回采巷道煤柱合理尺寸的研究

回采巷道煤柱合理尺寸的研究
回采巷道煤柱合理尺寸的研究

近距离煤层回采巷道优化布置研究

近距离煤层回采巷道优化布置研究 聂 军,岳宁,金思德 (兖矿集团南屯煤矿,山东邹城273515) 摘 要 采空区下底板巷道布置的方法如果只考虑在常规情况下的应力分布特点而忽略了采场应力场是多维场的特点,就无法全面的考虑整 个采场周围的应力分布,难以运用这种方法准确的确定近距离多个工作面采空下底板巷道布置的合理位置。所以,应该在考虑多个工作面采空后相互叠加的条件下来研究近距离煤层回采巷道的优化布置。关键词 采空区下 回采巷道优化布置 中图分类号TD822+ .2文献标识码 B *收稿日期:2012-07-09 作者简介:聂军(1962-),男,中国矿业大学(采矿工程)毕业,现任兖州煤业公司南屯煤矿采煤生产副矿长。 目前的研究和实践经验证明,在巷道离煤层底板 垂距相同条件下,巷道与煤柱边缘的水平距离不同,巷道受压状况将有明显差别。一般的规律是巷道距离煤柱边缘和深入采空区下方越远,其所受支承压力的影响越小。 在确定底板岩巷相对煤柱边缘的位置时,合理的水平错距与合理的垂直距离之间有一定的联系,所以在巷道设计时,常常先要确定一个煤柱向底板传力影响角θ,然后再根据巷道至煤层底饭的合理垂距Z 和煤柱影响角β,确定巷道距离煤柱边界的合理水平距离S ,如图1 。 图1确定底板巷道距离煤柱水平距离的计算简图 S ≥Z sin (α+θ) sin β 式中:α-煤层倾角;θ-β的余角;θ=90?-β; β-煤柱影响角,其值变化在25? 55?之间,通常支承压力越大和煤柱尺寸越小,β角越大。 确定采空区下底板巷道布置的方法如果只是考虑在常规情况下的应力分布特点,而忽略了采场应力场是多维场的特点,就无法全面的考虑整个采场周围的应力分布。因此,应该在考虑多个工作面采空后相互叠加的条件下来研究近距离煤层回采巷道的优化布置。 1 近距离煤层复杂叠加应力场下回采巷道的优化布置 分别取93上05工作面中部(Y =-500)、 93上05工作面超前支承压力与9307工作面侧向支承压力叠加 峰值区(Y =-320)、 93上05工作面超前支承压力与93上03工作面侧向支承压力叠加峰值区(Y =-285)、93上05工作面停采线前9307工作面和93上03工作面侧向支承压力区(Y =-150)在3下煤层中的垂直应力剖面整合于图2中,进而对整个93下05工作面的应力场进行分析,确定合理的回采巷道布置方式。 通过图2可以看出,四个垂直应力分布曲线在3下 煤层中的垂直应力分布规律并不是完全一致的,具有各自不同的特点。具体表现在峰值应力在煤层中的位置有很大不同。所以,需要综合考虑各种典型情况下的应力分布特征来确定93下05工作面上下顺槽的合理布置位置 。 图2典型的垂直应力分布曲线整合图 1.1 93下05工作面上顺槽位置的优化布置为了确定93下05工作面上顺槽的合理位置, 将93下05工作面上顺槽附近3下煤层中的垂直应力峰值 所在位置标于图3内(①线为最大值所在位置、②线为最小值所在位置、③线为93上05工作面上顺槽,④线为9307工作面下顺槽下帮位置),通过对图2和图3分析可以看出,在尽可能减少煤柱损失的情况下93下05工作面上顺槽可能布置的位置有以下几种: (1)位于X =73的应力最小值区。在此区域内, 在93上05工作面采空区下, 3下煤层中的垂直应力最小,然而,在93上05工作面停采线前方,3下煤层中的垂直应力较高,特别是93上05工作面超前支承压力与 9307工作面侧向支承压力叠加峰值区(Y =-320),垂直应力较高在70MPa 左右,所以, 93下05工作面上顺5 212012年第4 期

断层防水煤柱的合理宽度设计

断层防水煤柱的合理宽度设计 院别理学院 专业工程力学 指导教师张嘉凡 评阅教师 班级2008级 姓名代陆 学号0801010108 西安科技大学 二零一二年

论文编号: 论文题目:断层防水煤柱的合理宽度设计 专业:工程力学 学生:代陆 指导教师:张嘉凡 摘要 透水作为煤矿井下的五大自然灾害之一,对煤矿的安全生产有着极大的危害。根据大量的统计资料表明,79.5%的矿井突水都与断层有关,防水煤柱的留设作为矿井水灾预防的主要手段,其宽度的合理设计对于矿井的安全生产有着极其重要的意义。本文对于防水煤柱的宽度设计,将其分为矿压影响区,有效隔水区以及断层影响区三个部分,分别进行宽度计算公式的推导并分别计算,较之原来的方法,多考虑了矿压影响带对于防水煤柱的影响,使其更加合理,更加安全。 关键词:断层;防水煤柱;矿压影响;屈服区;有效隔水区;断层影响

No. : Subject :Reasonable width of the fault waterproof pillar design Specialty : The Mechanics of Engineering Name : Dai Lu Instructor:Zhang Jiafan ABSTRACT: As one of the five natural disasters in the coal mine,penetration have a great harm to coal mine production safety.According to a large number of statistics,79.5% of the mine water inrush have contacts with fault.Waterproof coal pillars is a primary means of mine flood prevention,the rational design of the waterproof coal pillars' width has great significance for mine safety production.In this article, the waterproof coal pillar width design will be divided into mine pressure affected zone,effective impermeable area and the fault-affected zone.Deduced and calculate the width of the formula https://www.360docs.net/doc/969703835.html,Pared with the original method,Give more consideration to the influence of mine pressure affected zone on waterproof pillar,make it more reasonable and more secure. Keywords:fault; waterproof pillar; mine pressure affected; yield zone; effective confining District; fault affected zone

采区巷道方案设计

采区巷道方案设计 一、采区设计的内容 (一)采区设计说明书 (1)采区位置、境界、开采范围及与邻近采区的关系;可采煤层埋藏的最大垂深,有无小煤窑和采空区积水;与邻近采区有无压茬关系(2)采区所采煤层的走向、倾斜、倾角及其变化规律、煤层厚度、层数、层间距离、夹矸层厚度及其分布,顶底板的岩石性质及其厚度等赋存情况及煤质。瓦斯涌出情况及其变化规律,瓦斯涌出量及确定依据;煤尘爆炸性,煤层自然发火性及其发火期;地温情况等。水文地质:井上、下水文地质条件;含水层、隔水层特征及发育情况变化规律;矿井突水情况、静止水位和含水层水位变化;断层导水性;现生产区域正常及最大涌水量,邻近采区周围小煤窑涌水和积水情况等。煤层及其顶底板的物理、力学性质等。 (3)确定采区生产能力,计算采区储量(工业储量、可采储量)和高级储量所占的比例,计算采区服务年限并确定同时生产的工作面数目。 (4)确定采区准备方式。区段和工作面划分、开采顺序,采掘工作面安排及其生产系统(包括运煤、运料、通风、供电、排水、压气、充填和灌浆等)的确定。当有几个不同的采区巷道准备方案可供选择时,应该进行技术经济分析比较,择优选用。 (5)选择采煤方法和采掘工作面的机械装备。 (6)进行采区所需机电设备的选型计算,确定所需设备型号及数量,

区信号、通讯与照明等。 (7)洒水、掘进供水、压气和灌浆等管道的选择及其布置。 (8)采区风量的计算与分配。 (9)安全技术及组织措施:对预防水、火、瓦斯、煤尘、穿过较大断 层等地质复杂地区提出原则意见,指导编制采煤与掘进工作面作业 规程编制,并在施工中加以贯彻落实。 (10)计算采区巷道掘进工程量。 (11)编制采区设计的主要技术经济指标:采区走向长度和倾斜长度、区段数目、可采煤层数目及煤层总厚度、煤层倾角、煤的容重、 采煤方法、主采煤层顶板管理方法、采区工业储量和可采储量、 机械化程度、采区生产能力、采区服务年限、采区采出率和掘进 率、巷道总工程量、投产前的工程量。 (二)采区设计图纸 设计图纸一般包括:地质柱状图、采区井上下对照图、煤层

采区巷道布置设计

采区巷道布置设计 说明书 专业班级: 学生姓名: 学生学号: 指导教师: 设计时间:2014.10.20~2012.10.26 设计成绩: 工程技术学院

呼伦贝尔学院工程技术学院 采区巷道布置设计课程设计任务书姓名:专业:采矿工程班级: 指导教师:职称: 教授高级工程师 课程设计题目: 已知技术参数和设计要求: 根据大雁矿务局第三矿煤矿北二采区的地表条件、地质构造、煤层赋存状态等资料对该采区进行模拟设计。 北二采区走向长度3000m,倾向长度1200m,倾角7°-12°,平均倾角11°,北二采区设计生产能力为5Mt/a。本设计为一矿一井一面生产。开采标高为+350-+121m。 所需仪器设备:尺子、图版等绘图工具 成果验收形式:说明书手稿、打印稿及电子版 参考文献: 《煤矿安全规程》、《煤炭工业设计规范》、《煤炭开采设计》、 《采矿学》、《矿山机械》、《煤矿电工学》、《矿山压力极其控制》、 《采矿工程师手册》 时间 安排 指导教师:教研室主任: 年月日

工程技术学院 采区巷道布置 课程设计成绩评定表 专业: 采矿工程 班级: 学号姓名: 年 月 日 课题名称 大雁第三矿煤矿北二采区采区巷道布置设计 设计任务与要求 见《采区巷道布置设计》教学大纲 指导教师评语 建议成绩: 指导教师: 课程小组评定 评定成绩: 课程负责人:

前言 巷道是连接一个矿井地面与地下的交通要道,它担负着全矿井的运输,行人,通风等所有重大任务,是一个矿井的根本。学完《井巷工程》,《矿井通风与安全》,《采矿学》等课程后,我们对于巷道有一个初步的认识,为了增加我们的感性认识,加强动手能力,紧密理论与实际的联系而进行的这次课程设计,并以此来培养学生运用所学知识处理生产所遇的实际问题的能力,培养学生正确的思维方式和工程技术人员应具备的基本技能。 本次设计是根据老师给我们的大雁三矿北二采区的资料为基础而进行的。通过本次设计我们将完成以下任务:采取概况,采区巷道布置方案选择,采区生产系统,采区主要经济技术指标等。通过此次实习,我们应该掌握采区巷道布置设计的初步方法。本次设计是在参考了《井巷工程》《矿井通风与安全》《采矿学》《煤矿安全规程》等资料设计而成,由于受水平和时间限制,本次设计有很多不足之处,恳请老师指正。

3 采煤方法及采区巷道布置

3 采煤方法及采区巷道布置 3.1 煤层地质特征 3.1.1 煤层赋存情况 采区内主要可采煤层为二叠系下统山西组二1煤和石炭系上统太原组一1煤。二1煤厚0~9.38m之间,平均厚度为2.70m。煤层倾角平均17°,煤层赋存稳定。一1煤厚0~4.41m之间,平均厚度为2.46m,煤层倾角与二1煤相近,煤层结构简单。 3.1.2 煤质与地质情况 1、煤质分析 采区内一 1 煤为中灰、低挥发分、高硫分、低磷分、高热值、中等软化温度灰、呈小块状及碎粒状的贫煤。二1煤为中灰、低挥发分、特低硫、低磷分、特高热值、较高软化温度灰、粉状贫煤。煤的抗碎强度特低,可磨性指数属易磨煤,CO2反应性较弱,高热稳定性,结渣性中等。 2、煤层顶底板 ①二1煤:煤层直接顶以中-细粒结构的大占砂岩为主,煤层底板以砂质泥岩和泥岩为主,局部含夹矸。 ②一1煤:煤层直接顶以砂质泥岩和泥岩为主,煤层底板以砂质泥岩、泥岩和石灰岩为主,煤层位稳定,结构简单,偶含1~2层夹矸。 3、水文地质 本区内水文地质条件尚属简单,主要充水因素有:二1顶板砂岩和断层破碎带裂隙淋水、一1石灰岩岩溶裂隙承压水和大气降水。全井田的正常涌水量465.46m3/h,最大涌水量为805.25m3/h。 3.1.2 煤层瓦斯、自燃、发火特征 ①一 1 煤层只有一个孔取到瓦斯样,瓦斯资料没有或较少,勘探报告没有评 述。二 1 煤层瓦斯含量0.093~17.391 m3/t2daf,平均5.354 m3/t2daf。 ②本区二 1煤火焰长度为5mm,加岩粉量为10%,二 1 煤层的煤尘具有爆炸性。 一 1 煤未做煤尘爆炸性试验,根据邻区郜城井田试验结果:加岩粉50~55%,火 焰长度达25~30mm,一 1 煤层的煤尘具有爆炸性。 ③一 1煤自燃倾向等级属不自燃-易自燃,二 1 煤属不易自燃。 3.2 采区巷道布置及生产系统 3.2.1采区及首采区划分 根据矿井煤层及地质分布,本井田设计单水平开采,共划分为四个采区,其中二1煤上下山各一采区,一1煤上下各一采区。矿井首采区位于二1煤上山采

分层开采回采巷道布置方案

5101采面下分层回采巷道布置方案 编制人:刘家宏 时间:2014年2月15日

一、概述 (3) 二、开采技术条件 (4) 三、回采巷道布置方案分析 (7) 四、回采巷道布置方案选择 (9) 五、巷道断面与支护形式 (11) 六、安全技术措施 (11)

5101采面下分层回采巷道布置方案 一、概述 倾斜分层长壁采煤法是我国长期应用的一种厚煤层采煤方法。通常把近水平、缓(倾)斜及中斜厚煤层用平行于煤层层面的斜面划分为若干个2.0~3.0m左右的分层,然后逐层开采。根据煤层倾角不同,可以采用走向长壁或倾斜长壁采煤法。 分层间一般采用下行开采顺序,垮落法处理采空区,上分层开采后,以下的各分层在已经垮落的顶板下开采。为确保下分层开采安全,上分层一般要铺设人工假顶或形成再生顶板。 在同一个区段范围内,上、下两个分层同时开采时,称为“分层同采”,反之称为“分层分采”。分层分采可以进一步分为两种形式,一种是在同一区段内,待上分层全部采完后,再掘进下分层的回采巷道,而后回采;另一种是在同一采区内,待各区段上分层全部采完后,再掘进下分层的回采巷道和回采,俗称“大剥皮”。 根据西安中煤设计有限责任公司设计确定的5-2煤层采用长壁式综采工作面分层铺底网采煤法,全部垮落法管理顶板。5101采面的回采的初步方案定为分层分采,待各区段上分层全部采完后,掘进下分层的回采巷道和回采。现需对5101采面下分层回采时回采巷道布置方案进行选择。

二、开采技术条件 5-2煤层为本区主采煤层分布稳定,结构简单,厚度 6.39m~9.18m,平均厚度约8.09m。一般含1层厚度0.10~0.49m的粉砂岩夹矸,为全区可采的稳定型厚~特厚煤层。煤层埋深43.72~185.23m,底板标高变化在+995.0~+1035.0m之间。煤层赋存近似水平,总体上自东南向西北倾斜,煤质较坚硬,节理裂隙不发育。煤层顶板以直接顶为主,初次跨落步距为25.60m,属3类,即稳定性顶板,岩性以砂质泥岩、粉砂岩为主,饱和抗压强度8.7~25.8Mpa,平均值为20.14Mpa;基本顶全区属Ⅲ~Ⅳ级,即基本顶来压力显示强烈~非常强烈,岩性以粉砂岩为主;伪顶岩性为泥岩、炭质泥岩,厚度不足0.50m;直接底板以泥岩、炭质泥岩和粉砂岩为主,饱和抗压强度15.0~45.6Mpa;老底以细粒砂岩、中粒砂岩为主,底板属Ⅲb类。 根据《陕西莱德集团神木县东川矿业有限公司煤矿(整合区)勘探报告》提供的资料: ①瓦斯 WS7、WS4钻孔5-2煤层测试分析表明(见表1-2-17): 5-2煤层瓦斯含量CH4为12.46~16.43 mL/g,daf,CO2为5.20~8.40 mL/g,daf;自然瓦斯成分CH4为1.00~1.14%,CO2为0.37~0.65%,应属二氧化碳-甲烷带(CO2-CH4)。因此在生产掘进管理中应该引起足够的重视。

煤矿巷道名称解释

开采水平 mining level,gallery level 运输大巷及井底车场所在的水平位置及所服务的开采范围。 辅助水平 subsidiary level 在开采水平内,因生产需要而增设有运输大巷的水平位置及所服务的开采范围。 开采水平垂高 lift,level interval 又称“水平高度”。开采水平上下边界之间的垂直距离。 矿井延深 shaft deepening 为接替生产而进行的下一开采水平的井巷布置及开掘工程。 采区准备 preparation in district 采区(盘区、带区)内主要巷道的掘进和设备安装工作。 采区 district 阶段或开采水平内沿走向划分为具有独立生产系统的开采块段。近水平煤层采区又称“盘区(panel)”;

倾斜长壁分带开采的采区又称(“带区(strip district)”)。 分段 sublevel 曾称“小阶段”、“亚阶段”、“分阶段”。在阶段内沿倾斜方向划分的开采块段。 区段 district sublevel 在采区内沿倾斜方向划分的开采块段。 分带 strip 在带区内沿走向划分的开采块段。 前进式开采 advancing mining (1) 自井筒或主平硐附近向井田边界方向依次开采各采区的开采顺序;(2) 采煤工作面背向采区运煤上山(运输大巷)方向推进的开采顺序。 后退式开采 retreating mining (1) 自井田边界向井筒或主平硐方向依次开采各采区的开采顺序;(2) 采煤工作面向运煤上山(运输大

巷)方向推进的开采顺序。 往复式开采 reciprocating mining 前一采煤工作面推进到终采线位置后,相邻的后续采煤工作面按相反方向推进的开采方式。 上行式开采 ascending mining,upward mining 分段、区段、分层或煤层由下向上的开采顺序。 下行式开采 descending mining, downward mining 分段、区段、分层或煤层由上向下的开采顺序。 开拓巷道 development roadway 为井田开拓而开掘的基本巷道。如井底车场、运输大巷、总回风巷、主石门等。 准备巷道 preparation roadway 为准备采区而掘进的主要巷道。如采区上、下山,采区车场等。

第18章 井田开拓巷道布置

第十八章井田开拓巷道布置 一、学习目的与要求 通过本章的学习,要求学生掌握开采水平的划分,上下山开采、辅助水平的应用,开采水平大巷的布置,井筒位置的确定,矿井通风方式的确定,能够根据具体条件选择确定合理的矿井开采水平、辅助水平、开采水平大巷、井筒位置与矿井通风方式。 二、教学主要内容 1) 开采水平的划分及上下山开采特点 2)开采水平大巷的要求及布置方式 3)井筒的位置 三、教学重点、难点 (一)重点 风井布置及确定开采水平的布置,井筒位置的确定,矿井通风方式的确定。 (二)难点 上下山基本特点、大巷运输方式、矿井通风系统,风井布置方式。 四、教学方法 (1)教学方法:板书,最好有多媒体教学相结合。 (2)辅助教具:采矿模型实验室模型。 (3)重点和难点分析方法:采用理论分析与辅助教具相结合,以利于学生直观掌握。 五、课程详细内容与知识点 第一节开采水平的划分及上下山开采 根据矿井井田斜长(垂高)的大小、开采煤层的多少和煤层倾角的陡缓,井田内可设一个或几个开采水平。开采水平的划分与井田内阶段的划分密切相联系,而井田内划分阶段多少主要取决于井田斜长和阶段尺寸大小。阶段倾斜方向尺寸大小以阶段垂高或斜长表示。开采水平的尺寸以水平垂高(或称水平高度)表示。 水平垂高:指该水平开采范围的垂高。 若一个开采水平只开采一个上山阶段,阶段的垂高就是水平的垂高,通常所说的水平高度,如不附加说明,即指阶段高度。若一个水平开采上山各一个阶段,水平垂高就应是这两个阶段的总垂高。 对开采近水平煤层的矿井,井田内各煤层的斜长可能很长,但其垂高并不大,也不划分为阶段,而是划分为盘区。如开采煤层不多、上下可采煤层的间距不大,可以采用单水平开拓。如开采煤层数目较多,上下可采煤层的间距较大,就要划分煤 组,各煤组分别设置开采水平,实行多水平开拓。合理的开采水平垂高应以合理的阶段垂高(斜长)为前提,并使开采水平有合理的服务年限,有利于矿井水平和采区的接替,还要有较好的技术经济效果。合理的水平垂高应注意满足以下要求。 一、合理的水平垂高 阶段划分为采区是普遍应用的一种准备方式。由于阶段内沿倾斜可布置几个区段,因此必须考虑以下因素对阶段斜长的影响。

最新采区及采掘工作面防突设计编制题纲资料

一、采区防突专项设计 (一)采区瓦斯地质概况 1. 地质构造及煤层赋存情况 煤层赋存条件及其稳定性、煤的结构类型及工业分析、煤的坚固性系数、煤层围岩性质及厚度、水平(采区)煤层(附综合柱状图说明)、可采储量、地质构造类型及特征、断层与火成岩分布、水文地质情况。 2. 瓦斯赋存情况 分煤层瓦斯含量及瓦斯成分、瓦斯压力、瓦斯放散初速度等原始参数、钻孔穿过煤层时的瓦斯涌出动力现象、邻近区域瓦斯地质情况。 (二)采区设计说明 1. 采区巷道布置 2. 采区供电、运输、行人等生产系统 3. 煤层开采顺序、采煤工艺、工作面接替顺序等 (三)通风系统说明 通风系统必须独立可靠。 (四)防突设施(设备)设置 (五)防突设计 1. 区域综合防突设计 (1)区域预测情况 说明区域预测(开拓前预测)的方法、临界值及区域划分结果等。 (2)区域防突措施 ①开采保护层 保护层的选择、沿走向及倾斜的保护范围及抽采被保护层瓦斯的方式等。 ②预抽煤层瓦斯 预抽煤层瓦斯的方式选择、钻孔控制范围、钻孔参数设计、封孔要求等。

(3)确定区域效果检验的方法 开采保护层、预抽煤层瓦斯的效果检验方法的选取,临界值的确定,检验区域内钻孔分布设计。 (4)确定区域验证的方法 石门揭煤、煤巷掘进工作面和采煤工作面进行区域验证的方法的选取及临界值的确定。 2. 局部综合防突设计 (1)确定工作面预测方法 采用的临界值、最小预测超前距等。 (2)工作面防突措施工程设计 石门和立井、斜井揭穿突出煤层的专项防突设计、煤巷掘进和采煤工作面的专项防突设计。 (3)确定工作面效果检验方法石门及其他揭煤工作面、煤巷掘进工作面、采煤工作面防突措施效果检验方法的选取及钻孔的布置及临界值的确定。 (4)安全防护措施 采区避难所设置、反向风门、挡栏、远距离爆破措施、压风自救系统等。 3. 首采面防突工程量 主要通风系统、瓦斯治理巷道工程量,各类钻孔工程量等。 (六)监控系统、传感器设置 (七)抽采系统设计(抽采系统、瓦斯计量安设) (八)附图 1. 瓦斯地质图 2. 采区巷道布置平、剖面图 标明瓦斯治理巷道,并要反映钻场、钻孔布置参数等。

采区巷道布置.

5 采区巷道布置及回采工艺 本设计开采8煤层,前期采用中央并列式。根据整个矿井的地质情况,以及为了通风安全,前期,在靠近工业广场的附近布置工作面。后期采用两翼对角式通风,工作面再向井田边界方向布置。为了矿井达产,在南翼布置带区,在北翼布置采区。本设计主要进行采区的巷道布置,以及采区回采工艺的设计。 5.1 煤层的地质特征 本井田位于淮南煤田南部的阜凤与舜耕山逆冲断层之间,含煤地层总体构造形态为一走向北西、倾向北东、倾角一般在20°左右且局部有倒转现象的单斜构造。 本设计以整个矿井的煤为基础,而本设计主要开采8煤,采区的设计以8煤层为基础,巷道的布置也是用来开采8煤层。 5.1.1 煤层情况 8煤层:厚度2.43~17.66m,平均4.94m,下距7煤4.30m,可采系数100%,变异系数47%,为主要可采煤层,但厚度变化特征十分显著,井线以西大片地段厚度极为稳定,一般变化在3.50~4.00m之间,变异系数23%;井线以东厚度显著增大,一般变化在6~10m之间,变异系数56%,因此,全区8煤层变异数偏大,但仍以稳定为主。煤厚变化见图5-22,煤层结构简单~较复杂,一层夹矸率31%,二层夹矸率29%,其岩性为泥岩、炭质泥岩,煤层顶板砂岩及砂页岩互层,底板泥岩、砂质泥岩,属稳定煤层。 8煤层顶板及其上部岩层为一植物化石带,主要为羊齿、瓣轮叶、斜羽叶等,而以椭圆斜羽叶及栉羊齿富集为其特征。 5.1.2 煤层瓦斯含量 本井田部分主要可采煤层瓦斯含量最大值介于8.40~17.85m3/t之间,且甲烷成分一般在80%左右,由此表明本井田深部主要位于瓦斯带。总体来看,本井田同一煤层的瓦斯含量除有随深度增加而增高的趋势以外,还可能在局部形成瓦斯富集带,8煤层为富瓦斯煤层。 5.1.3 煤尘爆炸性和煤的自燃倾向 本井田各可采煤层均有煤尘爆炸危险,浅部煤尘爆炸指数30%~35%。各可采煤层均有自然发火倾向,发火期一般为3~6个月。 5.1.4 地温 根据九龙岗矿长观孔资料,本井田所在地区的恒温带深度为自地表向下垂深30m,相应的温度为16.8℃。 本井田地温梯度介于0.75~2.07℃/hm之间,其中东部高于西部,属地温正常区。总体来看,本井田地温具有深高浅低和东南略高于西北的变化特点。

潘一矿采区巷道布置设计

潘一矿采区巷道布置设计 第1章采区概况 潘一矿是淮南矿业集团主力矿井之一,1983年投产,设计生产能力3.0M t/a,经过技术改造,2005年核定生产能力4.0M t/a,矿井可采和局部可采煤层13层。其中13—1煤层是矿井目前的主采煤层,平均厚度4.5米。煤层结构复杂,顶底版一般为泥岩或沙子泥岩,遇水易泥化。矿井投产以来,先后采用普通综采和综采放顶煤工艺开采13—1煤层 。由于普通综采采高较低,13—1煤层不能一次采全高,开采效率低,难以实现高产高效,综采放顶煤开采虽然可以一次采全高,但煤炭灰分较大,不能适应煤炭市场需求,且放顶煤开采影响工作面推进进度,制约生产能力的提高,另外综采放顶煤开采采空区留有余 第一节煤系及煤层 石炭、二叠系为本区煤系地层,共有可采煤层14层,总厚度为27.67m。自上而下分别为1、3、4-1、4-2、5-2、6-1、7-1、8、11-2、13-1、16-1、16-2、17-1及18煤,其中13-1煤层为本采区主要可采煤层。 第二节采取内地质构造 该采取根据地质勘探和邻近采区揭露的资料看,无较大的断层和明显的褶曲构造,对井下开采无明显的影响,构造尚属简单。 第三节煤层要素及顶底板特征 所开采的C组13-1煤层:平均厚度4.49m,煤的密度为1.34t/ m3。为较稳定煤层,无夹矸,煤质中硬,结构简单,高瓦斯。 顶底板特征见下表: 顶板名称岩石名称厚度 (m) 岩性特征 伪顶页岩0.15灰黑色,多植物化石,局 部赋存

直接顶粉砂岩 2 - 4粉粒砂岩,不稳定 基本顶中细砂岩 6 - 10灰-灰白色细砂岩粒,较厚 第四节采煤方法和采煤工艺及劳动组织 根据煤层赋存条件,在13-1煤层中,本采区采用后退式走向长壁一次采全高综合机械化采煤方法回采。初放期间采高为3m以内,正常回采期间为3.5-4.5m.工作面最大控顶距3.5m,最小控顶距2.3m,面积为13.5m2,三角煤根据情况采用炮采或丢弃方式处理。工作面总体沿走向推进。 采煤工艺及劳动组织见下表: 工艺流程斜切进刀→打三角煤→割煤→移架→推溜→斜切 进刀 进刀方式端头斜切进刀,双向割煤,煤机往返一次进两刀 劳动组织采用“三八”制作业,中班检修,早、夜班生产 第2章采区及巷道布置 第1节采区形式及工作面划分 根据采区的走向长度和产量要求及采区的基本情况,将采区设计 为采取上山在后面(即井底车场一侧)的单翼开采形式。将采区五个区段,每个工作面推进长度为1500m,区段斜长为180m,护巷煤柱宽为15m。 第2节采区车场形式及采区上下山布置 根据采区的基本情况和生产需求,采区的井底车场采用立井折返式井底车场,上部和中部均采用单甩顶板绕道式车场,下部车场为顶板绕道式下部车场。井底车场设在采区东部。

回采巷道底鼓特性及其整治方案

回采巷道底鼓特性及其整治方案 针对我国煤炭开采过程中,回采巷道底鼓现象的特性研究,探讨底板岩层鼓入巷道的方式及机理。总结巷道底鼓现象的防治措施:(1)底板锚杆;(3)底板注浆;(2)巷道底板开卸压槽(孔)。 标签:回采巷道底鼓底板锚杆卸压 1引言 随着我国地下煤炭的开采,近些年来煤炭开采逐渐走向深部,进而地应力相应增大,巷道底鼓问题日趋严重,从而暴露出很多影响煤矿安全生产的问题[1]。底鼓是煤矿井巷中经常发生的一种动力现象。巷道掘进后,围岩由三向应力状态转变为二向应力状态,在复杂的集中应力影响下,底板岩层拉伸破坏形成底鼓。大量实测数据表明,巷道变形大约有2/3体现为底鼓。底鼓的主要危害是缩小了巷道断面,致使行人、运输、供排水、井下通风等都受到影响,因底鼓而造成巷道报废的现象也时有发生,严重影响了矿山的安全生产。因此,研究巷道底鼓的机理、预测方法及防治措施等问题,对于我国深部资源开采,建设高产高效矿井,提高人员安全保证有着重大的理论意义和实际应用价值。 回采巷道的底鼓主要发生在工作面回采期间,是主要由工作面超前支承压力等原因而诱发的岩层运动。回采巷道是否底鼓及底鼓的强弱与底板岩层的应力分布有关,而底板岩层的应力分布除了与本身的力学特性有关外,还与两帮、底板及顶板的力学特性有关。众所周知,当水平应力垂直于巷道轴线时,巷道最不利于维护,这个因素设计者已考虑到这一点,但地应力往往比较复杂,尤其是局部的应力集中,再加上回采时的扰动,应力状态在局部区域常常发生变化,所以采取避开高应力区布置巷道,条件有时是不允许的。另一方面由于开采系统的综合布局,不可避免的有一些巷道与最大水平主应力的方向垂直或斜交[2]。所以要针对实际情况,采取主动的控制,而不是被动地去适应。 我省矿井绝大多数矿井巷道有底鼓现象,因其安全隐患远低于顶板事故,所以往往被人忽略,生产中发现产生底鼓,只好被动地采取掘底,甚至进行二次或三次掘底以满足生产需求,尤其是皮带运输顺槽,在回采动压的作用下,巷道底鼓更为严重,直接影响皮带的运输,采取的措施就是停止生产,掘底重新安装皮带架,虽然造不成事故,但严重影响生产效率。 2底板岩层鼓入巷道的方式及机理 引起巷道底鼓的因素很多,其中影响最大的有底板岩层性质、围岩应力、水理作用、支护强度、采动压力、顶底板采空情况等[3]。其形式主要有: (1)挤压流动性底鼓。通常发生在直接底板为软弱岩层(如粘土岩、煤等),两帮、顶板比较完整的情况下,在两帮岩柱的压模效应和远场应力的作用下,整

采区巷道布置方案比较

采区巷道布置方案 一、采区位置、边界及范围 石壕矿四采区位于陇海铁路以南区域,采区北部边界以陇海铁路煤柱为界,东、西及南部边界为矿井边界。该区域走向NW~SE,倾向NE,走向长1.3~2.4km,倾斜宽0.55~1.85km,面积为2.3119km2。 二、采区储量及服务年限 根据二1煤层底板等高线及资源储量估算图,经统计:四采区可采储量为:781.5万吨。采区生产能力按60万吨/年,服务年限为9.3年。 三、采区巷道布置方案及比较 根据郑州设计院2011年11月编制的《河南大有能源股份有限公司石壕煤矿南风井工程初步设计》,四采区按单翼采区进行布置,将采区上、下山巷道布置在陇海铁路南侧煤柱线内,以减少煤柱损失。 +200m水平南翼轨道运输大巷与四采区回风巷(直接与南翼回风井相连)向南延伸进入铁路以南区域后,四采区即分为上下山开采,本设计考虑先采上山部分,后采下山部分。采区上、下山巷道分别按二条考虑,即轨道上、下山和皮带上、下山。设计考虑便于回采巷道与准备巷道连接,并根据矿方实际生产经验,将采区轨道上、下山布置在煤层底板距煤层15m的岩层中或布置在煤层顶板距煤层5~10m 的大占砂岩中,作辅助提升和回风巷;皮带下山沿二1煤层顶板布置在二1煤层中,作主提升和进风巷。采区中部设置一条胶带运输大巷,布置在二1煤层底板距煤层约20m的岩层中,并通过二采区胶带下山延伸段、二采区集中运煤巷与主井底煤仓相连。

综合考虑上述因素,结合石壕矿四采区所处位置以及目前矿井实际生产情况,本设计筛选出三个采区巷道布置方案,现分述如下:方案一(轨道下山分段,沿底布置): 设计综合考虑采区运输、通风需要、准备巷道与回采巷道的联接关系,将四采区轨道上山布置在北侧并布置在煤层底板中,皮带下山布置在南侧并布置在煤层中。 四采区下山部分分为两段施工,在+80m水平设置辅助水平,并布置一个中部水仓、泵房,四采区轨道下山上、下段均布置在北侧并布置在煤层底板中,皮带下山上、下段均布置在南侧并布置在煤层中,其连接处与胶带运输大巷之间设置一个采区缓冲煤仓。 轨道下山上段通过上部车场与-200轨道大巷相连,通过回风联络巷与四采区回巷相连。皮带下山上段的上部与四采区皮带上山连通,下部通过采区煤仓与胶带运输大巷连通;皮带下山下段亦通过采区煤仓与胶带运输大巷连通。 在四采区最下部再布置一个下部水仓、泵房。采区变电所、采区避难硐室均布置在四采区下山的上部车场附近。 方案二(轨道下山分段,沿顶布置): 四采区轨道、皮带上山布置同方案一,四采区轨道、皮带下山布置的位置也同方案一,轨道下山上、下段布置在煤层顶板距煤层5~10m的大占砂岩中。 方案三(轨道、皮带下山不分段,沿底布置): 四采区轨道、皮带上山布置同方案一,四采区下山部分不分段,采区轨道、皮带下山直通采区下部边界附近,在采区下部布置一个水仓、泵房。采区皮带下山中部通过煤仓与胶带运输大巷连通,并布置一个采区中部车场将胶带运输大巷与轨道下山连通。采区皮带下山需

煤矿工作面巷道布置说明书

目录 第一章采区开采范围及地质况 (1) 第二章采区地质、工业和可采储量 (1) 第三章采区参数及区段的分 (3) 第四章采区巷道布置 (4) 第五章采煤方法及回采工艺 (7) 第六章采区生产能力及服务年限 (8) 第七章采区生产系统 (10) 第八章安全措施 (11) 第九章附图

第一章 采区的开采范围及地质情况 一. 采区的位置及开采范围 某采区位于某某矿二水平左翼,东以(如图附图一)号勘探 线为界北以某煤层露头为界,西以(如图附图)号勘探线为界,南以 矿井边界走向长度1650m ,采取平均倾斜长度1000m 采区内有1#,2# 两层煤,煤层倾角16度,采区内部分位置的煤层倾角有变化。 根据临采区揭露的资料显示,本采区构造简单。1#煤层平均厚度 2.23m 煤的密度为1.97t\ m 3为稳定煤层,煤质中硬,底板中硬,节 理发育较低,自然发火期短,伪顶直接顶岩性比较硬。 2#煤层平均厚度2.48m 煤层的密度为1.74\ m 3 .为稳定煤层,煤质中硬,底板硬,结构简单,节理发育地,自然发火期短,伪顶直接 顶岩性比较硬。1#煤层和2#煤层间距5.1m 地质构造:煤层赋存稳定,地质构造简单,但出于中等褶曲内, 对采掘工作造成一定的影响。 煤层露头距地表有39m 的泥土,地表比较平坦。 第二章 采区地质、工业和可采储量 一. 采区地质、工业和可采储量计算 1. 采区地质、工业储量计算 t 1393328069043207028960 1.74)2.481000(16001.97)2.231000(1600 R M I L R M I L Q 22221111=+=???+???=+???==) ()(工地Q

开拓、准备、回采巷道概念

一、按其所处空间位置和形状,可分为垂直巷道、水平巷道和倾斜巷道。其中垂直巷道有立井(竖井),暗立井、溜井;倾斜巷道有斜井、暗斜井、上山、下山;水平巷道有平硐、石门、煤门、平巷。每一项的具体解释就不用一一介绍了。 二、根据巷道服务范围及其用途,矿井又分为开拓巷道、准备巷道和回采巷道。 1、开拓巷道 为全矿井或者一个开采水平服务的巷道属于开拓巷道。如主、副井和风井、井底车场、主要石门、阶段运输大巷和回风大巷、采区回风和采区运输石门等井巷,以及掘进这些巷道的辅助巷道都属于开拓巷道 2、准备巷道 为采区、一个以上区段、分段服务运输、通风巷道叫准备巷道。属于这些巷道的有:采区上(下)山、区段集中巷、区段石门、采区车场等。 3回采巷道 形成采煤工作面及其服务的巷道。属于这类巷道的有:采煤工作面的开切眼、区段运输平巷和区段回风平巷。 开拓巷道的作用在于形成新的或扩展原有的阶段或开采水平,为构成矿井完整的生产系统奠定基础。准备巷道的作用在于准备新的采区,以便构成采区的生产系统。为采煤工作面服务的作用在于切割出新的采煤工作面并进行生产。 这里有一些相应的名词解释,楼主可以借鉴一下 井巷为进行采掘工作在煤层或岩层内所开凿的一切空硐。 水平沿煤层走向某一标高布置运输大巷或总回风巷的水平面。 阶段沿一定标高划分的一部分井田。 区段(分阶段、小阶段)在阶段内沿倾斜方向划分的开采块段。 主要运输巷运输大巷、运输石门和主要绞车道的总称。

运输大巷(阶段大巷、水平大巷或主要平巷)为整个开采水平或阶段运输服务的水平巷道。开凿在岩层中的称岩石运输大巷;为几个煤层服务的称集中运输大巷。 石门与煤层走向正交或斜交的岩石水平巷道。 主要绞车道(中央上、下山或集中上、下山)不直接通到地面,为一个水平或几个采区服务并装有绞车的倾斜巷道。 上山在运输大巷向上,沿煤岩层开凿,为1个采区服务的倾斜巷道。按用途和装备分为:输送机上山、轨道上山、通风上山和人行上山等。 下山在运输大巷向下,沿煤岩层开凿,为1个采区服务的倾斜巷道。按用途和装备分为:输送机下山、轨道下山、通风下山和人行下山等 主要风巷总进风巷、总回风巷、主要进风巷和主要回风巷的总称。 进风巷进风风流所经过的巷道。为全矿井或矿井一翼进风用的叫总进风巷;为几个采区进风用的叫主要进风巷;为1个采区进风用的叫采区进风巷,为1个工作面进风用的叫工作面进风巷。 回风巷回风风流所经过的巷道。为全矿井或矿井一翼回风用的叫总回风巷;为几个采区回风用的叫主要回风巷;为1个采区回风用的叫采区回风巷;为1个工作面回风用的叫工作面回风巷。 专用回风巷在采区巷道中,专门用于回风,不得用于运料、安设电气设备的巷道。在煤(岩)与瓦斯(二氧化碳)突出区,专用回风巷内还不得行人。 发热量的单位: 热量的表示单位主要有焦耳(J)、卡(cal)和英制热量单位Btu。 焦耳是J (Joule的简写),是能量单位。1焦耳等于1牛顿(N)力在力的方向上通过1米的位移所做的功。1MJ=1000KJ 焦耳是国际标准化组织(ISO)所采用的热量单位,也是我国1984年颁布的,1986年7月1日实施的法定计量热量的单位。煤的热量表示单位:J/g、KJ/g、MJ/Kg。 卡(cal)是我国建国后长期采用的一种热量单位。1cal是指1g纯水从19.5度加热到20.5度时所吸收的热量。欧美一些国家多采用15Ccal,即1g纯水从

-井田开拓方式

第二章 井田开拓方式 2.1 井田开拓概念 2.1.1 井田开拓方式的概念 井田开拓:由地表进入煤层为开采水平服务所进行的井巷布置和采掘工程称为井田开拓。 矿井开拓方式:矿井井筒形式、开采水平数目及阶段内的布置方式的总称。 2.1.2 井田开拓方式的分类 (1)按井筒(井筒 :由地面通达矿体的巷道)形式分:立、斜、平、综、分区域; (2)按水平数的多少分:单水平、多水平; (3)按开采准备方式分:上山式、下山式、上下山式、混合式; (4)按开采水平大巷的布置方式分:分煤层大巷、集中大巷、分组集中。 如立井单水平上下山(采区)式、立井多水平上下山(采区)式、立井多水平上山(采区)式、立井多水平上山及上下山混合(采区)式,绘出关系图形如下图2.1。 图 2.1 开拓方式分类关系图 2.1.3 确定井田开拓方式的原则 合理确定矿井生产能力,井田范围,进行井田内的划分,确定井田开拓方式,井筒数目及位置;选择主要运输大巷布置方式及井底车场形式; 确定井筒延伸方式及井田开采顺序。其确定开拓方式的基本原则为: (1)多出煤、早出煤、出好煤、建设高产高效安全生产矿井,集中,简单; (2)按《规程》完善通风条件,良好生产条件; 开拓方 立 井 斜 井 平 硐 综 合 单水多水平 上下山 上 山 上下山 混 合 分层大集中大分组集中大

(3)减少煤柱损失,减少巷道维护量,提高矿井采出率; (4)减少工程量,降低投资,减少建工工期‘新技术机械化。 2.2 斜井开拓 斜井开拓时,根据井田再划分方式和阶段内布置形式可组合成多种开拓方式。如:“斜井单水平分区式”、“斜井单水平分带式”、“斜井多水平分区式”、“斜井多水平分段式”等。本节仅举例介绍我国目前常用的几种斜井开拓方式。 2.2.1 片盘斜井开拓 片盘斜井开拓是斜井开拓的一种最简单的形式。它是将整个井田沿倾斜方向划分成若干个阶段,每个阶段倾斜宽度可以布置一个采煤工作面。在井田沿走向中央由地面向下开凿斜井井筒,并以井筒为中心由上而下逐阶段开采。图2.2为一片盘斜井的示例。井田沿倾斜方向划分为四个阶段。阶段内按整个阶段布置,即每一阶段斜宽布置一个工作面。 图2.2 片盘斜井开拓 1—主井;2—副井;3—片盘车场;4--阶段运输平巷;5—辅巷;6—阶段回风平巷;7--采煤工作面; 8—联络眼

上层煤柱下回采巷道布置位置及支护技术研究

锚梁网支护作为一种主动支护形式,不仅能及时加固围岩,提高围岩的强度和承载能力,而且还能显著提高巷道支护效果,降低支护成本,减轻工人的劳动强度,加快巷道的成巷速度,提高巷道断面利用率及简化采煤工作面上下出口维护[1-3]。近年来,顾北矿13槽煤巷锚梁网支护技术已经取得了成功。然而由于1242(1)工作面开采的是11-2煤层,布置在开采13-1煤层的1232(3)工作面正下方,平均间距大约68m。目前矿井对于多煤层缺乏开采经验,因此,开展回采巷道的矿压显现规律和支护对策研究,可以为淮南矿业集团顾北煤矿多煤层开采方法选择、生产系统布置、岩层控制方法、工作面合理开采顺序及区段煤柱留设等提供理论依据。1工作面概况 1242(1)工作面标高-645~-536.4m, 地面标高+24.2m,属于北一(11-2)下采 区,上侧(西侧)为1232(1)工作面,右侧 (北侧)为11-2煤层露头、煤层风氧化带及 11-2煤防水煤柱线,下侧(东侧)为顾桥顾 北井田边界,工作面下顺槽与井田边界保 留煤柱30m,左侧(南侧)为北一(11-2)下 采区11-2煤胶带机上山及回风上山。 1242(1)工作面开采11-2煤层,11-2 煤层为黑色,弱油脂~油脂光泽,夹少量 镜煤条带,普氏硬度0.7~1.5,煤层厚度 1.5~3.8m,平均厚度3.1m,煤层倾角2~ 12°,平均5°。1242(1)工作面六线以北 直接顶为泥岩~砂质泥岩,且向北有增厚 趋势,厚度0~4.0m,平均厚度1.1m,六 线以南直接顶以中细砂岩为主。老顶为中 砂岩,厚度9.97m,直接底为泥岩,厚度 5.24m,老底为泥岩,厚度5.96m。 2回采巷道支护参数优化设 计 2.1 两巷支护载荷分析 对于层状顶板实体煤巷道,巷道支 护载荷按照岩层形变压力破坏假说确定 [4]。岩层形变压力破坏假说认为:能够承 受上位岩层形变压力而不破坏的顶板岩层 称为承载岩层,承载岩层下面的岩层的重 量被确定为巷道支护的载荷。所以,确定 巷道支护载荷的关键就是要确定巷道支护 的承载层。 设第n层岩层所能承受的最大载荷为 q n max,第n层所释放的形变压力为σ 放 n,第 n+1层所释放的形变压力为σ 放 n+1,顶板 岩层形变压力为P ,若 则第n+1层的变形释放被阻止,第n 层岩层即为承载层。 以1242(1)两巷为设计对象,以六 13 钻孔资料为设计计算依据,11-2煤层顶板 物理力学性质参数见表1所示。 表1 1242(1)两巷顶板岩层 物理力学性质 巷道地层压力P=rh=679×2.5×10- 2=17MPa,巷道设计宽度4.8m, 考虑到 11槽煤质松软,巷道掘进后煤帮松动,因 此岩梁的计算尺寸L=6m(巷道两帮松动范 围按0.6m考虑)。因第1层直接面临巷道 空间,可认为其形变全部释放,故第1层 没有剩余形变压力,第1层所能承受的最 大均布载荷: 按照上述方法依次计算,第5层是承 载层,故1242(1)两巷支护的载荷为第 1~第4层岩层重量,岩层高度h=0.47+0. 上层煤柱下回采巷道布置位置及支护技术研究 刘乐枝1,2 1. 安徽理工大学能源与安全学院 232001 2. 淮浙煤电公司顾北煤矿 232151 DOI: 10.3969/j.issn.1001-8972.2010.19.026

相关文档
最新文档