流体力学-势流理论

流体力学-势流理论
流体力学-势流理论

第六章势流理论

本章内容:

1.势流问题求解的思路

2.库塔----儒可夫斯基条件

3. 势流的迭加法

绕圆柱的无环绕流,绕圆柱的有环绕流

4.布拉休斯公式

5.库塔----儒可夫斯基定理

学习这部分内容的目的有二:

其一,获得解决势流问题的入门知识,即关键问题是求解速度势。求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。

其二,明确两点重要结论:

1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。

2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。

本章重点:

1、平面势流问题求解的基本思想。

2、势流迭加法

3、物面条件,无穷远处条件

4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位

置,流线图谱,升力,阻力,环流方向等。

5、四个简单势流的速度势函数,流函数及其流线图谱。

6、麦马格鲁斯效应的概念

7、计算任意形状柱体受流体作用力的卜拉修斯定理

8、附加惯性力,附加质量的概念

本章难点:

1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。

2.任意形状柱体受流体作用力的卜拉修斯定理

3.附加惯性力,附加质量的概念

§6-1 几种简单的平面势流

平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。

例如:

1)绕一个无穷长机翼的流动,

2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,

则这一问题就可以按

一、均匀流

流体质点沿x轴平行的均匀速度Vo ,如图6-5所示,

V x=V o , V y =0

dx V dy V dx V dy y

dx x d y x 0=+=??+??=

??

? 积分:φ=V ox (6-4)

如图6-3

流函数的全微分为,

dy V dy V dx V dy y

dx x d o x y =+-=??+??=

ψψψ 积分:ψ=V o y (6

-5 如图6-4

由(6-4)和(6

-5 流线:y=const ,一组平行于x轴的直线,如图6

-3 等势线:x=const ,一组平行于y轴的直线,如图6-3中的虚线。

均匀流的速度势还可用来表示平行平壁间的流动或薄平板的均匀纵向绕流,如图6-4所示。

平面源:流体由坐标原点出发沿射线流出,反之,流体从各个方向流过来汇聚于一点,谓之平面汇:与源的流动方向相反。

设源的体积流量为Q,速度以源为中心,沿矢径方向向外,沿圆周切线方向速度分量为零。现以原点为中心,任一半径r作一圆,则根据不可压缩流体的连续性方程, 体积流量Q

πrvr=Q

∴vr=Q/2πr (6-6)

在直角坐标中,有

x y V y

x V y x ??-

=??=??=??=

ψ?ψ?

在极坐标中有:

r r s V r s r V s r ??-

=??=??=??=??=??=

ψθ??θ

ψψ?11 (6-7) 图6-6 点源和点汇

极坐标中φ和ψ

的全微分:

θ

πψπ?θ

πθθθψψψπθθθ???2ln 222Q r

Q d Q d rV dr V d dr r d dr r Q d rV dr V d dr r d r s s r ===+-=??+??==+=??+??=

(6-8)

流线:为θ=const ,从原点引出的一组射线;等势线为r=const

,就是和流线正交的一组

由(6-6)式可看出,当Q>0,则vr>0,坐标原点为源点; 如果Q<0,则vr<0,流体向原点汇合, 图6-7扩大壁面和源的互换性乃是汇点。 源(汇)的速度势,还适用于扩大(收缩),渠道中理想流体的流动,如图6-7所示。

三、偶极子 图6-8偶极

偶极流:流量相等的源和汇无限靠近,且随着其间距δx→0,其流量Q→∞,且Qδx→

M(δx→0) (6-9)

则这种流动的极限状态称为偶极子,M称为偶极矩。 用迭加法求φ和ψ。

)ln (ln 22121r r Q

-+

+=π

??? 由图6-8 (a)所示: 121cos θδx r r +≈

因此

)cos 1ln(2cos ln 2ln 2)ln (ln 22

22

2

22

1

2121r x Q

r x r Q r r Q r r Q θδπθδπππ???+=

+==-+

+=

式中z=δxcosθ1r2是个小量,我们利用泰劳展开式

将φ展开并略去δx二阶以上小量得

当δx→0时,Qδx→M,θ1→θ,r2→r。其中r,θ为A点的极坐标,这样便可从 上式得到偶极子的速度势为

?

???-+-=+3

2)1ln(3

2z z z z 2

1cos 2r x Q θδπ?≈

(6-10)

直角坐标有

2

22y x x

M +=

π? (6-11)

对于流函数: )(2)(22121δθπ

θθπψψψQ Q =-+

+= 图6-8(a)三角形BCD:r2δθ=δxsinθ1,有

2

1

sin r x θδδθ=

所以 2

sin 2r x M θ

δπψ=

nθr2当δx→0时,Qδx →M,r2→r,θ1→θ,所以

r

M θ

πψsin 2-

= (6-12)

直角坐标有 2

22y x y

M +-

=πψ (6-13)

令ψ=C 即得流线族: c y

x y

M =+-

2

22π 或

12

2c y x y

=+

即 01

2

2=-

+c y

y x 配方后得 21

21241

)21(c c y x =-

+ (6-14) 流线:圆心在y轴上与x 轴相切的一组圆,如图6-10(b)中的实线。流体是沿着上述的

圆周,由坐标原点流出,重新又流入原点。

等势线:中心在x轴上与y轴相切的一组圆,并与ψ=const 正交,如图6-8(b)中的虚线。应当注意的是,偶极子是有轴线和有方向的。源和汇所在的直线就是偶极子的轴线,由汇指向源的方向,就是偶极轴的方向。如图6-8所示的偶极子的方向是x轴的负向。 四、点涡(环流)

流场中坐标原点处有一根无穷长直涡索,方向垂直于平面xy平面,与xy平面的交点为一个点涡。点涡在平面上的诱导速度沿着以点涡为中心的圆周的切线方向,大小与半径成反比,即

r

M θπ?cos 2=

02=Γ=

r s v r

v π (6-15)

极坐标下: θπ

θ?d rd v dr v d s r 2Γ

=+= 积分得: θπ

?2Γ

=

(6-16) 流函数 dr r

rd v dr v v d r r s πθψ2Γ-=+-=

r ln 2π

ψΓ

-= (6-17) 流线:ψ=const 就是r=C,即一组以涡点为中心的同心圆, 如图6-9所示。 注意:Γ>0对应于反时针的转动,Γ<0对应于顺时针的涡旋。

§6-3 绕圆柱体的无环量流动,达朗贝尔谬理 势流迭加法:

均匀流、源汇、偶极子、点涡这样一些几种简单的势流,具有可迭加性。将它们之中的两个或两个以上迭加起来,在用物面边界条件来控制,会获得有实际意义的结果。

绕圆柱体的无环流流动就是一个典型的实例。 理想流体的边界条件:

1) 无穷远条件(远场条件)

r=∞,

==y x v v v θ

或r=∞,

sin cos r r v v v v θθθθ

=-

=

2)物面条件(近场条件)0,vn=vr=0 称为不可穿透条件 零流线: r=r0处ψ=0是一条流线。

圆柱在静止无界流体中作等速直线运动 = 均匀流动+ 偶极子流动

120

2M C o s

v r C o s r

θ???θπ=+=+ ( 6-18)

1202M S i n

v r S i n r

θψψψθπ=+=-

(6-19)

观察ψ=0这条流线,由(6-28)式,我们有:

0)2(0=-

r

M

v Sin πθ 若sinθ=0,有θ=0或π,因此ψ=0的流线中有一部分是x轴; 若v0r-M2πr=0,020=-r

M

r v π 即r2=M2πv0,02

2v M r π=

令 200

2r v M

=π, 就有r=r0, 即r=r0的圆周也是ψ=0的流线的一部分, 如图6-10所示。 验证边界条件,将2002r v M π=代入φ,有

)(cos 2

00r

r r v +=θ? (6-2

速度

)

1(sin 1)

1(cos 22

002200r

r v r v r

r v r v r +-=??=-=??=θθ?

θ?

θ (6-21)

θ

θθsin cos 00v v v v r -==

当r=r0时,vr=0

这样就证明了均匀流和偶极子迭加的速度势,完全满足绕圆柱体无环流流动的远场和近场的边界条件,它在r≥r0的流动情况与均匀流绕圆柱的流动情况完全一样。

想象把均匀流加偶极子的流动图案中r<r0的那一部分去掉(不感兴趣),而在其中充实以一个r=r0的圆柱体,对流场流动不会有任何影响。因此,绕圆柱体无环流流动的速度势就是均匀流加偶极子的速度势。圆柱表面的速度分布。 圆柱表面上速度分布:

r=r0时:

θ

θsin 200v v v r -== (6-22)

负号表示其方向与s 坐标轴方向相反, 如图6-10

驻点位置:

A,C两点θ=π或0,vs=0称为驻点或分流点。 对B,D两点: 022

v v =±

=θπ

θ (6-23)

B,D两点:速度达到最大值,与圆柱体半径无关,恰等于来流速度v0之两倍。 流体从较远处以流速v0流向圆柱,当接近圆柱时,流速逐渐减小,到达A点时速度降至零。然后分为二支向两侧流去,同时速度逐渐增大。

B,D两点:速度增至2v0,达最大值。然后又逐渐减小,在C点汇合时,速度又降至零。

离开C点后,又逐渐加速,流向后方的无限远处时,再恢复为v0。 圆柱表面上压力分布:

运动是定常,设无穷远均匀流中的压力为p0,忽略了质量力,拉格朗日方

2

2

2

002

v p v p ρρ+

=+

将园柱表面上速度分布代入,即得圆柱表面上压力分布 )sin 41(2

22

00θρ-=

-v p p (6-24)

物面上的压力分布往往用下式定义的无因次系数来表示:

200

2

1v p p C p ρ-=

(6-25)

由(6-24)式可得

θ4

sin

41-=p C (6-26)

压力系数见图6-11(a)中。压力分布既对称于x轴也对称于y轴。

B,D两点压力最小cp=-3 (6-2 沿ψ=0这条流线压力变化为:

左方无限远处,cp=0,当流体流向圆柱体时,压力逐渐增大,流到A点时压力为极大值cp=1。由A点分为两支分别流向B,D点,压力逐渐减小,到达这两点时压力为极小值,cp=-3。由B,D点流向C点时,压力逐渐增大,到达C点,恢复到极大值,cp=1。由C点流向右方无限远处,压力又再次减小,最后压力重新降至p0,cp=0。

图6-11 圆柱体表面上的压力系数分布

理想流体对圆柱体的作用力:

因为其压力分布对称于x轴,显然合力在y轴上的分力L(升力)为零;同样,因其

阻力 R=0 (6-2

这一结果与实验结果有严重矛盾,称为达朗贝尔谬理。

如图6-11(b)所示为圆柱表面压力分布的实测结果。和图6-11(a)相比较,其前半部保持不变,后半部发生很大变化,C点处由正压变为负压,破坏了压力分布对y轴的对称性,从而引起了作用于物体的阻力。其原理,边界层理论一章再详细讨论。

达朗贝尔谬理在理论上仍然是很有意义。达朗贝尔谬理成立的条件可归纳为下列五点;

3)物体周围的流场中没有源、汇、涡等奇点存在; 4)物体作等速直线运动;

5)流动在物体表面上没有分离。如果上述条件全部成立,那么任何物体的的确确将不会

上面任一条件被破坏,则物体即将遭受到流体的作用力(阻力或升力)。因此,根据达

§6-3

提问:

乒乓球和排球中的弧圈球的运动轨迹为什么不是直线?

圆柱在静止无界流体中作等速直线运动同时自身转动 = 均匀流动+偶极子流动+点涡

现在将绕圆柱体无环流流动与点涡进行迭加。

r

r

r r v r r r v ln 2)(sin 2)(cos 200200π

θψθ

πθ?Γ

+-=Γ

-+= (6-29) 上式中的点涡取环量为-Γ,这是为了符合圆柱体顺射针转动的条件。 由(6-29),当r=r0, .ln 20const r =Γ

ψ仍保持为流线。 速度分布:

r r

r v r v r r r v r v r πθθ?θ?

θ2)1(sin 1)

(cos 22002200Γ

-

+-=??=+=??= (6-30)

圆柱表面上速度分布:用r=r0代入上式得:

012sin 20

r r v v v r πθθΓ-

-== (6-31)

圆柱表面:法向速度仍为零,满足不可穿透条件。

切向速度不为零,多出一项环流的速度。

圆柱顺时针的环流和无环量绕流方向相同,因而速度增加,而下表面则方向相反,因而速度减少。

驻点位置:驻点位置离开x轴下移的距离与Γ的大小有关。 根据(6-31)式有: 0

02sin 20r v s πθΓ-

-= 解出 0

04s i n v r s πθΓ

-=

1)Γ<4πr0v 0

θs|<1, 则两个驻点在圆柱面上,左右对称位于第

三、四象限,如图6-13(a)所示,而且A,B两个驻点随着Γ值的增加而向下移动,并

2)Γ=4πr0v0,两个驻点重合,位于圆柱面的最下端,如图6-13 3)Γ>4πr0v0,驻点不在圆柱面上。驻点脱离圆柱面沿y轴向下移动到相应的位置。

令(5-30)式中的vr=0和vθ=0,得到两个位于y轴上的驻点,一个在圆柱体内,另一个在圆柱体外。这种流动只有一个在圆柱体外的自由驻点,如图6-13(c)所示。 由图6-13

,合成流动对称y轴,仍将不遭受阻力。但环量的存在流动图形不对称x轴,

升力的大小:将圆柱表面上速度分布0

02sin 2r v v πθθΓ--= 代入柏努利方程:

002

20

2

022

2

202

sin sin 28)2sin 2(2

2

r v v r C r v C v C p πθρθρπρπθρ

ρΓ--Γ-

=Γ+

-

=-= (6-

3

θ

θπ

d r p L ?

-=20

sin

将(6-33)代入上式,并考虑到

π

θθθθθθπ

π

π

===?

?

?

d d d 20

220

3

20

0sin ,

0sin ,

0sin

Γ=0v L ρ (6-

3

这个关系称为库塔——儒可夫斯基升力定理。

上式揭示了升力和环量之间的一个重要关系,即升力的大小准确地和环量Γ成正比,此外还和流体密度ρ及来流速度v0成正比。要决定升力的方向,只要把来流速度矢量逆环量方向旋转90°即得(如图6-14所示)。它在绕流问题中具有普遍意义,即不仅对圆柱是正确的,而且对有尖后缘的任意翼型都是正确的(参阅第十二章机翼理论部分)。其实流体由于粘性,圆柱后部会有分离,这时除升力外还会有阻力,但升力基本上可用(6-3

4)式

麦格鲁斯效应:流体绕流圆柱体会产生升力的现象。 问题:

1)分析乒乓球和排球中的弧圈球

2)Buckan号试验船, 如图6-1

5

§6-4

物体在无界流体内的运动可分为两大类: 1)匀速直线运动 1)非匀速直线运动。 前一种情形,可以通过将坐标系转换到与物体固定在一起的惯性系的方法,把问题转换

为均匀来流的定常绕流问题。根据伽利略相对性原理,在两个惯性系中,动力学特性是相同的。因此,定常绕流问题中求得的压力分布、合力、力矩等,就是匀速直线运动所要求的对应函数。这样,我们就将物体在无界流体中作匀速直线运动这一不定常问题转换成为定常的绕流问题。关于定常绕流问题,前面已作了详细讨论,

并得到了物体既不受升力又不受阻力

物体在无界流体中作非匀速直线运动。如再取固定于物体上的坐标系,坐标转换后所得到的绕流问题本身可能就是不定常运动,要另想办法来处理这一不定常运动问题。

设在无界的流体中,取一个半径R非常大的球面Σ,质量为M的物体,在外力F的作用下,在Σ界定的流场中以加速度AKa→D运动。由于物体的运动,使周围各点的流体微团亦产生了大小和方向不同的加速度,其流线分布如图6-16所示。

推动物体的力,不仅必须为增加物体的动能而作功,

而且还要为增加流体的动能而作功。

F=(M+λ)a (6-

3

λ称为附加质量,M+

λ 将λa移到(6-35)式左边,令

FI=-λa (6-36)

则有: F+FI=Ma (6-37) FI为物体加速周围流体质点时受到周围流体质点的作用力,称为附加惯性力, 由(6-36)可见FI的方向与加速度方向相反。

当a>0时FI<0,即物体加速度运动时,FI为阻力;

当a<0时,FI>0,即物体减速时,FI为推力,即FI使既难于加速也难于减速,结果使物体惯性加大,在效果上相当于质量增加了一个附加质量

λ 附加质量的计算:Σ内部流场τ体积内的流体动能为

???=

ττρd v T 2

2

1

???=τ

τρd v T 221

(6-3

式中

)()()()()()()(

2222222222z

y x z

z y y x x z y x v ??+??+??-????+????+????=??+??+??=?????

????????

所以 )()()(2

z

z y y x x v ????+????+????=

?

????? (6-3

根据高斯定理,对于在区域τ及外边界Σ和内边界S上所定义的单值连续函数P,Q,R 有:

σ

σττ

d z n R y n Q x n P d z n R y n Q x n P d z R y Q x P s

)],cos(),cos(),cos([)],cos(),cos(),cos([)(

++-++=??+??+?????????∑

将上式用于(6-39)和(6-

38

σ??????

ρ

σ?

?????

ρ

d z n z

y n y x n x d z n z

y n y x n x T s

)],cos(),cos(),cos([2

)],cos(),cos(),cos([2

??+??+??=

-??+??+??=????∑

由方向

n

z n z y n y x n x ??=??+??+???

???),cos(),cos(),cos(

因此 ??????-??=

s d n

d n T σ?

?ρσ??

ρ

22

上式中对Σ的面积分可以略去不计。

以圆柱运动为例,当圆柱体在静止流体中运动时,其绝对速度势为

r

r V 2

0cos θ?=

速度势及其微分的量阶为 r r s r n r

~121

~1~2

?=??π??

:当

Σ

01

~2→????∑

r

d n σ??

所以动能计算式简化为 σ??

ρ

d n

T s

????-

=2

(6- 40)

设单位速度V=1所对应的速度势用

φ

0??V = (6

- 4

),,,(t z y x ??=, )(t V V =, ),,(00z y x ??=

于是(6

-4

20

)(2

V d n

T s

σ??ρρ

????-=

(6

-4

流体力学的应用

重庆理工大学 关于流体力学应用的论文 重庆理工大学 2012年03月01日

流体力学的应用 【摘要】 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。 流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 【关键词】流体力学流体阻力牛顿流体涡流 【正文】 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学在生产生活中的应用很广泛,例如航空航天航海技术、

水利工程、环境保护以及生活中很多不起眼的小物件也利用了流体力学的基础知识。 例如生活中常见的高尔夫球,高尔夫球运动起源于15世纪的苏格兰,不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,后来发现表面破损的旧球反而打的更远。原来是临界Re数不同的结果。高尔夫球的直径为41.1毫米,光滑球的临界RE数为3.85×E5,相当的自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。 一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5,相当的临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。 同样在游泳的时候,也受到流体的作用。游泳是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持

流体力学知识点大全-吐血整理讲解学习

流体力学知识点大全- 吐血整理

1. 从力学角度看,流体区别于固体的特点是:易变形性,可压缩性,粘滞性和表面张 力。 2. 牛顿流体: 在受力后极易变形,且切应力与变形速率成正比的流体。即τ=μ*du/dy 。 当n<1时,属假塑性体。当n=1时,流动属于牛顿型。当n>1时,属胀塑性体。 3. 流场: 流体运动所占据的空间。 流动分类 时间变化特性: 稳态与非稳态 空间变化特性: 一维,二维和三维 流体内部流动结构: 层流和湍流 流体的性质: 黏性流体流动和理想流体流动;可压缩和不可压缩 流体运动特征: 有旋和无旋; 引发流动的力学因素: 压差流动,重力流动,剪切流动 4. 描述流动的两种方法:拉格朗日法和欧拉法 拉格朗日法着眼追踪流体质点的流动,欧拉法着眼在确定的空间点上考察流体的流动 5. 迹线:流体质点的运动轨迹曲线 流线:任意时刻流场中存在的一条曲线,该曲线上各流体质点的速度方向与 该曲线的速度方向一致 性质 a.除速度为零或无穷大的点以外,经过空间一点只有一条流线 b.流场中每一点都有流线通过,所有流线形成流线谱 c .流线的形状和位置随时间而变化,稳态流动时不变 迹线和流线的区别:流线是同一时刻不同质点构成的一条流体线; 迹线是同一质点在不同时刻经过的空间点构成的轨迹 线。 稳态流动下,流线与迹线是重合的。 6. 流管:流场中作一条不与流线重合的任意封闭曲线,通过此曲线的所有流线 构成的管状曲面。 性质:①流管表面流体不能穿过。②流管形状和位 置是否变化与流动状态有关。 7.涡量是一个描写旋涡运动常用的物理量。流体速度的旋度▽xV 为流场的涡 量。 有旋流动:流体微团与固定于其上的坐标系有相对旋转运动。无旋运动:流 场中速度旋度或涡量处处为零。 涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方 向一致。 8. 静止流体:对选定的坐标系无相对运动的流体。 不可压缩静止流体质量力满足 ▽x f=0 9. 匀速旋转容器中的压强分布p=ρ(gz -22r2 ω)+c 10. 系统:就是确定不变的物质集合。特点 质量不变而边界形状不断变化 控制体:是根据需要所选择的具有确定位置和体积形状的流场空间。其表 面称为控制面。特点 边界形状不变而内部质量可变 运输公式:系统的物理量随时间的变化率转换成与控制体相关的表达式。

流体力学-基本概念

**流函数:由连续性方程导出的、其值沿流线保持不变的标量函数。**粘性:在运动状态下,流体内部质点间或流层间因相对运动而产生内摩擦力以抵抗剪切变形,这种性质叫做粘性。粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度.运动黏度和条件粘度。 **内摩擦力:流体内部不同流速层之间的黏性力。 **牛顿流体:剪切变形率与切应力成线性关系的流体(水,空气)。**非牛顿流体:黏度系数在剪切速率变化时不能保持为常数的流体(油漆,高分子溶液)。 **表面张力:1.表面张力作用于液体的自由表面上。2.气体不存在表面张力。3.表面张力是液体分子间吸引力的宏观表现。4.表面张力沿表面切向并与界线垂直。5.液体表面上单位长度所受的张力。6.用σ 表示,单位为N/m。 **流线:表示某瞬时流动方向的曲线,曲线上各质点的流速矢量皆与该曲线相切。性质:a、同一时刻的不同流线,不能相交。b、流线不能是折线,而是一条光滑的曲线。c、流线簇的疏密反映了速度的大小。 **过流断面:与元流或总流的流向相垂直的横断面称为过流断面。(元流:在微小流管内所有流体质点所形成的流动称为元流。总流:若流管的壁面是流动区域的周界,将流管内所有流体质点所形成的流动称为总流。)

**流量:单位时间内通过某一过流断面的流体体积称为该过流断面的体积流量,简称流量。 **控制体:被流体所流过的,相对于某个坐标系来说,固定不变的任何体积称之为控制体。控制体的边界面,称之为控制面。控制面总是封闭表面。占据控制体的诸流体质点随着时间而改变。 **边界层:水和空气等黏度很小的流体,在大雷诺数下绕物体流动时,黏性对流动的影响仅限于紧贴物体壁面的薄层中,而在这一薄层外黏性影响很小,完全可以忽略不计,这一薄层称为边界层。 **边界层厚度:边界层内、外区域并没有明显的分界面,一般将壁面流速为零与流速达到来流速度的99%处之间的距离定义为边界层厚度。 **边界层的基本特征:(1) 与物体的特征长度相比,边界层的厚度很小。(2) 边界层内沿厚度方向,存在很大的速度梯度。(3) 边界层厚度沿流体流动方向是增加的,由于边界层内流体质点受到黏性力的作用,流动速度降低,所以要达到外部势流速度,边界层厚度必然逐渐增加。(4) 由于边界层很薄,可以近似认为边界层中各截面上的压强等于同一截面上边界层外边界上的压强值。 (5) 在边界层内,黏性力与惯性力同一数量级。 (6) 边界层内的流态,也有层流和紊流两种流态。 **滞止参数:设想某断面的流速以等熵过程减小到零,此断面的参数称为滞止参数。

《流体力学》复习参考答案(年整理)

流体力学 习题解答

选择题: 1、恒定流是: (a) 流动随时间按一定规律变化;(b)流场中任意空间点上的运动要素不随时间变化;(c) 各过流断面的速度分布相同。(b) 2、粘性流体总水头线沿程的变化是:(a) 沿程下降 (a) 沿程下降;(b) 沿程上升;(c) 保持水平;(d) 前三种情况都可能; 3、均匀流是:(b)迁移加速度(位变)为零; (a) 当地加速度(时变)为零;(b)迁移加速度(位变)为零; (c)向心加速度为零;(d)合速度为零处; 4、一元流动是:(c) 运动参数是一个空间坐标和时间变量的函数; (a) 均匀流;(b) 速度分布按直线变化;(c) 运动参数是一个空间坐标和时间变量的函数; 5、伯努利方程中各项水头表示:(a) 单位重量液体具有的机械能; (a) 单位重量液体具有的机械能;(b)单位质量液体具有的机械能; (c)单位体积液体具有的机械;(d)通过过流断面流体的总机械能。 6、圆管层流,实测管轴线上流速为4m/s,则断面平均流速为::(c)2m;(a) 4m;(b)3.2m;(c)2m; 7、半圆形明渠,半径r=4m,其水力半径为:(a) 4m;(b)3m;(c) 2m;(d) 1m。 8、静止液体中存在:(a) 压应力;(b)压应力和拉应力;(c) 压应力和剪应力;(d) 压应力、拉应力和剪应力。 (1)在水力学中,单位质量力是指(c、) a、单位面积液体受到的质量力; b、单位体积液体受到的质量力; c、单位质量液体受到的质量力; d、单位重量液体受到的质量力。 答案:c (2)在平衡液体中,质量力与等压面() a、重合; b、平行 c、斜交; d、正交。

第1章 流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 1.1 连续介质与流体物理量 1.1.1 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022个水分子,相邻分子间距离约为3×10-8 厘米。因而, 从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 1.1.2 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

工程流体力学复习知识总结

一、 二、 三、是非题。 1.流体静止或相对静止状态的等压面一定是水平面。(错误) 2.平面无旋流动既存在流函数又存在势函数。(正 确) 3.附面层分离只能发生在增压减速区。 (正确) 4.等温管流摩阻随管长增加而增加,速度和压力都减少。(错误) 5.相对静止状态的等压面一定也是水平面。(错 误) 6.平面流只存在流函数,无旋流动存在势函数。(正 确) 7.流体的静压是指流体的点静压。 (正确) 8.流线和等势线一定正交。 (正确) 9.附面层内的流体流动是粘性有旋流动。(正 确) 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。(正确) 11.相对静止状态的等压面可以是斜面或曲面。(正 确) 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。(正确) 13.壁面静压力的压力中心总是低于受压壁面的形心。(正确) 14.相邻两流线的函数值之差,是此两流线间的单宽流量。(正确) 15.附面层外的流体流动时理想无旋流动。(正 确) 16.处于静止或相对平衡液体的水平面是等压面。(错 误) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。(错误 ) 18流体流动时切应力与流体的粘性有关,与其他无关。(错误) 四、填空题。 1、1mmH2O= 9.807 Pa 2、描述流体运动的方法有欧拉法和拉格朗日法。 3、流体的主要力学模型是指连续介质、无粘性和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时惯性力 与粘性力的对比关系。 5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量 Q为,总阻抗S为。串联后总管路的流量Q 为,总阻抗S为。

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

流体力学基本概念和基础知识..知识分享

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

流体力学-总结+复习 4-5章

A16轮机3,流体力学复习资料,4&5章 第四章相似原理和量纲分析 1. 流动的力学相似 1)几何相似:两流场中对应长度成同一比例。 2)运动相似:两流场中对应点上速度成同一比例,方向相同。 3)动力相似:两流场中对应点上各同名力同一比例,方向相同。 4)上述三种相似之间的关系。 基本概念(量纲、基本量纲、导出量纲) 量纲:物理参数度量单位的类别称为量纲或因次。 基本量纲:基本单位的量纲称为基本量纲,基本量纲是彼此独立的,例如用,LMT来表示长度,质量和时间等,基本量纲的个数与流动问题中所包含的物理参数有关,对于不可压缩流体流动一般只需三个即,LMT(长度,质量和时间),其余物理量均可由基本量纲导出。 导出量纲:导出单位的量纲称为导出量纲。 一些常用物理量的导出量纲。 2. 动力相似准则 牛顿数?表达式? 弗劳德数?表达式,意义? 雷诺数?表达式,意义? 欧拉数?柯西数?韦伯数?斯特劳哈尔数? 判断基本模型实验通常要满足的相似准则数。 掌握量纲分析法(瑞利法和π定理)。

第五章黏性流体的一维流动 1. 黏性总流的伯努利方程 应用:黏性不可压缩的重力流体定常流动总流的两个缓变流截面。 该方程的具体形式?几何意义? 2. 黏性流体管内流动的两种损失 沿程损失:产生的原因?影响该损失的因素? 沿程损失的计算公式?达西公式? 局部损失:产生原因? 局部损失计算公式? 3. 黏性流体的两种流动状态 层流和紊流 上临界速度,上临界雷诺数? 下临界速度,下临界雷诺数? 工程实际中,圆管中流动状态判别的雷诺数?2000 4. 管口进口段中黏性流体的流动 边界层的概念? 紊流边界层 层流边界层 层流进口段长度计算经验公式 5. 圆管中的层流流动 速度分布? 切应力分布?

第六章势流理论

第六章势流理论 课堂提问: 为什么上弧旋与下弧旋乒乓球的应对方法不同 本章内容: 1.势流问题求解的思路 2.库塔----儒可夫斯基条件 3. 势流的迭加法 绕圆柱的无环绕流,绕圆柱的有环绕流 4.布拉休斯公式 5.库塔----儒可夫斯基定理 学习这部分内容的目的有二: 其一,获得解决势流问题的入门知识,即关键问题是求解速度势。求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。 其二,明确两点重要结论: 1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。 2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。 本章重点: 1、平面势流问题求解的基本思想。 2、势流迭加法 3、物面条件,无穷远处条件 4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位 置,流线图谱,升力,阻力,环流方向等。 5、四个简单势流的速度势函数,流函数及其流线图谱。 6、麦马格鲁斯效应的概念 7、计算任意形状柱体受流体作用力的卜拉修斯定理 8、附加惯性力,附加质量的概念

本章难点: 1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置, 流线图谱,升力,阻力,环流方向等。 2.任意形状柱体受流体作用力的卜拉修斯定理 3.附加惯性力,附加质量的概念 §6-1 几种简单的平面势流 平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的 分量;与该平面相平行的所有其它平面上的流动情况完全一样。 例如: 1)绕一个无穷长机翼的流动, 2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动。如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。这一近似方法在船舶流体力学领域内称为切片理论。 一、均匀流 流体质点沿x轴平行的均匀速度Vo , V x=V o , V y =0 平面流动速度势的全微分为 dx V dy V dx V dy y dx x d y x 0=+=??+??= ? ?? 积分: φ=Vox (6-4) 流函数的全微分为, dy V dy V dx V dy y dx x d o x y =+-=??+??= ψψψ 积分: ψ=Vo y (6-5) 由(6-4)和(6-5)可得: 流线:y=const ,一组平行于x轴的直线。

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力: 重力、惯性力、非惯性力、离心力) 单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 ΔF ΔP ΔT A ΔA V τ 法向应力周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA F A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ) ,1pa=1N/㎡,表面力具有传递性。 B F f m =u u v v 2m s 3 /1000m kg =ρ3 /2.1m kg =ρ

牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体 无粘性流体,是指无粘性即μ=0的液体。无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。 (3) 压缩性和膨胀性 压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。 T 一定,dp 增大,dv 减小 膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。 P 一定,dT 增大,dV 增大 A 液体的压缩性和膨胀性 液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。 由于液体受压体积减小,dP 与dV 异号,加负号,以使к为正值;其值愈大,愈容易压缩。к的单位是“1/Pa ”。(平方米每牛) 体积弹性模量K 是压缩系数的倒数,用K 表示,单位是“Pa ” 液体的热膨胀系数:它表示在一定的压强下,温度增加1度,体积的相对增加率。 du T A dy μ =? dt dr dy du ? =?=μ μτdu u dy h =ρ μν= dP dV V dP V dV ? -=-=1/κρ ρ κ d dP dV dP V K =-==1

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

《流体力学考》考点重点知识归纳(最全)

《流体力学考》考点重点知识归纳 1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。流体元可看做大量流体质点构成的微小单元。 2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律) (1)流体质点无线尺度,只做平移运动 (2)流体质点不做随即热运动,只有在外力的作用下作宏观运动; (3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性; 3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。 4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。 5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的: 6.牛顿流体:动力粘度为常数的流体称为牛顿流体。 7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。 液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。、 流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。 8.温度对粘度的影响:温度对流体的粘度影响很大。液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。 压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。 9.描述流体运动的两种方法 拉格朗日法:拉格朗日法又称为随体法。它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。 欧拉法:欧拉法又称当地法。它着眼于空间点,把流体的物理量表示为空间位置和时间的函数。空间点的物理量是指,某个时刻占据空间点的。 流体质点的物理量,不同时刻占据该空间点的流体质点不同。 10.速度场:速度场是由流体空间各个坐标点的速度矢量构成的场。速度场不仅描述速度矢量的空间分布,还可描述这种分布随时间的变化。 11.毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象; 12.迹线:流体质点运动的轨迹。在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线就是该流体质点的迹线。 13.定常流动:流动参数不随时间变化的流动。反之,流体参数随时间变化的流动称为不定长流动。 14.流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线。

流体力学的应用

流体力学在航空航天工程中的应用 (洪渊,西安科技大学,能源学院采矿工程卓越1301班,1303110113) 摘要:航天航空工程综合了最新最高的现代科学与技术,是一个国家科技实力和国防现代化的重要标志之一,更是目前世界各国之间争相研究发展的顶尖科技产业,它直接关系到国家的安全和经济的发展。随着科学技术的进步和航天器的发展,遥远而深邃的宇宙已不再可望而不可及,飞天早已不再是无稽之谈。在20世纪对人类影响最大的20项技术中就包括航空航天技术,流体力学的发展对航空航天科技的发展起到了关键性的作用,而这些看似离我们非常遥远的高薪技术其实其基本原理无时无刻不伴随我们。因为我们身边有各种流体的存在。 关键词:航空航天技术、流体、流体力学 Application of fluid mechanics in Aerospace Engineering (Hong Yuan, Xi'an University of Science And Technology, the Institute of mining engineering excellence 1301, 1303110113) Aerospace Engineering integrated the latest modern science and technology, is a national science and technology strength and the important symbol of the modernization of national defense, but also the world's top scientific and technological industry, which is directly related to the national security and economic development. With the development of science and technology and the progress of the spacecraft, as remote and profound universe is no longer inaccessible and, flying already no longer is nonsense. In twentieth Century the greatest impact on human beings in the 20 technologies, including aerospace technology, the development of fluid mechanics to the development of Aerospace Science and technology has played a key role, and these seemingly away from us very far from the high paying technology in fact its basic principles are not accompanied by us. Because we have all kinds of fluid in the presence of. Key words: aerospace technology, fluid, fluid mechanics

流体力学知识点总结

流体力学知识点总结 流体力学研究流体在外力作用下的宏观运动规律! 流体质点: 1.流体质点无线尺度,只做平移运动 2.流体质点不做随即热运动,只有在外力的作用下作宏观运动; 3.将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的 物理属性; 流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。流体元可看做大量流体质点构 成的微小单元。 流体质点的物理量,不同时刻占据该空间点的流体质点不同。 速度场:速度场是由流体空间各个坐标点的速度矢量构成的场。速度场不仅描述速度矢量的空间 分布,还可描述这种分布随时间的变化。 定常流动:流动参数不随时间变化的流动。反之,流体参数随时间变化的流动称为不定长流动。迹线:流体质点运动的轨迹。在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线 就是该流体质点的迹线。 流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线。 流面:经过一条非流线的曲线上各点的所有流线构成的面。 对于定常流场,流线也是迹线。 脉线:脉线是相继通过某固定点的流体质点连城的线。

流体线:在流场中某时刻标记的一串首尾相连接的流体质点的连线,称为该时刻的流体线。由于这一串流体质点由同一时刻的标记,每一个质点到达下一时刻的流体线位置时间相同,因此又称 为时间线。 流管:在流场中由通过任意非流线的封闭曲线上每一点流线所围成的管状面称为流管。 流束:流管内的流体称为流束。 总流:工程上还将管道和管道壁所围成的流体看做无数微元流束的总和,称为总流。 恒定流:以时间为标准,若各空间点上的流动参数(速度、压强、密度等)皆不随时间变化,这 样的流动是恒定流,反之为非恒定流。 均匀流:若质点的迁移加速度为零,即流动是均匀流,反之为非均匀流。 内流:被限制在固体避免之间的粘性流动称为内流。 (质 空蚀的两种破坏形式: 1.当空泡离壁面较近时,空泡在溃灭是形成的一股微射流连续打击壁面,造成直接损伤; 2.空泡溃灭形成冲击波的同时冲击壁面,无数空泡溃灭造成连续冲击将引起壁面材料的疲劳破 坏; 边界层:当Re》1时,粘性影响区域缩小到壁面区域狭窄的区域内称为边界层。 边界层特点:1.厚度很小;2.随着沿平板流的深入,边界层的厚度不断增长; 边界层分离:边界层分离又称流动分离,是指原来紧贴壁面流动的边界层脱离壁面的现象。 声速:声速是弹性介质中微弱扰动传播速度的总称。其传播速度金和仅和戒指的弹性和质量之比 有关。 激波:理论分析和实验都表明,当一个强烈的压缩扰动在超声速流场中传播是,在一定条件下降

流体力学知识点大全吐血整理

1. 从力学角度看,流体区别于固体的特点是:易变形性,可压缩性,粘滞性和表面张力。 2. 牛顿流体: 在受力后极易变形,且切应力与变形速率成正比的流体。即τ=μ*du/dy 。 当n<1时,属假塑性体。当n=1时,流动属于牛顿型。当n>1时,属胀塑性体。 3. 流场: 流体运动所占据的空间。 流动分类 时间变化特性: 稳态与非稳态 空间变化特性: 一维,二维和三维 流体内部流动结构: 层流和湍流 流体的性质: 黏性流体流动和理想流体流动;可压缩和不可压缩 流体运动特征: 有旋和无旋; 引发流动的力学因素: 压差流动,重力流动,剪切流动 4. 描述流动的两种方法:拉格朗日法和欧拉法 拉格朗日法着眼追踪流体质点的流动,欧拉法着眼在确定的空间点上考察流体的流动 5. 迹线:流体质点的运动轨迹曲线 流线:任意时刻流场中存在的一条曲线,该曲线上各流体质点的速度方向与该曲线的速 度方向一致 性质 a.除速度为零或无穷大的点以外,经过空间一点只有一条流线 b.流场中每一点都有流线通过,所有流线形成流线谱 c .流线的形状和位置随时间而变化,稳态流动时不变 迹线和流线的区别:流线是同一时刻不同质点构成的一条流体线; 迹线是同一质点在不同时刻经过的空间点构成的轨迹线。 稳态流动下,流线与迹线是重合的。 6. 流管:流场中作一条不与流线重合的任意封闭曲线,通过此曲线的所有流线构成的管状 曲面。 性质:①流管表面流体不能穿过。②流管形状和位置是否变化与流动状态有关。 7.涡量是一个描写旋涡运动常用的物理量。流体速度的旋度▽xV 为流场的涡量。 有旋流动:流体微团与固定于其上的坐标系有相对旋转运动。无旋运动:流场中速度旋 度或涡量处处为零。 涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方向一致。 8. 静止流体:对选定的坐标系无相对运动的流体。 不可压缩静止流体质量力满足 ▽x f =0 9. 匀速旋转容器中的压强分布p=ρ(gz -22r2 ω)+c 10. 系统:就是确定不变的物质集合。特点 质量不变而边界形状不断变化 控制体:是根据需要所选择的具有确定位置和体积形状的流场空间。其表面称为控制面。 特点 边界形状不变而内部质量可变 运输公式:系统的物理量随时间的变化率转换成与控制体相关的表达式。 含义:任一瞬时系统内物理量(如质量、动量和能量等)随时间的变化率等 于该瞬时其控制体内物理量的变化率与通过控制体表面的净通量之和。 11. 伯努力方程 g v g p z g v g p z 222 2222111αραρ++=++ 12. 常见边界条件:1、固壁—流体边界2、液体—液体边界3、液体—气体边界

流体力学核心期刊

页码,1/3 吉林大学牡丹园站 -- Construction精华区文章阅读 发信人: arwang (旺旺), 信区: Construction 标 题: 流体力学核心期刊 发信站: 牡丹园新站 (Sun Dec 21 09:18:46 2003) 流体力学核心期刊 Journal of Fluid Mechanics = 流体力学杂志 . 英国.527C0001 International Journal of Heat and mass Transfer = 国际传热与传质杂志 \ 英国 .525C0006 AIAA Journal = 美国航空与航天学会志 . 美国.877B0001 The Physics of Fluids, A = 流体物理学,A辑 . 美国.527B0002 Fluids Dynamics = 流体动力学 ( 英译苏刊). 美国.527B0054 Journal of Engineering Physics = 工程物理杂志(英译苏刊). 美国.534B0053 Journal of Heat transfer,Transactions of the ASME = 传热杂志,ASME汇刊 . 美 国.725B0001 The Physics of Fluids, B = 流体物理学,B辑 . 美国.527B0002 International Journal for Numerical Methods in Fluids = 国际流体力学数值方法 杂志 . 英国.527C0004 Fluid MechanicsSoviet Research = 苏联流体力学研究(英译苏刊) . 美国.527B005 2 International Journal of Multiphase flow = 国际多相流杂志 . 英国.527C0003 Zeitschrift fur Angewandte Mathematik und Mechanik = 应用数学与力学杂志 . 德 国.519A0001 Magnetohydrodynamics = 磁流体动力学(英译苏刊). 美国.527B0053 Journal of Applied Mechnaics and Technical physics = 应用力学与技术物理杂志( 英 译苏刊). 美国.529B0052 Journal of Fluids Engineering, Transactions of the ASME = 流体工程杂志,ASME 汇刊 . 美国.780B0001 Physical Review , A = 物理评论,A辑 . 美国.530B0002 Soviet PhysicsDOKLADY = 苏联物理学报告(英译苏刊). 美国.530B0070 International Journal of Heat and Fluid Flow = 国际热与流体流杂志 . 英国.527 C0053 Journal of Non-Newtonian Fluid Mechanics = 非牛顿流体动力学杂志 . 荷兰.527LB 0053 International Communications in Heat and Mass Transfer = 国际传热与传质通讯 . 英 国.725C0056 Heat Transfer Soviet Research = 苏联传热研究 . 美国.725B0054 Physical Review Letters = 物理评论快报 . 美国.530B0003 International Journal of Engineering Science = 国际工程科学杂志 . 英国.710C0 009 Journal of Computational Physics = 计算物理杂志 . 美国.539B0002 Waerme-und Stoffuebertragung = 热力学与流体力学 . 德国.710E0008 Physica,D = 物理,D辑 . 荷兰.530LB001 High Temperature = 高温(英译苏刊). 美国.534B0052 JSME International Journal, II = 日本机械工程师学会国际杂志,II辑 . 日本.780 D0063 Fluid Dynamics Research = 流体动力学研究 . 荷兰.527LB001 Journal of the Physical Society of Japan = 日本物理学会志 . 日本.530D0002 Computers and Fluids = 计算机与流体 . 英国.--─738C0074 Heat Transfer-Japanese Research = 日本传热研究 . 美国.525B0055 Chemical Engineering Science = 化学工程科学 . 英国.810C0004 Physics Letters, A = 物理快报,A辑 . 荷兰.530LB004 Thermal Engineering = 热力工程(英译苏刊). 英国 .721C0058 AIChE Journal美国化学工程师协会会志 . 美国.810B0001 Applied Mathematics and Mechanics = 应用数学与力学(英译苏刊). 美国.ISSN 00 66-5479 Applied Scientific Research = 应用科学研究 . 荷兰.500LB002 Comptes Rendus de l Acadecie des Sciences , Serie II = 法国科学院报告,II辑 . FRA.500F0003 Numerical Heat Transfer = 数值传热 . 美国.725B0059 Rheologica Acta = 流变学学报 . 德国.526E0051

相关文档
最新文档