮机技术规 序号名称单位数值 1 主汽门前蒸汽压力 MPa(a) 4.90 最高5.10 最低4.60 2 主汽门前蒸汽温度℃ 435 最高445 最低420 3 汽轮机额定功率 MW 25 4 汽轮机最大功率 MW 30 5 汽轮机额定工业抽汽压力 MPa(a) 0.49 6 汽轮机工业抽汽压力围 MPa(a) 0.39~0.69 7 汽轮机额定抽汽量 t/h 70 8 汽轮机最大抽汽量 t/h 130 9 额定工况时工业抽汽 压力/温度 MPa(a)/℃ 0.490/200.2 10 额定工况排汽压力 kPa(a) 4..04 11 锅炉给水温度℃ 143.5 12 额定工况汽轮机汽耗(计算值) kg/kW.h 5.702 13 额定工况汽轮机热耗(计算值) kJ/kW.h 8214 14 纯冷凝工况汽轮机汽耗(计算值) kg/kW.h 4.157

汽轮机原理及运行.

汽轮机原理及运行 随着工业生产的蓬勃发展,工业污染物的排放,对大气、自然环境的影响和危害越来越大。国家为保护环境,加大了对工业生产污染物排放的监管力度,国务院专门召开会议部署全国节能降耗减排的工作。我省焦化、炭黑、水泥等高温冶炼企业比较多,这些企业在生产过程中必然产生大量焦煤气、热量,而这些能源和热能大都没有被再利用,而以不同的排放方式,白白地浪费掉了,还造成了大气环境污染。事实上,要做到脱硫除尘、净化排放,必须将余热温度降到250゜C以下才能实现,而排放的余热全都在250゜C上,是根本无法脱硫除尘的。那么,唯一的办法就是将余热再利用,首选发电,实现能量再利用,既提高了原材料利用率,又净化了排放物,大大减少CO2、SO2排放量。 一直以来,这样的好事为什麽没有企业做呢?原因就在于,利用余热、余气进行发电的机组功率较小,不易并入大电网,或是地处与系统弱联系的区域,根本无网可并。自发自用,单独运行,又苦于发电机组不能稳定运行。故而形成目前不能不生产、可排放又超标的困难局面。 余热减排发供电微电网稳定运行综合控制系统的研发,是针对利用余热发电、热电联产的自备电厂运行不稳定、耗能高的问题而进行的。主要应用于焦化、炭黑、水泥等高温冶炼企业,利用余热发电、热电联产的自备电厂的微电网设

备在线数字化状态检测与监控的工艺改造,彻底改造通过气门排放蒸汽调节负荷的传统方法,实现了既稳定运行,又节能降耗减排。其适用范围和区域主要是产生余热、余气的高温冶炼企业,电网覆盖薄弱地区、电网末端或电网未到达区域,自建的供、用电微电网。 针对这种状况,山西博赛克电力技术有限公司潜心研究开发余热减排发供电微电网稳定运行综合控制系统技术,彻底解决了这些发电机组的运行不稳定问题,真正实现了无网支撑、无忧运行,被称为“自备电厂的革命性技术”,具有国内领先水平。是一项电力、电网节能降耗技术。 其社会经济意义主要是:能为上述状况提供完整的工艺改造解决方案,可使这些企业的余热自备电厂的发电设施充分发挥效能,既节能又高效,净化污染物排放,而且用电用户可以使用到与大电网等质的电能,满足生产、生活需求。山西省长治地区沁新公司2×6000KW煤矸石自备电厂的工艺改造和2×12MW焦化余热自备电厂建设,都是采用了余热减排发供电微电网自稳定综合控制系统技术。 事实雄辩地说明,应用该技术改造余热自备电厂通过气门排空进行负荷调节的传统方法,彻底解决了自备电厂运行的弊端,使之高效节能、安全稳定运行。肯定可以带动一大批焦化、炭黑、水泥等高温冶炼企业,充分利用余热、余气进行发电。一是由于余热、余气的充分利用,提高了原材料

_汽轮机凝汽器真空度下降原因分析

汽轮机凝汽器真空度下降原因分析在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。汽轮机的真空下降会使汽轮机的可用热焓降减少器综合性.凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空;是每个发电厂节能的重要内容。而凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,提高凝汽器性能,维持机组经济真空运行,直接提高整个汽轮机组的热经济性。 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述: 一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停机。 ⑵循环水量不足 循环水量不足的主要特征是:真空逐步下降;循环水出口和人口温差增大。由于引起循环水量不足的原因不同,因此有其不同的特点,所以可根据这些特征去分析判断故障所在,并加以解决: ①若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,冷却塔布水量减少,可断定是凝汽器内管板堵塞,此时可采用反冲洗、凝汽器半面清洗或停机清理的办法进行处理。

汽轮机原理及系统考试重点

喷管实际流量大于理想流量的情况:在湿蒸汽区工作时,由于蒸汽通过喷管的时间很短,有一部分应凝结成水珠的饱和蒸汽来不及凝结,未能放出汽化潜热,产生了“过冷”现象,即蒸汽没有获得这部分蒸汽凝结时所应放出的汽化潜热,而使蒸汽温度较低,蒸汽实际密度大于理想密度,从而导致···。 蒸汽在斜切喷管中的膨胀条件:①当喷管出口截面上的压力比大于或等于临界压力比时,喷管喉部截面AB 上的流速 小于或等于声速,喉部截面上的压力与喷管的背压相等,蒸汽仅在喷管收缩部分中膨胀,而在其斜切部分中不膨胀,只起导向作用。②当喷管出口截面上的压力比小于临界压比时,喉部截面上的流速等于临界速度,压力为临界压力,在喉部截面以后的斜切部分,汽流从喉部截面上的临界压力膨胀到喷管出口压力。 分析轮周效率:高 越大,轮周效率也就越和速度系数ψ? 纯冲动: 反动级: 第二章: 为什么汽轮机要采用多级:为满足社会对更高效率的要求,提高汽轮机的效率,除应努力减小汽轮机内的各种损失外,还应努力提高蒸汽的初参数和降低背压,以提高循环热效率;为提高汽轮机的单机功率,除应增大进入汽轮进蒸汽量外,还应增大蒸汽在汽轮机内的比焓降。如果仍然制成单级汽轮机,那么比焓降增大后,喷管出口气流速度必将增大,为使汽轮机级在最佳速比附近工作,以获得较高的级效率,圆周速度和级的直径也必须相应增大,但是级的直径和圆周速度的增大是有限度的,他受到叶轮和叶片材料强度的限制,因为级的直径和圆周速度增大后,转动着的叶轮和叶片的离心力将增大,因此为保证汽轮机有较高的效率和较大的单机功率,就必须把汽轮机设计成多级的。 多级汽轮机各级段的工作特点:1.高压段:蒸汽的压力,温度很高,比容较小,因此通过该级段的蒸汽容积流量较小,所需的通流面积也较小,级的反动度一般不大,各级的比焓降不大,比焓降的变化也不大。漏气量相对较大,漏气损失较多,叶轮摩擦损失较大,叶高损失较大,高压段各级效率相对较低。2.低压段:蒸汽的容积流量很大,要求低压各级具有很大的通流面积,因而叶片高度势必很大,余速损失大,漏气损失很小,叶轮摩擦损失很小,没有部分进气损失。3中压段:蒸汽比容既不像高压段那样很小,也不像低压段那样很大,因此中压段也足够的叶片高度,叶高损失较小,各级的级内损失较小,效率要比高压段和低压段都高。 也可以提高轮周效率和适当减小21βα的变化而变化周效率只随速比的数值也基本确定,轮 和,和叶型一经选定,121x βαψ?变化不随级的喷管损失系数1x n ξ变化最大余速损失系数2c ξ增大而减小随级的动叶损失系数1x b ξm m t m m t a a x c u h u h u c u x Ω-=Ω-=?Ω-Ω-=?==**11211211????2cos 11α=)(op x 2cos 11α??=)()(op op a x x =11cos α=)(op x 2 cos 1α?==)(op a x

25MW背压式汽轮机运行规程

B25MW背压式汽轮机运行规程 批准: 审核: 修编: 宁夏伊品生物科技股份有限公司动力部

B25MW背压式汽轮机运行规程 前言 1.引用标准: 电力部《电力工业技术管理法规》 有关设计资料及厂家说明书。 2.本规程是汽轮机运行人员进行操作,调整,处理事故的技术标准,所有运行人员应按本规程的规定进行操作或调整。 3.在运行操作过程中如遇有编写内容与生产不符时,应及时提出修改意见,经审核批准后执行。

B25MW背压式汽轮机运行规程 1.适用范围及引用标准: 本规程适用于伊品企业型号为B25-8.83/0.981型(南京汽轮机厂)所生产的冲动式高压,单缸,抽汽背压式汽轮机.使用于动力部汽机专业。 2.工作原理: 该汽轮机为南京汽轮机厂生产的冲动式高压,单缸,抽汽背压式汽轮机,型号为B25-8.83/0.981,配用南京汽轮发电机厂所生产的 QFW-30-2C型空冷式发电机。 汽轮机转子由一级单列单列调节级和10级压力级组成。 喷嘴,隔板,隔板套均装在汽缸内。它们和转子组成了汽轮机的通流部分,也是汽轮机的核心部分。高压喷嘴组分成四段,通过T型槽道分别嵌入四只喷嘴室内。每一段喷嘴组一端有定位销作为固定点,另一端可以自由膨胀并装有密封键。为了缩短轴向长度,确保机组的通流能力,并有利于启动及负荷变化,本机组采用了多级隔板套。在隔板套中再装入隔板。 本机组有四只调节汽阀。均采用带减压式预启阀的单座阀,以减少提升力。油动机通过凸轮配汽机构控制四只阀的开启顺序和升程。 在汽轮机前轴承座前端装有测速装置,在座内有油泵组、危急遮断装置、轴向位移发送器、推力轴承前轴承及调节系统的一些有关部套。前轴承座的上部装有油动机。前轴承座与前汽缸用“猫爪”相连,在横

《汽轮机原理及运行》第1阶段在线作业

?A) 级的相对内效率小于轮周效率 ?B) 级的相对内效率的最佳速度比大于轮周效率最高时的最佳速度比?C) 级的相对内效率的最佳速度比等于轮周效率最高时的最佳速度比?D) 级的相对内效率的最佳速度比小于轮周效率最高时的最佳速度比 ?A) 压力降低 ?B) 温度降低 ?C) 比体积增大

?D) 相对速度增加 ?A) 隔板型结构,隔板用来安装喷嘴,并将各级叶轮隔开?B) 转鼓型结构 ?C) 汽缸上有固定静叶的隔板及支承隔板的隔板套 ?D) 汽缸上有静叶环及支承静叶环的静叶持环 ?A) 定压运行 ?B) 滑压运行 参考答案:A B 收起解析 解析:

?A) 便于拆装 ?B) 可使级间距离不受或少受汽缸上抽汽口的影响,从而可以减小汽轮机的轴向 尺寸,简化汽缸形状,有利于启停及负荷变化 ?C) 为汽轮机实现模块式通用设计创造了条件 ?D) 隔板套的采用会增大汽缸的径向尺寸,相应的法兰厚度也将增大,延长了汽 轮机的启动时间 ?A) 可分为轮式和鼓式两种基本型式 ?B) 轮式转子具有安装动叶片的叶轮,鼓式转子则没有叶轮,动叶片直接装在转 鼓上 ?C) 通常反动式汽轮机转子采用轮式结构 ?D) 通常冲动式汽轮机转子采用轮式结构 参考答案:A B D

?A) 纯冲动机 ?B) 反动级 ?C) 带反动度的冲动级 ?D) 复速级 ?A) 因高速转动和汽流作用而承受较高的静应力和动应力 ?B) 因处在高温过热蒸汽区而承受高温作用 ?C) 因处在湿蒸汽区内工作而承受腐蚀和冲蚀作用 ?D) 作用是将蒸汽的热能转换为动能,再将动能转换为汽轮机转子旋转机械能 参考答案:A B C D 收起解析

凝汽器真空度对汽轮机效率的影响分析

凝汽系统及凝汽器真空影响因素 摘要 凝汽设备是汽轮机组的重要辅机之一,是朗肯循环中的重要一节。对整个电厂的建设和安全、经济运行都有着决定性的影响。 从循环效率看,凝汽器真空的好坏,即汽轮机组最终参数的高低,对循环效率所产生的影响是和机组初参数的影响同等重要的。虽然提高凝汽器真空可以使汽轮机的理想焓降增大,电功率增加,但不是真空越高越好。影响凝汽器真空的原因是多方面的,主要有:汽轮机排气量、循环水流量、循环水入口温度等。 关键词:朗肯循环;汽轮机;凝汽器;真空

2凝汽器性能计算及真空度影响因素分析 提高朗肯循环热效率的途径 ①提高平均吸热温度的直接方法是提高初压和初温。在相同的初温和背压下, 提高初压可使热效率增大,但提高初压也产生了一些新的问题,如设备的强度问题。在相同的初压及背压下,提高新汽的温度也可使热效率增大,但温度的提高受到金属材料耐热性的限制。。 ②降低排汽温度在相同的初压、初温下降低排汽温度也能使效率提高,这是 由于循环温差加大的缘故。但其温度下降受到环境温度的限制。

2.2 凝汽系统的工作原理 图6.1是汽轮机凝汽系统示意图,系统由凝汽器5、抽气设备1、循环水泵4、凝结水泵6以及相连的管道、阀门等组成。 图6.1 汽轮机凝汽系统示意图 1-抽气设备;2-汽轮机;3-发电机;4-循环水泵;5-凝汽器;6-凝结水泵 凝汽设备的作用主要有以下四点[9]: (1)凝结作用凝汽器通过冷却水与乏汽的热交换,带走乏汽的汽化潜热而使其凝结成水,凝结水经回热加热而作为锅炉给水重复使用。 (2)建立并维持一定的真空这是降低机组终参数、提高电厂循环效率所必需的。 (3)除氧作用现代凝汽器,特别是不单设除氧器的燃气蒸汽联合循环的装置中的凝汽器和沸水堆核电机组的凝汽器,都要求有除氧的作用,以适应机组的防腐要求。 (4)蓄水作用凝汽器的蓄水作用既是汇集和贮存凝结水、热力系统中的各种疏水、排汽和化学补给水的需要,也是缓冲运行中机组流量急剧变化、增加系统调节稳定性的需求,同时还是确保凝结水泵必要的吸水压头的需要。 为了达到上述作用,仅有凝汽器是不够的。要保证凝汽器的正常工作,必须随时维持三个平衡:○1热量平衡,汽轮机排汽放出的热量等于循环水带走的热量,故在凝汽系统中设置循环水泵。○2质量平衡,汽轮机排汽流量等于抽出的凝结水流量,所以在凝汽系统中必须设置凝结水泵。○3空气平衡,在凝汽器和汽轮机低压部分漏入的空气量等于抽出的空气量,因此必须设置抽气设备[14]。 凝汽器内的真空是通过蒸汽凝结过程形成的。当汽轮机末级排汽进入凝汽器后,受到循环水的冷却而凝结成凝结水,放出汽化潜热。由于蒸汽凝结成水的过

汽轮机真空下降原因的分析

第二章汽轮机真空下降的原 因 在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。而凝汽器真空度是汽轮机运行的重要指标,也是反映凝汽器综合性能的一项主要考核指标。凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,从而提高凝汽器性能,维持机组经济真空运行,以便直接提高整个汽轮机组的热经济性。 第一节汽轮机凝汽器真空度下降的主要特征 在汽轮机组的正常运行中我们可以通过各种仪表、数据来了解和分析汽轮机凝汽器的真空度好坏情况。一般汽轮机凝汽器真空度下降的主要特征有: (1)真空表指示降低; (2)排汽温度升高; (3)凝结水过冷度增加;

(4)凝汽器端差增大; (5)机组出现振动; 第二节汽轮机凝汽器真空度下降原因分析 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述:一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环 毕业设计(论文)说明书专用第7页 水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停

凝汽式和背压式汽轮机区别

凝汽式汽轮机 科技名词定义 中文名称: 凝汽式汽轮机 英文名称: condensing steam turbine 定义: 蒸汽在汽轮机本体中膨胀做功后排入凝汽器的汽轮机。 所属学科: 电力(一级学科);汽轮机、燃气轮机(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 凝汽式汽轮机,就是指蒸汽在汽轮内膨胀做功以后,除小部分轴封漏气之处,全部进入凝汽器凝结成水的汽轮机。 目录 简介 运行特性 排汽压力与机组功率 编辑本段 简介 实际上为了提高汽轮机的热效率,减少汽轮机排汽缸的直径尺寸,将做过部分功的蒸汽从汽轮机内抽出来,送入回热加热器,用以加热锅炉给水,这种不调整抽汽式汽轮机,也统称为凝汽式汽轮机。

火电厂中普遍采用的专为发电用的汽轮机。凝汽设备主要由凝汽器、循环水泵、凝结水泵与抽气器组成。汽轮机排汽进入凝汽器,被循环水冷却凝结为水,由凝结水泵抽出,经过各级加热器加热后作为给水送往锅炉。 汽轮机的排汽在凝汽器内受冷凝结为水的过程中,体积骤然缩小,因而原来充满蒸汽的密闭空间形成真空,这降低了汽轮机的排汽压力,使蒸汽的理想焓降增大,从而提高了装置的热效率。汽轮机排汽中的非凝结气体(主要就是空气)则由抽气器抽出,以维持必要的真空度。 汽轮机最常用的凝汽器为表面式。冷却水排入冷却水池或冷却水塔降温后再循环使用。靠近江、河、湖泊的电厂,如水量充足,可将由凝汽器排出的冷却水直接排入江、河、湖泊,称为径流冷却方式。但这种方式可能对河流湖泊造成热污染。严重缺水地区的电厂,可采用空冷式凝汽器。但它结构庞大,金属材料消耗多,除列车电站外,一般电厂较少采用。老式电厂中,有的采用混合式凝汽器,汽轮机排汽与冷却水直接混合接触冷却。但因排汽凝结水被冷却水污染,需要处理后才能作为锅炉给水,已很少采用。 背压 科技名词定义 中文名称: 背压 英文名称: back pressure 定义: 工质在热机中做功后排出的压力。一般指汽轮机的排汽压力。 所属学科: 电力(一级学科);通论(二级学科) 本内容由全国科学技术名词审定委员会审定公布 目录

汽轮机原理名词解释

汽轮机的级: 汽轮机的级是汽轮机中由一列静叶栅和一列动叶栅组成的将蒸汽热能转换成机械能的基本工作单元。 级的余速损失: 汽流离开动叶通道时具有一定的速度,且这个速度对应的动能在该级内不能转换为机械功,称余速损失 滑销系统: 保证汽缸定向自由膨胀,保持汽缸与转子中心位置一致 汽耗微增率: 每增加单位功率需多增加的汽耗量。 迟缓率: 1n 、2n 分别表示在机组同一功率下的最高和最低转速0n 时汽轮机的额定转速 压比: 喷嘴后的压力与喷嘴前的滞止压力之比 速度系数: :在喷嘴出口处蒸汽的实际速度比理论速度 速比: 动叶圆周速度u 与喷嘴出口速度c1之比x1=u/c1。 最佳速比: 轮周效率最大时的速度比称为最佳速度比。 反动度: 动叶的理想比焓降与级的理想比焓降的比值。表示蒸汽在动叶通道内膨胀程度大小的指标。 轮周效率: 1kg 蒸汽在轮周上所作的轮周功Wu 与整个级所消耗的蒸汽理想能量Eo 之比。 轮周功率: 单位时间内蒸汽推动叶轮旋转所作出的机械功。 轮周损失: 喷嘴出口气流的实际比焓值h1与理想比焓值h1t 之差 速度变动率:汽轮机空负荷时对应的最大转速nmax 和额定负荷时所对应的最小转速nmin 之差与与汽轮机额定转速n0之比 凝汽器冷却倍率: 进入凝汽器的冷却水量与进入凝汽器的蒸汽量的比值称为凝汽器的冷却倍率。表明冷却水量是被凝结蒸汽量的多少倍又称循环倍率M=Dw/Dc 级按照不同角度的分类:按能量转换特点分为纯冲动级、冲动级、反动级、复速级等几种 汽轮机的两大作用原理及其特点:冲动作用原理 冲动力推动动叶做功。特点:蒸汽只在喷嘴中膨胀。反动作用原理反动力推动动叶做功。 特点:蒸汽在喷嘴、动叶都膨胀。 1.级的临界状态(蒸汽在膨胀流动过程中,在汽道某一截面上达到当地声速的气流速度称为临界速度。这时汽流所处的状态称为临界状态,汽流的参数称为临界参数。) 2.滞止状态(气体在流动的过程中,因受到某种物体的阻碍,而流速降低为零的过程称为绝热滞止过程,此时气体的状态为滞止状态) 3.切部分的作用及膨胀条件:导向作用和膨胀作用;条件:叶栅后的压力P1小于临界压力P1c 大于极限膨胀压力P1d (P1d< P1

汽轮机原理及运行考试题.

、填空题 1. 蒸汽轮机发电厂的三大核心设备为:、及。 2. 工质的基本状态参数有:、和。 3. 热能传递和转化的方式有:和。 4. 当M<1时,要想使气流膨胀,通流截面应;要想扩压通流截面应。 当M>1时,要想使气流膨胀,通流截面应;要想扩压通流截面应。 5. 汽轮机按热力过程可分为:①汽轮机;②汽轮机; ③汽轮机;④汽轮机等。 6. 汽轮机是一种将的转变为的旋转式原动机。 7. 根据级所采用的反动度的大小不同,可将级分为:,,三种。 8. 蒸汽在动叶中的与这一级之比,称为汽轮机的反动度。 9. 动叶片中理想焓降的大小,通常用级的来衡量,动叶中的焓降越大,级的反动度就。 10. 级内损失除了蒸汽在通流部分中流动时所引起的损失、损失、损失外,还有 损失、损失、损失、损失,损失以及等损失。 11. 汽轮机的损失可分为损失和损失。外部损失包括:损失、损失。 12. 汽轮机转子主要包括、、、以及其他转动零件。 13. 汽轮机的轴承分轴承和轴承两大类。 14. 蒸汽在多级汽轮机中工作时,除存在各种级内损失外,还要产生损失和损

失。 15. 汽轮机米用中间再热,可以提咼;又能减小 16. 高压轴封用来防止蒸汽汽缸,避免工质损失并保护运行现场环境,减轻加热或冲进使润滑油质劣化;低压轴封则用来防止空气汽缸使升高,以及减轻的负担。 17. 危急遮断器的动作转速应在额定转速的范围内。 18. 汽轮机处在临界转速下振动增大的现象称为现象。 19. 影响调节系统动态特性的主要因素,除了机组方面的转子飞升时间,中间容积时间外,还有调节系统方面的、和。 20. DEH控制系统要实现对汽轮机组转速和负荷的控制,必须获得的反馈信号是信号、信号以及信号。 21. DEH调节系统的四种运行方式为:、、和。 22. 汽轮机凝汽设备由、、和凝结水泵等组成。 23. 抽汽器的作用是抽出凝汽器中的,凝汽器真空。 24. 高加保护装置的作用是:当高加发生事故时,能及时切断高加与的联系,同时打开管路,以保证。 25. 调节系统动态特性的质量指标主要有:、和。 26. 调节系统的静态试验包括:、和。 二、名词解释 1?工质一一 2?热力系统——

凝汽器工作原理

凝汽器工作原理 凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被 蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热 器、给水泵等输送进锅炉,从而保证整个热力循环的连续进行。为防止 凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还 设有真空除氧器。 凝汽器的主要作用: 1)在汽轮机排汽口造成较高真空,使蒸汽在汽轮机中膨胀到最低压力,增大蒸汽在汽轮机中的可用焓降,提高循环热效率; 2)将汽轮机的低压缸排出的蒸汽凝结成水,重新送回锅炉进行循环; 3)汇集各种疏水,减少汽水损失。 4)凝汽器也用于增加除盐水(正常补水) 表面式凝汽器的工作原理:凝汽器中装有大量的铜管,并通以循环冷却水。当汽轮机的排汽与凝汽器铜管外表面接触时,因受到铜管内水流的冷却,放出汽化潜热变成凝结水,所放潜热通过铜管管壁不断的传给循环冷却水并被带走。 这样排汽就通过凝汽器不断的被凝结下来。排汽被冷却时,其比容急剧缩小,因此,在汽轮机排汽口下凝汽器内部造成较高的真空。 凝汽器是火力发电厂的大型换热设备。图1为表面式凝汽器的结构示意图。

凝汽器运行时,冷却水从前水室的下半部分进来,通过冷却水管(换热管)进入后水室,向上折转,再经上半部分冷却水管流向前水室,最后排出。低温蒸汽则由进汽口进来,经过冷却水管之间的缝隙往下流动,向管壁放热后凝结为水。真空度定义: 从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,即: 真空度=大气压强—绝对压强 凝汽器中真空的形成主要原因 在启动过程中凝汽器真空是由主、辅抽汽器将汽轮机和凝汽器内大量空气抽出而形成的。 在正常运行中,凝汽器真空的形成是由于汽轮机排汽在凝汽器内骤然凝结成水时其比容急剧缩小而形成的。如蒸汽在绝对压力4kpa时蒸汽的体积比水的体积大3万倍,当排汽凝结成水后,体积就大为缩小,使凝汽器内形成高度真空。凝结器的真空形成和维持必须具备三个条件: 1)凝汽器铜管必须通过一定的冷却水量; 2)凝结水泵必须不断地把凝结水抽走,避免水位升高,影响蒸汽的凝结; 3)抽汽器必须把漏入的空气和排汽中的其它气体抽走。 真空降低的原因: (1)循环水量减少或中断: ①循环水泵跳闸、循进阀门误关、循环水泵出口蝶阀阀芯落、循进滤网堵:水量中断,进水压力下降,出水真空至零,循泵电流至零或升高,须不破坏真空停机;若未关死,立即减负荷恢复; ②循出阀门误关、凝汽器水侧板管堵塞、收球大网板不在运行位置:循环水压上升,温升增大; ③进水不畅:循泵电流晃动,进水压力下降,出水真空降低,循环水温升增大,水量不足;. |4 Q1 j- {3 u ④虹吸破坏(进水压力低、板管堵塞、出水侧漏空气):虹吸作用减小时,会使水量减少,却又提高了循环水母管压力,而压力高对维持水量是有利的,所以虹吸破坏必然是个过程。出水真空晃动且缓慢下降,温升增大。操作:提高循环水压力(关小出水门),对循出放空气,重新建立出水真空。 (2)轴封汽压力低:提高压力,关小轴加排汽风机进气门;冷空气会使转子收缩,负差胀增大。 (3)凝汽器水位高:排汽温度升高同时,凝水温度下降,过冷度增加。端差增大;水位﹥抽汽口高度、运行凝泵跳闸、管路堵、备用泵逆止门坏、系统主要

相关文档
最新文档