交错并联磁集成反激变换器小信号建模分析

交错并联磁集成反激变换器小信号建模分析
交错并联磁集成反激变换器小信号建模分析

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

(完整版)50W反激变换器的设计

50W反激变换器的设计(CCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.45 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则主功率管开通时间为: Ton=T*D=10uS*0.45=4.5uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Toff ( 设定整流管压降为1V ) 变压器的匝比n: n = 13.67 设定电源工作在连续模式Ip2 = 0.4 * Ip1 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η ( 设定电源的效率η为0.8 ) Ip1 = 1.98 A Ip2 = 0.79 A 变压器的感量 L = ( Vin * Ton ) / ( Ip1 – Ip2 ) = 379 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 27 T 变压器的次级匝数Ns = Np / n = 2 T 变压器的实际初次级匝数可以取 Np = 27 T Ns = 2 T 重新核算变压器的设计 最大占空比:Vin * D = n * ( V o + Vf ) * ( 1 – D ) D = 0.447 最大磁通密度:Bmax = ( Vin * Ton ) / ( Np * Ae ) Bmax = 0.195 T 初级电流Ip1 和Ip2: 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η Ip2 + ( Vin * Ton ) / L = Ip1 Ip1 = 1.99 A Ip2 = 0.8 A Ip_rms = 0.93A 次级电流Is1和Is2 Is1 =Ip1*n=26.87A Is2=Ip2*n =10.8A Is_rms = 12.56A 次级电压折射到初级的电压 V or = n * ( V o + Vf ) = 81V 初级功率管Mosfet 的选择 Vmin = (√2 * 264 + V or +50 ) / 0.8 = 630 V Ip_rms = Ip_rms / 0.8 = 1.16 A ( 设定应力降额系数为0.8 ) 可以选择Infineon 的IPP60R450E6 次级整流管Diode 的选择 Vmin = (√2 * 264 / n + 5 +15 ) / 0.8 = 60 V Is_rms = Is_rms / 0.8 = 15.7 A ( 设定应力降额系数为0.8,噪音为15V ) 可以选择IR 的30CTQ060PBF 输出电容的选择 设定输出电压的纹波为50mv 输出电流的交流电流: Isac_rms = 0.5 * ( Is1 + Is2 ) * √D * ( 1- D ) Isac_rms = 9.36A Resr = Vripple / Isac_rms = 5.34 mohm 选择Nichicon 电容HD 系列6.3V/3900uF 四个并联使用50W反激变换器的设计(DCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.3 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则功率管开通时间:Ton=T*D=10uS*0.3=3uS 假设关断时间:Toff=7uS,Tr=4uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Tr ( 设定整流管压降为1V ) 变压器的匝比n: n = 12.53 设定电源工3作在续模式Io = Tr/T * Ip2 Ip2=Io*T/Tr=25A Ip1 = Ip2/n=1.99 A 变压器的感量 L = ( Vin * Ton ) / Ip1 = 151 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 18 T 变压器的次级匝数 Ns = Np / n = 1.4 T=2T 变压器的实际初次级匝数可以取 Ns = 2 T Np=Ns * n=25.1T=26T 开关电源一次滤波大电解电容 开关电源决定一次侧滤波电容,主要影响电源的性能参数为输出低频交流纹波与保持时间. 滤波电容越大,电容器上的Vin(min)越高,可以输出较大功率的电源,但相对价格也提高了。 输入电解电容计算方法(举例说明): 1.因输出电压12V 输出电流2A, 故输出功率:Pout=V o*Io=1 2.0V*2A=24W。 2.设定变压器的转换效率约为80%,则输出功率为24W的 电源其输入功率:Pin=Pout/效率=W W 30 % 80 24 =. 3.因输入最小交流电压为90V AC,则其直流输出电压为:Vin=90*1.2=108Vdc 故负载直流电流为:I= Vin Pin =A Vac W 28 .0 108 30 = 4.设计允许的直流纹波电压V ?/V o=20%,并且电容要维持电压的时间为1/4周期t(即半周期的工频率交流电压在约 是4ms,T= f 1 = 60 1 =0.0167S=16.7 ms)则: C=uF V t I 9. 51 6. 21 10 * 4 * 28 .0 *3 = = ? - 故实际选择电容量47uF. 5.因最大输入交流电压为264Vac,则最高直流电压为:V=264*2=373VDC. 实际选用通用型耐压400Vdc的电解电容,此电压等级,电容有95%的裕度. 6.电容器的承受的纹波电流值决定电容器的温升,进而决定电容器的寿命.(电容器的最大纹波电流值与其体积,材质有关.体积越大散热越好耐受纹波电流值越高)故在选用电容器要考虑实际纹波电流值<电容器的最大纹波电流值. 7.开关源元器件温升一般较高,通常选用105℃电容器,在特殊情况无法克服温升时可选用125℃电容器. 故选用47uF,400v, 105℃电解电容器可以满足要求(在实际使用时还考虑安装机构尺寸,体种大小,散热环境好坏等)

单端反激变换器的建模及应用仿真

单端反激变换器的建模及应用仿真 摘要:本课程设计的目的是对直—直变换电路中常用的带隔离的Flyback电路(反激电路)进行电路分析、建模并利用Matlab/Simulink软件进行仿真。首先是理解分析电路原理,以元件初值为起点,用simulink软件画出电路的模型、并且对电路进行仿真,得出仿真波形。在仿真过程中逐步修正参数值,使得仿真波形合乎要求,并进行电流连续、断续模式与电路带载特性的分析。 关键词:单端反激变换器Matlab/Simulink 建模与仿真 二、反激变换器的基本工作原理 1.基本工作原理 (1)当开关管导通时,变压器原边电感电流开始上升,此时由于次级同名端的关系,输出二极管VD截止,变压器储存能量,负载由输出电容C提供能量,拓扑电路如下图。 图2-1开关管导通时原理图 为防止负载电流较大时磁心饱和,反激变换器的变压器磁心要加气隙,降低了磁心

的导磁率,这种变压器的设计是比较复杂的。 (2)当开关管截止时,变压器原边电感感应电压反向,此时输出二极管导通,变压器中的能量经由输出二极管向负载供电,同时对电容充电,补充刚刚损失的能量,原理图如下图。 图2-2开关管截止时原理图 在开关管关断时,反激变换器的变压器储能向负载释放,磁心自然复位,因此反激变换器无需另加磁复位措施。磁心自然复位的条件是:开关导通和关断时间期间,变压器一次绕组所承受电压的伏秒乘积相等。 2、DCM(discontinuous current mode)&CCM(continuous current mode) 根据次级电流是否有降到零,反激可以分为DCM(副边电流断续模式)和CCM(副边电力连续模式)两种工作模式。两种模式有其各自的特点。下面两种工作模式时的波形。

反激电路建模

基于TOPSwitChⅡ的单端反激开关电源的建模及动 态分析 O 引言 开关电源以其小型、轻量和高效率的特点,而被广泛地应用于以电子汁算机为主导的各种终端设备、通信设备中,是当今电子信息产业飞速发展不可缺少的一环,而开关电源性能的优劣也将直接关系到整个系统的安全性与可靠性。开关稳压电源有多种类型,其中单端反激式开关电源,由于线路简单,所需要的元器件少,而受到重视。为使开关电源具有更好的动态稳定性,本文首先将开关电源从功能和结构上分成3个部分,求出各部分的内部参数,及相互之间的关系,然后运用动态小信号平均模型的基本原理求得各部份的传递函数,最后对3个部分传递函数组成的一个整体闭环系统进行分析,以求达到最佳的控制效果。 1 系统模型的建立 图1为单端反激式开关电源控制系统的结构图,由3个重要部分组成,即调节器、开关器件和高额变压器。其中凋节器为TL431,由美国德州仪器公司(TI)和摩托罗拉公司生产;开关器件为TOP227,由Power Integrations(简称PI)公司于1994年推出的TOPswitchⅡ系列芯片。电路的工作原理是:输出电压的取样(取样系数为α)反馈给调节器的一个输入端与另一输入端的给定信号Ug(TL431内部的电源提供,其大小为2.5V)进行比较,输出为电流Ic;Ic控制开关器件的占空比;高频变压器和输出整流滤波组成的一个整体,把原边的能量转换到副边输出。各种因素的变化最终导致电源的输出量发生变化,通过调节器使得输出趋于稳定。

要对系统进行动态分析必须对每个环节建立明确的数学描述,即给出它们具体的传递函数。在建模的过程中,运用动态小信号平均模型的基本原理,分别对3部分模型进行推导。 1.1 调节器部分 调节器部分是以TL43l为主要器件构成的电路,在模型推导的过程中,结合电路的基本原理和元器件在实际模型中的功能将电路简化,最后对最简化的电路图进行建模。 图2为TL431及外围元器件构成的电路图(虚线框内为TL431的内部结构图),可以简化为图3。具体的简化步骤及原理如下:TI431内部电路中三极管的作用是使误差放大器的输出反相,所以图3中采用反向运放,等效替代TL431内部特性。二极管VO是为了防此K-A间电源极性接反而损坏芯片,起保护作用,建模时可忽略,而f-g导线本质上给芯片提供工作电压,建模时也可以忽略。由R1、R2和电源Ui组成的网络,由戴维南等效电路可汁算出Req和Ui′的值。

能馈式电子负载中交错并联Boost电路的设计

第28卷第10期2011年10月 机电工程 Journal of Mechanical &Electrical Engineering Vol.28No.10Oct.2011 收稿日期:2011-05-25 作者简介:赵国强(1984-),男,山东临沂人,主要从事能馈式电子负载方面的研究.E-mail :20910234@zju.edu.cn 通信联系人:马 皓,男,博士,教授,硕士生导师.E- mail :mahao@zju.edu.cn 能馈式电子负载中交错并联Boost 电路的设计 赵国强,马 皓 * (浙江大学电气工程学院,浙江杭州310027) 摘要:为满足服务器电源测试用能馈式电子负载对第一级DC /DC 低压大电流输入、低输入电流纹波和高效率的要求,第一级DC /DC 采用交错并联Boost 电路。分析了该电路的工作原理,给出了电路中各主要元器件的选取原则。针对电子负载恒流输入需求,给出了基于dsPIC33FJ16GS504的输入电流恒流控制环路设计思路和方法。利用DSP 实现了快速运算,达到精确设定输入电流大小的目的。最后, 制作了一台12V /100A 输入,48V 输出的1.2kW 实验样机。实验结果验证了该电路在低压大电流输入情况下的可行性,电路工作稳定,满足了能馈式电子负载的要求。关键词:服务器电源;交错并联;能馈式电子负载中图分类号:TM13 文献标志码:A 文章编号:1001-4551(2011)10-1269-04 Design of interleaved Boost converter in energy-feedback electronic power load ZHAO Guo-qiang ,MA Hao (Department of Electrical Engineering ,Zhejiang University ,Hangzhou 310027,China ) Abstract :In order to satisfy the requirements of low voltage and large current ,low input current ripple ,and high efficiency in energy-feed-back electronic load for server power supply test ,an interleaved Boost converter was employed in first stage DC /DC.The operation principle of the circuit was analyzed and the selecting method of main components was presented.In accordance with the demand of constant input cur-rent in electronic load , design of constant current control loop based on dsPIC33FJ16GS504was introduced.Accurate set of input current was achieved by means of high-speed calculation with DSP.Finally a 1.2kW prototype was built with input 12V /100A and output 48V.The results validate the feasibility of the proposed converter with input of low-voltage and large-current ,show that the circuit can work in stable state and meet the requirements of energy feedback electronic load system.Key words :server power supply ;interleaved ;energy-feedback electronic load 0引言 随着信息产业的快速发展和数字化革命的不断深 入,服务器电源的输出电流越来越大。服务器电源等 电源出厂前需要进行老化测试, 应用电阻负载时需要消耗大量电能。为节约能源、降低成本,应用能馈式电子负载测试服务器电源是一种有效的解决办法。能馈式电子负载具有低压大电流输入,拉载电流精确设定,输入电流纹波较小,效率较高等特性。 传统Boost 电路在大电流输入时开关纹波大,二极管导通损耗大,效率较低。为了获得较小的输入电 流纹波和较高的效率,前人提出了许多基于Boost 电 路的改进拓扑 [1-3] 。但这些电路应用于低压大电流输入时却存在自身固有的缺点。Boost 反激电路输入电流断续,输入电流纹波很大。改进型两相交错并联Boost 变换器的开关电容在大电流输入时体积较大,损 耗增加, 效率较低。电容箝位式交错并联耦合电感Boost 变换器输入电流纹波较大。两功率管不能同时 开通, 限制了电路的占空比,电压增益较小。交错并联Boost 电路因其拓扑结构简单、输入电流连续、效率高、易于控制等特点在低压大电流输入时 具有较大优势而被应用于能馈式电子负载中 [4-5] 。通过两个交错控制的Boost 电路的并联,实现了输入大

反激变压器绕制详解

反激式开关电源变压器的设计(小生我的办法,见笑) 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了 电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47 第二步,确实原边电流波形的参数. 原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以

反激变换器建模Matlab仿真

前言 本文主要论述的是如何对理想的CCM模式下的反激式变换器进行闭环补偿设计,并观察验证补偿结果。主要分两部分进行论述,一部分是利用小信号建模法建模并计算出相应的传递函数,并由反激变换器的CCM的工作条件算出一组参数。第二部分是通过matlab对其开环特性的分析,选择合适的补偿方法,并通过simulink进行仿真观察验证。 1 反击变换器的现状 反激式(Flyback)变压器,或称转换器、变换器。因其输出端在原边绕组断开电源时获得能量故而得名。 反激式变压器的优点有: 1.电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2.转换效率高,损失小. 3.变压器匝数比值较小. 4.输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现 交流输入在 85~265V间.无需切换而达到稳定输出的要求. 反激式变压器的缺点有: 1.输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限 制,通常应用于150W以下. 2.转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致 磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3.变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器 在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 由于两种模式的仿真较复杂,本文只对CCM模式下的反激变换器进行仿真和讨论。

2 CCM 模式下反激式变换器的工作原理和传递函数的计算 CCM 模式是指,反激式变换器中的变压器在一个周期结束时仍有部分的存储能量。而这也是CCM 模式下讨论其工作原理和计算传递函数的基础。 CCM 模式下,反激式变换器有两个工作状态,一个是开关Q 导通,另一个是开关Q 断开,如图2.1所示。 V(t) V g D 开关Q 断开V g D 开关Q 导通 图2.1 CCM 模式下反击变换器的两个工作状态 当开关Q 断开时有方程组: ???????+=+-=+=])(,[),()(])(,[,)()(])(,[),()(s s s T L g T c T g L t d t t t i t i t d t t R t v t i t d t t t v t v 当开关Q 导通时有方程组: ?????????++=++-=++-=],)([,0)(],)([,)()()(],)([,)()(s s g s s L c s s L T t T t d t t i T t T t d t R t v n t i t i T t T t d t n t v t v 在周期平均法的基础上,通过在变换器静态工作点附近引入低频小信号扰动,

单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC/DC 开关电源变压器的设计全过程, 变压器的参数计算: (1) 变压器的设计要求: 输出电压:10V ~3KV ,8mA (变压器输出之后三倍压) 输入电压:24 1V ±工作频率:50KHZ 最大占空比:45% 变换效率:80% (2) 基本参数计算: 输入最小电压: min IN V =- IN V V =24-1-0.5 =22.5V 输出功率: OUT OUT OUT P U I = 30000.00824()W =×=输入功率: OUT IN P P η= 2430()0.8 W == (3) 选择磁芯: 由于输出功率为24W ,需要留有一定的余量,选择磁芯的型号为:EI-28。其具体参数如下: 材料:PC40;尺寸:28.0*16.75*10.6(mm);P A :0.6005() ;:86 4cm e A 2mm W A :69.83; :4300;2mm L A 2/nH N S B :500mT () 390mT (10) 25o C 0o C 使用时为防止出现磁饱和,实取磁通密度m B = 250 mT (4) 粗略估计匝数比以及最大占空比(通过实际计算) min (1)OUT MAX IN MAX V D N V D ?= 30000.5522.50.45 ×=× 162.9=(求出结果后然后取整为Nm ) 因为匝数比可以根据设计理念修正为M N =165,从而可以产生新的MAX D

min OUT MAX M IN OUT V D N V V = + 300022.51653000 =×+ 44.7%= (5) 计算初级平均电流,峰值电流和电流的有效值 由于输出功率为24W ,用电流连续模式(CCM )比较适合。这里取为0.6 RP K .min min IN OUT P AVG IN IN P P I V V η= = 240.822.5 =× 1.333A =.1[1]2 P AVG P RP MAX I I K D =? 1.333(10.50.6)0.447= ?×× 4.26A =.P RMS P I I = = 2.054A =.P RMS I -电流有效值,P I -峰值电流,.P AVG I -平均电流,(RP K R RP P I K I = )电流比例因数,MAX D -最大占空比; 利用Krp 的值可以定量描述开关电源的工作模式,若Krp=1.0,即峰值电流和脉动电流相等,开关电源工作在断续模式;若Krp<1.0,峰值电流大于脉动电流,开关电源工作在连续模式。对于给定的交流输入范围,Krp 越小意味着更为连续的工作模式和较大的初级电感量,并且Ip 和Irms (初级有效值电流)较小。 (6) 计算初级电感: 2min min 1()(12 IN MAX RP IN ON P R OUT RP V D K V t L I P fK η?==)

反激变换器小信号模型Gvd(s)推导__1210

一、反激变换器小信号模型的推导 1.1 DCM 1.1.1 DCM buck-boost 小信号模型的推导 根据状态空间平均法推导DCM buck-boost 变换器小信号模型如下: +-v in (t)v o (t)一般开关网络 图1 1理想Buck-Boost 变换器开关网络 1231d d d ++= (1) 首先,定义开关网络的端口变量1122,,,v i v i ,建立开关周期平均值 1 1 2 2 ,,,s s s s T T T T v i v i 之间的关系: 11()s g T g pk s s v t v i d T d T L L <>= = (2) 根据工作模态:113()()()0s s s L T g T T v t d v t d v t d <>=<>+<>+ (3) []1 1 ()()()s s s t T t T L T L s t t s s s di L v t v d L d i t T i t T T d T τττ++<>= = =+-? ? (4) DCM 下,()()0s i t T i t +==,所以()0s L T v t <>=,结合(3)式: 11()()0s s g T T d v t d v t <>+<>= (5) 21()(t)=-(t)()s s g T T v t d d v t <><> (6) 根据工作模态:1123()()0()(()())()()s s s s T g T T g T v t d t d t v t v t d t v t <>=+<>-<>+<>(7) 消去上式的2d 和3d 得:1()()s s T g T v t v t <>=<> (8) 根据工作模态:2123()()(()())()0(()) s s s s T g T T g T v t d t v t v t d t d v t <>=<>-<>++-<>

高升压比交错并联Boost电路的分析

高升压比交错并联Boost电路的分析 类别:电源技术阅读:869 摘要:文章分析了传统BooST电路在实际应用中存在的问题,提出了一种改进型的交错并联Boost电路。在电感电流连续模式下,根据占空比大于或小于0。5的情况,详细分析电路的工作过程,推导了稳态情况下输出输入电压关系式,最后通过仿真验证了理论分析的正确性。0 引言升压变换器是最常用的一种变换器,随着新能源的推广,由于太阳能、燃料电池、蓄电池等输入源具有输入电压较低的特性,升压变换器成为不可或缺的关键部件。常用的非隔离Boost升压变换器,在高输出电压场合,由于寄生参数的影响不可能达到很高的输入输出电压比。而另一种升压电路是隔离升压电路,例如正激、反激电路。隔离升压电路中必须用到的变压器通常具有隔离、变压的功能,在那些不需要隔离或体积要求较小的应用场合,通过变压器升压就很难满足要求,另外变压器漏感引起的一系列问题,比如开关电压过冲,EMI等,常常对电源本身及周围设备带来安全隐患。 为了克服常用升压变换器在大功率、高输入输出变比等场合应用的限制,本文研究分析了一种新的电路拓扑结构及其工作方式,并对其进行了仿真验证。 1 工作原理下面分析Boost电路存在的不足,在理想情况下: M(D)=U0Uin= 11-D(1)根据式(1),在一定的输入电压下,理论上可以产生任意高于输入电压的输出电压。而实际情况中,由于电感、二极管、开关管都会产生一定的损耗,这些损耗可以等效为一个与电感串联的电阻RL,如图1所示: 图 1 Boost等效电路图此时根据磁平衡原理: 由式(2)、(3)可得:

根据式(4),在不同的RL/R 情况下,M(D)如图2所示。由此可见,在实际电路中,Boost电路升压比有限制极限,输出电压一般能达到输入电压的4~5倍。在大功率应用环境中,由于损耗严重,升压比反而更低。 为了克服上述非隔离升压电路的不足,本文研究的升压变换器如图3所示,它由交错并联Boost电路与电容串联组合而成。 图 2 升压比与占空比关系曲线图 图3 高升压比交错并联Boost电路结构图在电感电流连续模式下,当占空比大于0。5时,系统工作原理时序如图4所示,PS1、PS2分别为开关管S1、S2的驱动脉冲。ID1、ID2分别为流过续流二极管D1、D2的电流。

单端反激变压器设计简单计算

实例讲解电源高频变压器的设计方法开关电源高频变压器设计高频变压器是电源设计过程中的难点, 下面以反馈式电流不连续电源高频变压器为例, 向大家介绍一种电源高频变压器的设计方法。 设计目标: 电源输入交流电压在180V~260V之间,频率为50Hz, 输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。 设计步骤: 1、计算高频变压器初级峰值电流Ipp 由于是电流不连续性电源,当功率管导通时,电流会达到峰值,此值等于功率管的峰值电流。 由电感的电流和电压关系V=L*di/dt 可知: 输入电压:Vin(min)=Lp*Ipp/Tc 取1/Tc=f/Dmax, 则上式为: Vin(min)=Lp*Ipp*f/Dmax 其中: V in:直流输入电压,V Lp:高频变压器初级电感值,mH Ipp:变压器初级峰值电流,A Dmax:最大工作周期系数 f:电源工作频率,kHz 在电流不连续电源中,输出功率等于在工作频率下的每个周期内储存的能量,其为:Pout=1/2*Lp*Ipp2*f 将其与电感电压相除可得: Pout/Vin(min)=Lp*Ipp2*f*Dmax/(2*Lp*Ipp*f) 由此可得:Ipp=Ic=2*Pout/(Vin(min)*Dmax) 其中:Vin(min)=1.4*Vacin(min)-20V(直流涟波及二极管压降)=232V, 取最大工作周期系数Dmax=0.45。则: Ipp=Ic=2*Pout/(Vin(min)*Dmax)=2*70/(232*0.45)=1.34A 当功率管导通时,集极要能承受此电流。 2、求最小工作周期系数Dmin 在反馈式电流不连续电源中, 工作周期系数的大小由输入电压决定。 Dmin=Dmax/[(1-Dmax)*k+Dmax] 其中:k=Vin(max)/Vin(min) Vin(max)=260V*1.4-0V(直流涟波)=364V, 若允许10%误差,Vin(max)=400V。 Vin(min)=232V, 若允许7%误差,Vin(min)=216V。 由此可得: k=Vin(max)/Vin(min)=400/216=1.85 Dmin=Dmax/[(1-Dmax)*k+Dmax]=0.45/[(1-0.45)*1.85+0.45]=0.31 因此,当电源的输入直流电压在216V~400V之间时,

反激式变换器(Flyback Converter)的工作原理

反激式变换器(Flyback Converter)的工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b).

当Q1导通,T1之初级线圈渐渐地会有初级电流流过,能量就会储存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1不会导通,输出功率则由Co来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip可以表示为: Vdc=Lp*dip/dt 此时变压器磁芯之磁通密度会从剩磁Br增加到工作峰值Bw. 3.当Q1截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b).

当Q1截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为?B并没有相对的改变.当?B向负的方向改变时(即从Bw降低到Br),在变压器所有线圈之电压极性将会反转,并使D1导通,也就是说储存在变压器中的能量会经D1,传递到Co和负载上. 此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf为二极管D1的压降). 次级线圈电流: Lp=(Np/Ns)2*Ls (Ls为次级线圈电感量) 由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0值,因此称为连续电流模式或不完全能量传递模式(CCM). 三.CCM模式下反激变压器设计的步骤 1. 确定电源规格. 1. .输入电压范围Vin=85—265Vac; 2. .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; 3. .变压器的效率?=0.90

交错并联式BOOST电路的Pspice仿真分析

交错并联式BOOST电路的Pspice仿真分析 摘要:文中研究基于Pspice 软件的交错并联BOOST 变换器的拓扑结构,并对其建立仿真模型,进而延伸到N 个相同的BOOST 拓扑结构的并联,从中分析了此种拓扑结构的优点,进而得出此种拓扑结构适于在功率因数校正电路 中应用的结论。关键词:交错并联;BOOST 拓扑;Pspice 仿真;PWM 随着电力电子行业的发展,电路设计的复杂程度越来越高,仿真作为一种便利的设计 手段被广泛的应用于电路设计、分析和验证中,包括用于电路设计中的一系列 仿真软件如MATLAB 中的Simulink 及其Pspice 等软件,这些软件可以对电路中的信号进行仿真,让设计人员了解电路的工作特性,设计人员可以通过仿真 来预测和验证电路设计的准确性,具有时效性强的优点,对于科学研究工作具 有十分有用的价值。笔者在基于Pspice 仿真软件的基础上对BOOST 变换器的并联交错技术进行仿真分析,通过搭建Pspice 模型分析了并联交错BOOST 变换器的优点,即输出纹波很小适用于带载要求纹波小的设备,如应用于计算机 的CPU 等。1 DC-DC 变换器DC-DC 变换器的基本拓扑结构非为BUCK 变换器、BOOST 变换器和BUCK-BOOST 变换器。由于DC-DC 变换器中,输入端和输出端共地,所以也称为三端开关变换器。开关变换器同三端线性调节器有很多相同点,例如输入电压不能调节,但是输出电压可以调节,在效率要求 较高的情况下可以替代线性调节器,开关变化器在输入跟输出之间使用的是扼 流圈而不是变压器。BOOST 电路是升压电路,升压电感完成升压,并通过电容保持电压值。其结构图如图1 所示。 ,其中N 为并联的变换器的个数,本课题中N 为2,交错并联BOOST 拓扑中的PWM 信号的一种时序图如图4 所示。 由图4 的驱动波形分析扑结构的工作状态:状态1 当两个管子都为高电平

单端反激DCDC电路仿真

单端反激D C D C电路仿 真 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

题目:单端反激DC/DC电路仿真 输入直流电压源,电压28V,输出电压5V,电压纹波小于1%,输出额定功率30W,最小负载电流1A,开关频率50kHz,整流二极管通态压降。计算必须的电感(变压器电感),电容,变压器的变比,功率管的工作占空比等参数,利用simpowersystems建立单端反激电路的仿真模型。 进行DC/DC变换器输出功率20W的仿真,仿真时间。观察并记录MOSFET的工作波形(电压,电流波形),输出整流二极管的工作波形(电压,电流波形)和输出电压波形。 1、参数计算 选择开关管的耐压不高于56V 选择死区时间为 ,则2 . t d, 取效率为% 纹波电压1% 一、负载的仿真。DC/DC变换器输出功率20w,仿真时间。观察并记录MOSFET 的工作波形(电压,电流波形),输出整流二极管的工作波形(电压,电流波形),输出波形。 输出电压5V,输出额定功率20w,可以算出输出电阻为欧姆。参数设置如下。 R=(5V)2/20W=Ω DCM模式

1)MOSFET管通过的电流、电压波形 分析:在MOSFET管关断时,MOSFET两端电压为直流侧电压加上输出侧反应到输入侧的电压之和,当MOSFET管导通时,管子端电压为0V。在MOSFET管关断时,变压器原边电流为0,副边等效电感对电路放电,电流线性降低,在MOSFET管导通时,变压器原边电源对电感充电,原边电流线性增加。 2)二极管电流电压波形 3)输出电压波形 根据仿真,当D=40%时,输出V= 不能满足V=5。 调整占空比是D=53%,则输出电压的平均值为,,电压波动范 围是,满足1%电压纹波的条件。 (2)CCM模式根据波形调试得D=43%,L(pu)= 1)MOSFET管通过的电流、电压波形 2)二极管电流电压波形 3)输出电压波形 输出电压V=电压波动范围是,满足1%电压纹波的条件。 二、总结: 在单端反激式变换器中,整流二极管D的接法使得开关管S闭合时,二极管截至,这是电源输入的能量以磁能的形式储存于变压器中;在开关管截止期间,二极管导通,变压器中储存的能量传输给负载。

反激式变换器环路分析与建模

广州周立功单片机发展有限公司 反激式变换器环路分析与建模 安森美半导体应用系列

修订历史

目录 第1章反激式变换器环路分析与建模 (1) 1.1 概述 (1) 1.2 基础概念 (1) 1.2.1 与环路分析相关的几个概念 (1) 1.2.2 性能优良的开关电源的设计目标 (3) 1.3 传递函数的建立 (4) 1.3.1 补偿网络传函(Hs) (4) 1.3.2 功率级传函(Gs) (6) 1.4 Matlab分析 (7) 1.5 总结 (9)

第1章反激式变换器环路分析与建模 1.1 概述 在反激式开关电源的设计中,对于缺乏设计经验的工程人员,闭环回路相关参数的调试将会耗去大量的时间和精力。最让开发人员困惑的是,当自己设计的开关电源表现不佳(比如噪声过大、空载震荡、开机过冲太大等)时,不知道该调整电路中的哪些参数来得到想要的性能。 众所周知,开关电源是一个典型的闭环控制系统,而且是一个高度非线性时变系统。一般而言,涉及到非线性的系统需要通过现代控制理论的方法去研究,不过,基于矩阵变换的现代控制理论虽然模型精确但建模极为复杂,这一点令开关电源的开发人员望而却步。在实际工程应用中,非线性系统可以近似线性化处理(相关理论可参考胡寿松版《自动控制原理》第二章内容),从而在保证合理性的情况下,降低研究问题的难度。因此,采用基于传递函数经典控制理论被广泛应用于实际工程分析中,当然,本文讨论的反激式变换器的建模问题,果断地采用了这种方法。 本文尝试对应用比较广泛的反激式变换器进行建模分析,包括功率级和补偿网络两部分,并在Matlab环境下编写m文件,利用Bode图分析其开环传递函数的幅频特性曲线和相频特性曲线,以及动态响应特性。在此基础上,采用了许庆柱工程师设计的NCP1200反激式模块(工作在CCM模式)和我本人调试的NCP1015电源模块(工作在DCM模式)对建立的模型的合理性进行了验证,证明可行。 值得一提的是,利用经典控制理论建立的模型是一个理想的线性模型,不可能精确的描述开关电源系统的精确模型。然而,对开关电源的环路进行分析的目的,不是为了获得其在数学上的精准描述,而是为了研究影响环路特性的关键参数改变时,会对系统造成什么样的影响,如本文开头描述的那样,从而可以知道调整哪些参数可以得到想要的性能。调电路固然重要,但调电路的方向更重要。 1.2 基础概念 1.2.1 与环路分析相关的几个概念 在开始本文的介绍之前,有几个概念性的东西需要理解。 1. 反激式开关电源的系统框图: 在这里,以峰值电流模式电源管理芯片NCP1015应用为例(其它大同小异),将反激式变换器的功能模块进行一个划分,以方便下文的数学建模。 我们将峰值电流模式控制的反激式变换器系统分为两大块,如图1.1所示,蓝色线框部分从芯片的FB脚到变换器的输出,其中内部包含有一个电流环,这一部分称为功率级;红色线框部分从输出经TL431到光耦输出,这部分称为反馈补偿网络。 抽象出来它的数学模型,我们可以将反激式变换器的框图绘制出来,如图 1.2所示。

相关文档
最新文档