战斗机雷达的探测距离与隐身

战斗机雷达的探测距离与隐身
战斗机雷达的探测距离与隐身

战斗机雷达的探测距离与隐身

拨开认知的迷雾

无线电看不见摸不着,总让人觉得扑朔迷离,难以接近。笔者回想上大学时,很多同学都觉得那些“看上去很美”的麦克斯韦电磁场方程就像玛雅文字一般。作为无线电技术最为复杂的应用之一,雷达的不为人知其实是一件再正常不过的事。而随着社会分工的越来越细,在大大促进专业技术发展的同时,“隔行如隔山”的说法似乎比任何时候听起来都更像一句简单的真理。下面我就列出一些与雷达技术有关的典型错误认识,大家不妨对照看一看,这些错误所涉及的知识,你都理解正确了吗?

相控阵比脉冲多普勒更先进吗?

这种说法在很多科普媒体上都出现过,甚至有些航空专家在讲到机载雷达的时候也这样讲。还好,雷达专家没有这样的说法。因为这种说法是错误的。如果把关于雷达新技术的很多错误理解编一个排行榜的话,这种说法绝对可以排名第一。

从前面的介绍可以知道,相控阵和脉冲多普勒是没有关系的两个概念,二者不能比较。相控阵是指雷达波束的扫描方式,脉冲多普勒则是指雷达利用速度去区分目标回波和地面(海面)回波(即杂波)。无论是否

采用相控阵技术(如早期三代机上的火控雷达,大部分都不是相控阵的),为了反杂波,都必须采用脉冲多普勒技术;而如果不需要反杂波,无论是否采用相控阵技术(例如地面的机械扫描雷达),也都可以不采用脉冲多普勒技术,而直接采用更为简单的“普通脉冲”技术。如果要进行相关的比较,应该是把相控阵和机械扫描进行比较,而把脉冲多普勒同普通脉冲技术相比较。

出现这种错误理解的原因,恐怕是相控阵在脉冲多普勒技术之后出现,虽然如此,相控阵并不是用以替代脉冲多普勒的。实际上,从前面展示的雷达发展画卷还可以看到,单脉冲技术是在脉冲多普勒技术之前,同样不能认定脉冲多普勒比单脉冲更先进。雷达发展到现在,绝大部分都已经采用单脉冲技术,不管是脉冲多普勒的,还是相控阵的;为了把角度测得更准,就需要采用单脉冲技术。

提高功率一定能让雷达看得更远吗?

这种说法基本上是正确的,但为了更好地理解天线副瓣对于雷达反杂波的影响,我们不妨学究一些,认为这种说法是不严格的。我们在前面介绍过,正是由于在强杂波下目标回波功率拼不过杂波功率,所以需要采用脉冲多普勒技术。也许有读者会问,为什么不能提高发射机的功率,来增强雷达的入射波打在飞机上以后回来的回波强度呢?这对于发现目标不是有益的吗?

首先,通过提高发射机的功率来提高雷达的探测距离,是一种并不经济的做法。雷达发射机的功率要经受雷达波来回双程的衰减,功率衰减量与作用距离的四次方成正比,所以衰减极其迅速。也就是说,雷达发射机功率增大16倍,作用距离才能增加1倍;或者说,雷达发射机功率增大1倍,作用距离只增加2的四次方根倍(约18%)。而雷达发射机功率增加1倍,必然要求电源的发电量增加1倍,由此,电源的重量和体积都要成倍增加。由于雷达发射机是大功率设备,对于机载火控雷达来说,由于空间极其有限,重量要求又极其苛刻,所以,发射机的冷却又是一个极大的难题。因此,机载雷达提高发射机功率代价很大。当然,相对机载雷达来说,地面雷达更容易通过提高功率的办法来增加作用距离,因为主要是在地面上有更多的空间容纳更多的和个头更大的设备。

其次,对于波束向上探测高空目标(也就是天线波束不打地)的机载雷达来说,增加发射机的功率是可以拓展雷达作用距离的,因为进入雷达接收机的,除了不可消除的电子噪声以外,只有目标的回波。所以,发射功率大了以后,目标反射回来的功率也就大了。但是,对于天线波束需要打地的机载雷达来说,由于发射机功率需要通过天线辐射出来,而天线是有主瓣和副瓣的,增加了发射机的功率,通过主瓣和副瓣射出的功率也会增加,这会增加地面杂波或海面杂波的功率,从而为杂波中检测目标带来困难。

因此,要想让雷达在自由空间(也就是无杂波空间,例如雷达波束往上打的情况)中看得更远,提高发射机功率是可行的;而如果要让雷达在强杂波地形中看得更远,需要努力降低天线的副瓣,而不是简单地提高发射机的功率。

战斗机的雷达到底能看多远?

距离测量是雷达最古老同时也是最重要的功能。可以说,迄今为止,雷达已经发明70余年了,但是仍然没有哪一种设备在测距方面比雷达测得又快又好。但是,影响雷达距离的因素有很多很多,要准确地表达它的最远探测距离,需要有很多条件。如果这些条件不交代清楚,人们很有可能就会对雷达的威力感到莫名其妙或者惊诧不已。

曾经有消息报道,说F/A-18的机载雷达最远能够看到300千米以外的目标。也许有读者奇怪,小小的战斗机雷达,怎么能看这么远?看完了下面的内容,你就会找到答案。

要准确地回答雷达能看多远,至少要限定两个方面的条件。一是在什么样的杂波背景下,地形是影响杂波强度的主要因素。对于需要下视的机载雷达来说,海面是一类地形,沙漠是一类地形,平原是一类地形,山区

是一类地形,城市又是一类地形。这些地形下,地面反射越来越强,也就是杂波越来越强,因此,总体上来说,雷达的探测距离就会越来越近。在雷达的电波照射后,各类地形所能反射回去的电波强度(也就是杂波功率)是不同的。如果杂波功率越小,自然对雷达发现目标的干扰就越少,雷达的探测距离就会更远。

二是对于多强反射能力的目标,这可能比说清楚杂波背景还要重要。我们在说一部雷达能看多远时,必须要说清楚雷达所要探测的目标雷达散射截面(RCS)是多大。一般情况下,把小型战斗机作为典型目标,它的RCS一般在3~10平方米量级。但是,同样是小型战斗机,有人认为法国的“幻影”Ⅴ的RCS就是5平方米,而俄罗斯的苏-27,其RCS超过10平方米,而我国的某二代主战飞机,其RCS只有3平方米。由于雷达的探测距离与RCS的四次方根成正比,所以,在说雷达对小型战斗机能看多远时,数值上最大有可能相差10除以3再开4次方根即1.35倍。而如果在说雷达看多远时,根本没有指出探测的对象,那距离数值的水分就可能很大。例如前面提到的F/A-18的例子。假设F/A-18对3平方米RCS的小型战斗机探测距离为100千米,这是常规火控雷达的典型威力,如果目标的RCS为300平方米(对应于大型轰炸机、运输机或预警机等),那么,对应的探测距离正好超过300千米。这也就是雷达生产商在推销产品时常常使用的小伎俩。在这方面,中国的设计师要远比西方设计师来得实在。我们曾经有一型地面雷达是瞄着美国的先进雷达做的,在用目标机做飞行考核时,试飞结果一直达不到美国雷达说明书和广告上的距离,到后来才弄清楚,原来

美国人所理解的小型战斗机和我们所理解的小型战斗机,其RCS对应的数值并不一样,我们的标准要比美国人的标准小接近一半。而如果按照美国的RCS标准,我们雷达的探测距离还要远数十千米。

还有一点,那就是扫描时间。距离的拓展,有时候也需要占用时间资源。例如,如果机载火控雷达扫描120度空域用时20秒,相比于用时10秒,雷达波束扫过目标的时间就会增加,相应的回波个数也就会增多,这些回波能量加起来,就能够增加雷达的探测距离。对于机械扫描雷达,它扫描既定的空域,时间一般是固定的;而相控阵雷达的扫描时间则可以延长,一般来说,对于机载脉冲多普勒雷达,扫描时间每增加1倍,探测距离约增加15%。

F-22上的火控雷达,研制厂商宣称对1平方米RCS目标,探测距离达到200千米,指的就是在自由空间、用20秒扫描120度空域的情况。

到底应该用I/J,还是应该用X

雷达工作频率,也就是雷达发射的无线电波频率,是雷达最为重要的参数之一。因为频率和波长之间只差一个光速,所以,雷达工作频率也可以用工作波长来描述。

在雷达中,常常用字母表示波长,这是雷达领域应用电磁波的一个重要特点。这种习惯始于第二次世界大战期间的保密需要。当然,雷达在70余年的发展过程中,这种表示方法早已不再有保密的意义,但已约定俗成,不但方便,而且这样表示后,每个字母所表示的波长都有自身的技术特点,符合雷达的应用规律,所以一直在使用。虽然最权威的电磁波频率划定,是国际电信联盟的规定,并且与雷达频段的划分并不一致,但是,雷达有它自己的习惯。当人们用波长来表示雷达工作的无线电波的波长范围时,就称“波段”。当用频率来表示无线电波的频率范围时,就称“频段”。

由于雷达领域的这些表示方法并不便于记忆,21世纪初,美国电子对抗领域的工程师开始推出新型的表示方法,将雷达工作频率按从低至高的顺序,从字母A开始编号,一直编到M。这种方法看起来方便,其实不然。因为雷达领域原有的频率表示方法毕竟影响太大,而新的编号方法将原来一个字母就能表示清楚的波段,必须用两个字母来表示,最典型的就是X波段,分别用I/J来表示,而这正是机载火控雷达最常使用的频段,这无疑是不方便的。另外还有S波段,被拆成了E和F两个波段,C波段被拆成了G和H波段,所以,这种新的编号方法在2005年前停止使用,可是现在有的出版物上仍使用这种方法。

由于在雷达里经常要进行波长和频率的转换,所以,掌握相应的心算方法是有必要的。有一个简单的经验公式——波长(用厘米表示)等于

30除以用吉赫兹为单位表示的频率数。例如,X波段的频率范围为8~12吉赫兹,其中心频率为10吉赫兹,用30去除以10,得到3厘米,X波段就是3厘米波段;S波段的频率范围为2~4吉赫兹,其中心频率为3吉赫兹,用30去除以3,得到10厘米,S波段就是10厘米波段。

雷达的工作频率越高越好吗?

回顾机载雷达的发展史,我们可以看到,最早的雷达是HF(高频/短波)频段的,最早的机载雷达则工作在UHF(甚高频/超短波)频段。这样的频段因为对应的波长在米量级,所以称为米波波段;随后,磁控管的发明使得雷达工作到微波波段,也就是波长在分米、厘米或毫米的波段。频段升高以后,天线可以做得很小,从而为雷达装机突破了障碍。但是,如果据此认为,机载雷达的工作频率越高越好,则是不正确的。雷达在选择工作波长时,至少要考虑4个因素。

一是要考虑把雷达的探测距离做到多远。雷达的工作频率越高(即波长越短),则在传播时由于大气吸收损失的能量就越多,也就是衰减越快。因此,越不适用于远距离传输。以美国的“铺路爪”地面远程雷达为例,其探测距离超过3000千米,采用的就是超短波频段;而毫米波雷达,其工作波长在毫米量级,典型的探测距离只有10千米左右。

二是要考虑把天线波束做得有多窄。你要想在更短的时间内能够更像

一个雷达专家,你需要记住的第二个公式是,波束宽度与天线的大小(即天线尺寸或天线面积)成反比,与波长成正比。显然,波束宽度越窄,增益越高。而如果天线不可能做得很大,但又要求有一定的增益,就要选择较短的工作波长,或者说,较高的工作频率。由于在地面上的雷达,其空间更为宽敞,相比于战斗机的机身表面,更容易安装更大的天线,因此,地面雷达的工作波长,除非有特定的用途,一般情况下总是比战斗机上安装的火控雷达的工作波长要大很多。

三是硬件实现的难易。这一点我们在机载雷达的早期发展史中应该有深刻体会了。在雷达中少不了“放大”的环节。从发射过程来看,为了使得电波能够传播更远,能够承受更多的衰减,必须要提高功率,所以,要进行功率放大;在接收时,由于从飞机目标返回的回波一般要比发射出去的电波强度低百万倍以上,所以也要进行放大。如果工作频段很高,电波的放大必须从一个比较低的频率(称为基准频率)一级一级电路地进行,在逐步升高频率的过程中逐步放大,这会导致设备重量大幅度增加,而且在放大的过程中,还会产生很多“杂质”,即不需要的电波频率,这些电波频率可能会对各级电路产生严重的干扰,因此必须要过滤掉。工作频率高了以后,对放大和滤波都会带来巨大的困难,直至影响到雷达是否能够制造出来。

综合起来看,虽然频段的提高对于机载火控雷达来说有它的好处(其工作频率一路攀升),但至X波段后不再继续提高,这自然有它的道理。

四是反隐身。雷达需要接收目标反射回来的电波。目标把雷达照射过来的电波再反射回雷达的能力称为雷达反射截面积,即RCS。如果某个物体的RCS是5平方米,这个物体反射雷达波的能力就相当于一个最大截面积为5平方米的金属圆球反射雷达波的能力。雷达的探测距离与RCS的四次方根成正比。如果把战斗机RCS从5平方米降到0.01,缩减了500倍,雷达的探测距离将减少到500的四次方根分之一,也就是只有原来的20%。这就是“隐身”的依据。

当目标尺寸和雷达工作波长差不多时,电波照射到目标后会由于产生电磁谐振,目标反射雷达电波的能力会显著增强,从而造成雷达回波的强度显著增大,这能够增加雷达发现目标的距离。这就是反隐身的主要技术依据。对于超短波(UHF)波段,以其频率300兆赫兹计算,对应的波长为1米,与战斗机的大小在一个数量级上;而对于S波段,以其频率3000兆赫兹(即3吉赫兹)计算,对应的波长为10厘米,与战斗机的几何尺寸相差较大;对于X波段,对应的波长为3厘米,与战斗机的几何尺寸相差更大。所以,同一个目标,在这三种波段情况下,应该是X波段的RCS 最小,S波段稍大,UHF波段最大。

绝对隐身?相对隐身?

这个话题并非与雷达直接相关,而与雷达的“敌人”有关。如今的雷

达,面临着四大威胁,即隐身、低空突防、电子对抗和反雷达导弹。雷达一直以来都是在追求如何看得更远,雷达的敌人们则是在追求如何让“千里眼”变成“近视眼”。人们在谈论隐身特征时,实际上存在很多误区。有的媒体上有四代机谋求“绝对”隐身和“适度”隐身的说法。

其实,做这种区分,从雷达技术角度而言并不必要。所谓隐身,是指降低战斗机本身对外来电磁波的反射特征,或者是自身辐射电磁波的特征。因为电磁波所覆盖的频率范围太宽,从几兆赫兹到成千上万个吉赫兹,要想战斗机在这么宽的频率范围内都做到隐身,是绝对不可能的,所以,要隐身只能是适度隐身。我们常讲F-22有多隐身,其实,它号称只有0.01平方米的雷达反射截面积,主要指的是对于X波段(8~12吉赫兹)的雷达反射比较小,世界上所有的战斗机,其雷达基本上都在这个波段工作。如果换一个别的波段,特别是米波波段,其雷达截面积可能达到0.3平方米以上,这是其一。

其二,战斗机本身的隐身特性,跟电磁波照射到的飞机部位有很大关系。F-22的这个数值,指的是飞机的鼻锥方向,或者说是迎头方向;如果是侧面方向,雷达截面积要大1~2个数量级都是有可能的。因此,讲隐身,一是要看频段,二是要看方向。要降低战斗机的雷达截面积,主要有两个办法:一是外形设计,使得对方的雷达波照过来,反射回去的方向不是对方雷达的方向;二是吸波,使得对方的雷达波照射过来以后,反射的雷达波能量很小。但从外形设计上说,要想在所有雷达的所有探测方向

上都做到隐身,是不可能的。从吸波材料上来说,要想在所有雷达的所有工作频段都做到隐身,也是不可能的;即使可以,可能用户买得起战斗机,但也买不起这样的吸波材料。(作者曹晨)

激光雷达测距原理与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12)

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

隐身材料

隐身材料 0 前言 1 雷达隐身材料 1.1 涂敷型吸波材料 1.2 结构型吸波材料 2 红外隐身材料 2.1 控制比辐射率 2.2 控制温度 3 激光隐身材料 3.1 激光隐身原理 3.2 激光隐身材料技术 3.3 激光隐身材料的发展 4 多波段复合兼容隐身材料 4.1 雷达/ 红外兼容隐身材料 4.2 红外/ 激光兼容隐身材料 4.3 雷达/ 激光兼容隐身材料 4.4 雷达/ 红外/ 激光兼容隐身材料 5 隐身材料发展前沿 5.1 纳米隐身材料 5.1.1 纳米材料的特性 5.1.2 纳米复合隐身材料的隐身机理 5.1.3 纳米复合隐身材料的复合新技术5.2 智能隐身材料 5.2.1 可见光智能隐身材料 5.2.2 红外智能隐身材料 5.2.3 智能蒙皮

5.2.4 智能隐身材料的发展趋势 6 展望 0 前言 2011年1月11日,中国歼20隐形战斗机进行首次升空试飞,受到世界关注,也引起了人们对隐身技术的兴趣。随着现代各种光电磁探测技术的迅猛发展,传统的作战武器所受到的威胁越来越严重。绝大多数重型武器(飞机、坦克、火炮、军舰、导弹、航天器)主要是金属装置,最易被各种光电磁热探测,隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为海、陆、空立体化现代战争中最重要、最有效的突防战术技术手段,材料的隐身手段显得尤为重要,并受到世界各国的高度重视。 世界各军事强国都在积极发展隐身技术, 隐身兵器发展计划推陈出新, 新一代隐身兵器不断涌现。美国的隐身技术发展较快, 目前居世界领先地位, 其中 F-117A、B-2、F-22等隐身飞机代表着当今世界隐身兵器先进水平; 正在研制的一大批隐身武器, 如联合攻击战斗机(JSF)、M计划(旨在提高海军舰艇隐身性能的秘密计划)、AGM-137三军防区外隐身攻击导弹等都将具备良好的隐身性能。俄罗斯早在1984年开始研制的米格1.42多用途隐身战斗机(MFI)可与美国的 F-22相媲美, 1.44隐身战斗机优于F-22, LFI和S-54 与美国的联合攻击战斗机( JSF)相当。另外, 法国、德国、日本、意大利等都有各自研制隐身武器的秘密计划, 武器种类包括攻击机、装甲战车、军舰、高超音速攻击导弹、无人航天器

图文详解:对比中美四款隐身战机

图文详解:对比中美四款隐身战机 隐身战机百科 隐形战斗机是通过机身涂上一层高效吸收电波的物质,造成雷达无法追踪的效果,而还有一种要比涂上一层高效吸收电波的物质还要好的隐形办法,等离子(还在研制),但是只靠涂吸收电波的物质也是达不到很好的效果的,还要在飞机的气动布局上做修改,要使飞机的平面反射面积尽量的小,同时还要对发动机的红外辐射做简化处理,隐形飞机要从很多方面下手才能达到隐形的效果。 超级大本营军事论坛网友收集了中美四款隐身战机同比例模型,放在一起比较能明显看出个头差距。 歼20是四款战机里个头最大的,这可能与鸭翼布局和中国国土防空需求相关,此外发动机的长短和布局对战机尺寸也有较大影响。 歼-20(英文:Chengdu J-20,英文绰号:Fire Fang,译文:火獠牙/火牙/焰齿)是中航工业成都飞机工业(集团)有限责任公司为中国人民解放军研制的一款第四代双发重型隐形战斗机,用于接替歼-10、歼-11等第三代空中优势战机,首架工程验证机于2011年1月11日在成都实现首飞。 该机未来将担负中国对空、对海的主权维护任务。目前该机已经进入量产交付和试用磨合阶段,预计将于2017年正式服役,并在2020年左右逐步形成强大战斗力。 歼-20采用了单座、双发、全动双垂尾、DSI鼓包式进气道、上反鸭翼带尖拱边条的鸭式气动布局。机头、机身呈菱形,垂直尾翼向外倾斜,起落架舱门为锯齿边设计,机身以高亮银灰色涂装(原型机为深墨色)。侧弹舱采用创新结构,可将导弹发射挂架预先封闭于外侧,同时配备中国国内最先进的新型空空导弹。 2016年11月1日,歼-20身披割裂迷彩涂装参加珠海航展并首次对外进行双飞展示。 美军F-22作为空优战机设计,属于标杆型战机,但也面临用途单一的瓶颈问题,目前正

车载激光雷达测距测速原理

车载激光雷达测距测速原理 陈雷1,岳迎春2,郑义3,陈丽丽3 1黑龙江大学物理科学与技术学院,哈尔滨 (150080) 2湖南农业大学国家油料作物改良中心,长沙 (410128) 3黑龙江大学后勤服务集团,哈尔滨(150080) E-mail:lei_chen86@https://www.360docs.net/doc/9717026882.html, 摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。 关键词:激光雷达,测距,测速 1.引言 “激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]: (1)全天候工作,不受白天和黑夜的光照条件的限制。 (2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。 (3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。 (4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。 (5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点: (1)激光受大气及气象影响大。 (2)激光束窄,难以搜索和捕获目标。 激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。 2. 目标距离的测量原理 汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。 2.1测距原理 激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

24GHz汽车毫米波雷达实验报告

24GHz汽车毫米波雷达实验报告 是德科技射频应用工程师王创业1. 前言 汽车毫米波雷达越来越多的被应用在汽车上面,主要作为近距离和远距离探测,起到防撞、辅助变道、盲点检测等作用。随着器件工艺和微波技术的发展,毫米波雷达产品越来越小。俗话说:“麻雀虽小,五脏俱全”,同样汽车毫米波雷达作为典型的雷达产品,也包含收发天线、发射部分、接收部分、DSP部分。典型原理框图如图1所示。汽车毫米波雷达的性能指标主要体现在测速精度、定位精度、距离分辨率、多目标识别等方面,要实现这些性能和功能,首先要做好整体系统的设计和仿真,其次对于各功能部分的性能指标要严格把控测试,最后要在实际现场环境完成测试考核。 汽车毫米波雷达体制上面主要有线性调频连续波FMCW体制雷达、频移键控FSK体制雷达、步进调频连续SFCW体制雷达。不同体制雷达在产品实现复杂程度和应用上都是有区别的。FMCW体制雷达可以同时探测到运动目标和静止目标,但是不可以同时探测多个运动目标。电路需要比较大的带宽。

FSK体制雷达,可以同时探测并且正确区分开来多个运动目标,但是不可以正确测量静止目标。电路带宽比窄,系统响应捕获比较慢,成本比FMCW体制要低很多。SFCW体制雷达,可以同时探测多个静止和运动的目标,并且将各个目标正确区分开来。SFCW体制雷达具有更为复杂的调制波形,信号处理也更为复杂,产品实现成本高。 2.实验目的 在汽车毫米波雷达系统研制过程中,经常会碰到各式各样的问题,譬如系统波形的选择和设计、系统链路的设计、信号处理算法的选择、微波电路的设计调试、天线的设计。主要的问题主要体现在系统方案、处理算法模拟、微波电路指标调试及对系统性能的影响上。典型的例子,在FMCW雷达系统,雷达探测距离分辨率不仅与信号的调制带宽有关,还与FMCW调制的线性度有关。 利用是德科技平台化解决方案,即软件+硬件+工程师,可以很容易的实现雷达系统设计仿真、处理算法验证、微波电路设计测试、天线设计测试。基于以上的问题,该实验主要实现以下三个目的: 1)软件硬件结合,SystemVue+仪表实现各类信号的产生; 2)系统设计仿真、算法验证 3)VCO线性调制度分析 4)场景信号录制回放和信号分析 3.实验要求 该实验采用FMCW雷达体制,结合SystemVue软件和仪表实现以下功能: 1)汽车雷达信号产生 a.24GHz标准雷达信号产生:Triangle调制信号、Sawtooth调 制信号

“萨德”X波段ANTPY-2雷达参数、探测距离计算、搜索模式及其对抗思路

“萨德”X波段AN/TPY-2雷达参数、探测距离计算、搜索模式及其对抗思路 萨德(THAAD),末段高空区域防御系统,是美军先进的导弹防御系统。末段高空区域防御系统由携带8枚拦截弹的发射装置、AN/TPY-2X波段雷达、火控通信系统(TFCC)及作战管理系统组成。 它与陆基中段拦截系统配合,可以拦截洲际弹道导弹的末段,也可以与“爱国者”等低层防御中的“末段拦截系统”配合,拦截中短程导弹的飞行中段,在美国导弹防御系统中起到了承上启下的作用。

X波段AN/TPY-2有源相控阵雷达 AN/TPY-2高分辨率X波段固态有源相控阵多功能雷达是THAAD系统的火控雷达,是陆基移动弹道导弹预警雷达,可远程截获、精密跟踪和精确识别各类弹道导弹,主要负责弹道导弹目标的探测与跟踪、威胁分类和弹道导弹的落点估算,并实时引导拦截弹飞行及拦截后毁伤效果评估。 AN/TPY-2雷达采用了先进的雷达信号处理技术以及薄化的相控阵天线技术,使其探测波束不但功率大而且非常窄,因此分辨率非常高,对弹头具有跟踪和识别能力,对装备诱饵突防装置的弹道导弹具有很大威胁。

除了探测距离远、分辨率高之外,还具备公路机动能力,雷达还可用大型运输机空运,战术战略机动性好,其战时生存能力高于固定部署的雷达。 雷达探测距离分析 结合网上关于“萨德”的AN/TPY-2雷达的基本参数和具有一定合理性的假设来分析萨德在前置部署模式(Forward-Based Mode,FBM)和末端部署模式(Terminal Mode,TM)下由雷达方程计算出的最大探测距离。 在使用公式之前,需要分析一些众所周知的参数的合理性,数据是否精确不重要,重要的是计算方法和涉及的理论知识。 雷达波长(9.5GHz) TPY-2雷达工作在X波段,频段范围8~12GHz,众多报道都说是9.5GHz,那就用这个计算好了。 天线增益G(48.77dB) 天线孔径面积9.2m2,拥有72个子阵列,每个子阵列有44个发射/接收微波接口模块,每个模块有8个发射/接收组件,72x44x8=25344个阵元。假设天线孔径效率选0.65,那么天线的有效孔径约为6m2。根据天线有效孔径和波长计算出天线增益G约为48.77dB。

激光雷达测距测速原理说课讲解

激光雷达测距测速原 理

精品文档 收集于网络,如有侵权请联系管理员删除 激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发射系统到目标和目标到接收系统的大气透过率,t r ηη分别是发射系统和接收系统的透过率,t θ为发射激光的发散角,12R R 分别是发射系统到目标和目标到接收系统的距离,Γ为目标的雷达截面,r D 为接收孔径。 方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,通过求解激光雷达方程获得有关大气性质的信息。 2. 激光雷达测距基本原理 2.1 脉冲法 脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激光脉冲,激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为L ,激光脉冲往返的时间间隔是t ,光速为c ,那么测距公式为L=tc/2。 时间间隔t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器和脉冲计数器来确定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

激光雷达在军事中的应用讲解

激光雷达在军事中的应用 作者 摘要:本文简要介绍激光雷达的特点、激光雷达探测的基本物理原理及其在军事领域的应用现状. 关键词:激光雷达;探测;军事应用 1.引言 激光雷达是现代激光技术与传统雷达技术相结合的产物,它像传统的微波雷达一样,由雷达向目标发射波束,然后接收目标反射回来的信号,并将其与发射信号对比,获得目标的距离、速度以及姿态等参数.但是它又不同于传统的微波雷达,它发射的不是微波束,而是激光束,使激光雷达具有不同于普通微波雷达的特点. 根据激光器的不同,激光雷达可工作在红外光谱、可见光谱和紫外光谱的波段上.相对于工作在米波至毫米波波段的微波雷达而言,激光雷达的工作波长短,是微波雷达的万分之一到千分之一,根据光学仪器的分辨率与波长成反比的原理,利用激光雷达可以获得极高的角分辨率和距离分辨率,通常角分辨率不低于0.1mrad ,距离分辨率可达0.1m , 利用多普勒效应 可以获得10m / s 以内的速度分辨率.这些指标是一般微波雷达难以达到的,因此激光雷达可获得比微波雷达清晰得多的目标图像。 激光束的方向性好、能量集中,在 20km 外,其光束也只有茶杯口大小,因而敌方难以截获,而且激光束的抗电磁干扰能力强,难以受到敌方有源干扰的影响.由于各种地物回波影响,因而在低空存在微波雷达无法探测的盲区.而对于激光雷达,只有被激光照射的目标才能产生反射,不存在低空地物回波的影响,所以激光雷达的低空探测性能好. 激光雷达体积小、重量轻,有的整套激光雷达系统的重量仅几十千克.例如为了适应海军陆战队的需要,美国桑迪亚国家实验室和伯恩斯公司都提出了手持激光雷达的设计方案.相对于重达数吨、乃至数十吨的微波雷达而言,激光雷达的机动性能显然要好得多. 任何事物都是一分为二的,激光雷达也有自身的缺陷.激光光束窄、方向性好,虽然表现出能量集中的优点,但不宜用作战场监视雷达搜索大空域.而且激光的传输受环境影响大,尤其是在雨、雪、雾的天气,激光在传输过程中的衰减更大.当然,激光在大气层外传输时不易衰减,有其得天独厚的优势.经过几十年的努力,科学家们趋利避害,已研制出多种类型的军用激光雷达. 2. 用干战场侦察的激光雷达 众所周知,普通的成像技术(如电视摄像、航空摄影及红外成像等)获得的场景图像都是反映被摄区域辐射强度几何分布的图像,而激光雷达可以通过采集方位角一俯冲角一距离一速度一强度等三维数据,再将这些数据以图像的形式显示出来,从而可产生极高分辨率的辐射强度几何图像、距离图像、速度图像等,因而它提供了普通成像技术所不能提供的信息.例如美国桑迪亚国家实验库研制的一种激光雷达,激光器功率为120MW ,显示屏幕的像素为64 X 64 元,视场内物体的图像可显示在屏幕上,每秒钟更新4 次,并用不同颜色和灰度显示物体的相对距离.这种激光雷达能对运动的装甲车辆产生实时图像,图像分辨率足以识别车辆型号. 美国雷西昂公司研制的ILR100 型砷化稼激光雷达,可安装在高性能飞机和无人机上,当飞机在120m~460m 高空飞行

隐身那些事儿(下)——讲述隐身技术发展及应用的故事

续言 【蝶恋花?答李淑一】:“我失骄杨君失柳,杨柳轻飏直上重霄九。”——当美国人在隐身领域一路领先高歌猛进的时候,俄罗斯在新一代战机研制进展方面却连遇挫折,在国家动荡和经济衰退的影响下,其近20多年来的发展历程可谓是一波三折、曲折坎坷。同一时期,我国正深陷于薄弱基础之上,引进、消化、吸收和自主开发三代战机举步维艰的泥潭之中,先进的隐身战机与我们现实中二代当家的窘境看起来是那么的遥远。然而就是在这样的困境中,经历了痛苦和磨难,俄、中两个难兄难弟最终都挺了过来,各自研发出了独具特色的五代战机,同时也跨入了隐身大时代的门槛。“谁无暴风劲雨时,守得云开见月明”,从“望尘莫及”到“望其项背”,如今甚至已经盘算着什么时候可以“并驾齐驱”——虽然未来仍然充满变数,但是——我们已经上路了。 在本文上篇中,讲述了隐身技术在军事航空领域的发展和截止到上世纪80’s ~90’s 年代前的主要应用。由于这一时期也是隐身技术步入大成阶段的一个分水岭,本文将延续上篇的内容,对美国在隐身战机设计上的另外两款巅峰之作F-22 和F-35 进行分析,然后讲述俄罗斯、中国等在此项技术方面的追赶进展。本文后半部分将尝试从隐身无人机、电子对抗、战机生存力和隐身战术等方面作综合性论述和探讨,以引领读者略窥隐身技术涉及领域的全貌。 在开始讲述之前,有必要同时关注的一个现象是,上世纪80’s ~90’s 年代是计算机和雷达技术突飞猛进的一段时期,计算能力的提高使得隐身和气动设计仿真更为高效精细,但同时也促成了雷达特别是相控阵雷达等技术的大幅提升。尤其是80 年代伴随着微机和高速处理芯片技术的飞速进步而形成的数字化波束技术(DBF),为现代雷达发展带来了一次革命性的变革。这项技术从多波束控制和自适应波形变换等方面极大地拓展了雷达的性能和功能,也使得雷达系统的升级能够更方便地与微处理器技术的进步同步,结合后续新体制的双基地雷达、现代中低频雷达、无源相干探测等技术发展,对隐身战机构成了新的全方位威胁,由此也将促进电子对抗手段和隐身战术的进一步发展演变。本文虽不会重点讲述这方面内容,但军事爱好者们有必要对其中的重要性和关联关系有所认识。 一、隐身时代的“绝代双骄” F-22和F-35是隐身技术与气动设计、机动性等完美结合的典范之作,也是美国隐身战机设计到目前为止的巅峰之作,其特点在于对超机动性、低可探测性(LO)、超巡、先进综合航电和态势感知、高可维护性等方面取得了较好地平衡和全面突破,一改F-117这类低性能亚音速超低可探测性(VLO)战机的诸多设计缺陷,为高生存力和高性能“鱼和熊掌得兼”树立了模版。其中F-22 具备的4S 特征——Stealth(隐形)、SuperSonic Cruise(超音速巡航)、Super Maneuverability(超机动)、Superior Avionics for Battle Awareness and Effectiveness(超级战场感知和效能综合航电),已成为其他各国隐身战机设计上跟踪仿效的标准,同时F-22 也是后来者PAK-FA T-50和J-20的主要设计对抗目标,以其为代表的这一代战机被统称为第四代战机,

智能网联车毫米波雷达检测与标定

毫米波雷达检测与标定 班级:组别:学员:学时:个人时间段:实训目的了解毫米波雷达安装标定原理 安全注意事项1、注意个人安全及设备规范操作2、工具零配件统一顺序摆放3、做到三不落地 实训器材毫米波雷达实训台,、标定尺、毫米波雷达可视化软件、. 集成软件硬件故障系统教学组织每个设备台架按7位学员作业(2人操作、2人辅助、2人观摩/考核、1人监督)循环操作 小组成员实训前任务由小组长组织本组组员,两人一小组互相提问考核 一、实施正确√错误× 一.准备工作: 1、毫米波雷达实训台,模拟小车,4哥标定尺、毫米波雷达可视化软件、毫米波雷达检测仪器。 2、检查实训指导书及实验的预习情况。 三.毫米波雷达的外观认识与检查 1.第一步:按照车辆安装标准,将毫米波雷达装置 在实训台架的前方。记录高度,垂直角度、水平角度。 2.摆放毫米波雷达标定角反。调整毫米波雷达角反的 高度,使其与毫米波雷达处在同一高度 3.测量毫米波雷达距离角反的水平距离。

4.读取毫米波雷达软件输出距离数据,并将数据填 入到软件标定输入框中。 5.重复第二步,并将毫米波雷达角反放在毫 米波雷达左前方,右前方,十米,五米等处,重 复记录数据,并填充数据。 四.总结本次实训课 1. 强调毫米波实际车辆中的常见故障表征(识别失效、制动失效、制动距离偏差) 2. 毫米波雷达可视化校准、设置、初始化集成软件 3. 总结毫米波雷达实训课程 二、检查与评估与 1、教师对小组工作情况进行评估,并进行点评(达标√不达标×) □整理□整顿□清扫□清洁□素养□安全 2、成绩评定: 小组对本人的评定:□优□良□及格□不及格 教师对小组的评定:□优□良□及格□不及格 学生本次任务成绩:□优□良□及格□不及格

经典雷达资料-第2章--雷达距离估算

第2章雷达距离估算 Lamont V. Blake 2.1 引言 对于自由空间中特定目标的检测(该目标的检测受热噪声的限制),雷达最大作用距离估算的基本物理机理从雷达出现起就为人所熟知。本章的术语自由空间指以雷达为球心、半径远远延伸到目标之外的球形空域内仅有雷达和目标。本章采用的自由空间定义对具体的雷达而言是相当准确的,而通用定义是冗长的,且用处不大。该定义还暗示,自由空间内可被检测的雷达频率电磁波除了来源于雷达自身的辐射外,仅来自于自然界热或准热噪声源,如2.5节所述。 尽管上述的条件是不可能完全实现的,但是它接近许多雷达的实际环境。在许多非自由空间和完全非热噪声的背景下,估算问题要复杂得多。这些在早期分析中没有考虑到的复杂性也是由接收系统电路的信号和噪声关系的改变(信号处理)引起的。 在本章中将给出自由空间方程,讨论基本的信号处理,以及考虑一些十分重要的非自由空间环境下的方程和信号处理。另外还将考虑一些常见非热噪声的影响。虽然不可能涉及所有可能的雷达环境,但是本章所叙述的方法将简要地说明那些适合于未考虑到的环境和条件的必然方法的一般性质。一些要求采用特定分析的专用雷达将在后面章节中叙述。 定义 雷达作用距离方程包含许多雷达系统及其环境的参数,其中一些参数的定义是相互依赖的。正如2.3节所讨论的,某些定义含有人为因素,不同作者使用不同的作用距离方程因子定义是常见的。当然,若存在被广泛接受的定义,则采用该定义。但更重要的是,虽然某些定义允许一定的随意性,但是一旦一个距离方程因子采用特定的定义,则一个或更多的其他因子的定义将不再具有随意性。 例如,脉冲雷达的脉冲功率和脉冲宽度的定义各自均具有很大的随意性,但是一旦任何一个定义被确定,那么另一个定义将由限制条件决定,即脉冲功率与脉冲宽度的乘积必须等于脉冲能量。在本章中将给出一套定义,该定义遵循上述准则,并已被权威组织采纳。 约定 由于传播途径因子和其他距离方程因子的变化很大,因此在这些因子的具体值未知的标准条件下,某些约定是估算作用距离所必需的。通常采用的一种约定是标准假设,这种假设实际上并不一定能遇到,但却在所能遇到的条件范围内,尤其是在条件范围的中间附近,这种假设是可行的。就像传统的地球物理假设一样,为计算基于地球曲率的某些地球环境效应,假设地球是一个半径为6370km的理想球体。约定的重要性在于,它提供了比较不同雷达系

汽车毫米波雷达目标模拟器

一 汽车毫米波雷达目标模拟器 科电工程的毫米波雷达目标模拟器,用来验证车载76GHz和79GHz毫米波雷达的性能参数。解决毫米波雷达生成企业在研发,生成,质量控制等环节的测速,测距等性能测试需求。特别适合于整车条件下对ACC,FCW,AEB等辅助自动驾驶ADAS功能的验证和测量。同时也提供整车EMC暗室环境下的抗干扰版本。 科电MRT7681-02毫米波雷达目标模拟器 适用范围: ?ISO15622ACC自适应巡航控制系统; ?ISO15623FCW前向碰撞预警系统; ?商用车辆自动紧急制动系统(AEBS)性能要求及试验方法; ?GB/T20608自适应巡航控制系统性能要求与检测方法; ?ISO18682智能交通系统-外部危险检测与预警系统; ?ECE R131先进的紧急制动系统; ?JT/T883营运车辆行驶危险预警系统; ?ETSI EN302288短程设备;运输和交通遥感信息领域;在76GHz-77GHz范围内运行的雷达设备; ?ETSI EN302264短程设备;运输和交通遥感信息领域;在77GHz-81GHz范围内运行的雷达设备; ?GB/T36654-201876GHz 科电MTR78Pxx-T5DW角反射器(xx:20,15,10,5,0dBsm)

高精度毫米波雷达目标角反射器,可以用于雷达产线上的RCS性能标定测试;以及微波暗室内的雷达RCS性能标定测试频率范围:76GHz-81GHz;RCS雷达反射截面积精度:±0.5dBsm。 科电MDL76G-W单目标静态雷达目标模拟器 用于汽车毫米波雷达产线上雷达测距的性能标定。频率范围:76GHz-81GHz;延时距离: 1-150m±0.1。任意定制。

激光雷达测距测速原理

激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发 t θ为发r D 通过 定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发 的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

相位测距法也称光束调制遥测法,激光雷达相位法测距是利用发射的调制光和被目标反射的接受光之间光强的相位差包含的距离信息来实现被测距离的测量。回波的延迟产生了相位的延迟,测 出相位差就得到了目标距离。 假设发射处与目标的距离为D,激光速度为c,往返的间隔时间为t,则有: 图2相位法测距原理图 假设f为调制频率,N为光波往返过程的整数周期,??为总的相位差。则间隔时间t还可以 因为L 不能测得 优点:测量距离远,一般大于1000m。系统体积小,抗干扰能力强。 缺点:精度较低,一般大于1m。 激光雷达相位法测距: 优点:测量精度高。

缺点:测量距离较近,一般为一个刻度L内的距离。(300-1000m)。受激光调制相位测试精度和相位调制频率的限制,系统造价成本高。相位法测距存在矛盾:测量距离大会导致精度不高,要想提高精度测量距离又会受限(刻尺L较短)。 3.激光雷达测速基本原理 激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距 它的 f 式中, d v< 反之0 f 移 d

电磁波隐身术的研究

电磁散射与隐身技术导论 课程大作业报告 学院:电子工程学院 专业:电磁场与无线技术 班级: 021061 学号: 02106020 姓名:赖贤军 电子邮件: 92065436@https://www.360docs.net/doc/9717026882.html, 日期: 2013 年 06 月 成绩: 指导教师:姜文

电磁波隐身技术的研究 隐形技术(stealth technology)俗称隐身技术,精确的术语应该是“低可探测技术”(low-observable technology)。即通过研究利用各种不同的技术手法来改变己方目标的可探测性信息特征,最大程度地降低被对方探测系统发现的概率,使己方目标以及己方的武器装备不被敌方的探测系统发现和探测到。1.隐身技术及其历史背景 现代无线电技术和雷达探测系统的迅速发展极大地提高了战争中的搜索、跟踪目标的能力,传统的作战武器所受到的威胁愈来愈严重。隐身技术作为提高武器系统生存、突防以及纵深打击能力的有效手段已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最为重要、最为有效的突防战术技术手段并受到世界各国的高度重视。隐身技术(又称目标特征信号控制技术)是通过控制武器系统的信号特征使其难以被发现、识别和跟踪打击的技术。它是针对探测技术而言的,在兵器研制过程中设法降低其可探测性,使之不易被敌方发现、跟踪和攻击的专门技术。简言之隐身就是使敌方的各种探测系统(如雷达等)发现不了我方的飞机,无法实施拦截和攻击。早在第二次世界大战期间,美国便开始使用隐身技术以减少飞机被敌方雷达发现的概率。当前电磁波隐身的研究重点是雷达隐身技术和红外隐身技术。由于在未来战争中雷达仍将是探测目标的最可靠手段,因此隐身技术研究以目标的雷达特征信号控制为重点,同时展开红外、声、视频等其它特征信号控制的研究工作,最后向多功能、高性能的隐身方向发展。 2.隐身技术的工作原理 隐身技术的主要就是反雷达探测。雷达是一种利用无线电波发现目标并测定其他位置的装置。雷达的问世使人类的探测技术和能力跨上了新的台阶,同时也向反探测技术提出了新的挑战。人们为了提高目标反雷达探测能力不懈地奋斗了几十年,终于探索到一条新的隐身途径。与早期的隐身术——伪装术相比,今天的隐身技术已起了根本变化,有了质的飞跃。下面从反雷达探测和反红外、热 探测两个方面简单介绍隐身技术的一些工作原理与隐身性能。 1)反雷达探测开始隐身技术的一项主要工作是提高反雷达探测的能力:也

激光雷达点云数据

激光雷达点云数据 LiDAR(Light Detection and Ranging),是激光探测及测距系统的简称,另外也称Laser Radar或LADAR(Laser Detection and Ranging),由激光雷达进行扫描所获取的数据,即为激光雷达点云数据。 激光雷达是用激光器作为发射光源,采用光电探测技术手段的主动遥感设备。激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。激光雷达采用脉冲或连续波2种工作方式,探测方法按照探测的原理不同可以分为米散射、瑞利散射、拉曼散射、布里渊散射、荧光、多普勒等激光雷达。 激光雷达的特点: 与普通微波雷达相比,激光雷达由于使用的是激光束,工作频率较微波高了许多,因此带来了很多特点,主要有: (1)分辨率高 激光雷达可以获得极高的角度、距离和速度分辨率。通常角分辨率不低于0.1mard也就是说可以分辨3km距离上相距0.3m的两个目标(这是微波雷达无论如何也办不到的),并可同时跟踪多个目标;距离分辨率可达0.lm;速度分辨率能达到10m/s以内。距离和速度分辨率高,意味着可以利用距离——多谱勒成像技术来获得目标的清晰图像。分辨率高,是激光雷达的最显著的优点,其多数应用都是基于此。 (2)隐蔽性好、抗有源干扰能力强 激光直线传播、方向性好、光束非常窄,只有在其传播路径上才能接收到,因此敌方截获非常困难,且激光雷达的发射系统(发射望远镜)口径很小,可接收区域窄,有意发射的激光干扰信号进入接收机的概率极低;另外,与微波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强,适于工作在日益复杂和激烈的信息战环境中。

雷达作用距离方程

雷达作用距离方程 Last updated on the afternoon of January 3, 2021

雷达作用距离及其方程摘要:雷达是利用电磁波探测目标的电子设备。即发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。所谓道高一尺魔高一丈,针对现代航空技术的迅猛发展,飞行器隐身性能已成为飞行器先进作战技能指标之一,隐身性能直接决定着战斗的成败,而唯一能克制隐身性能的法宝雷达自然越来越受到重视。通过查询和学习了解雷达的作用原理及雷达作用距离,并在此基础上继续分析雷达作用距离方程,为对雷达的学习和理解奠定基础。 关键词:雷达;作用距离;距离方程 雷达的任务及作用 雷达的最基本任务是探测目标并测量其坐标,因此,作用距离是雷达的重要性能指标之一,它决定了雷达能在多大的距离上发现目标。作用距离的大小取决于雷达本身的性能,其中有发射机、接收系统、天线等分机的参数,同时又和目标的性质及环境因素有关。 雷达所起的作用和眼睛和耳朵相似,当 然,它不再是大自然的杰作,同时,它的信息载体是无线电波。事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁 波,传播的速度都是光速C, 差别在于它们各自占据的频率和波长不同。其原理是雷达雷达

设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。 测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。 测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。 测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。 雷达距离方程 雷达方程 radar range equation 用于计算雷达在各种工作模式(搜索、跟踪、信标、成像、抗干扰、杂波抑制等)下的最大作用距离的方程式。它是根据已知雷达参数、传播路径、目标特性和所要求的检测与测量性能来计算雷达的最大距离的基本数学关系式,对作为检测和测量设备的雷达进行性能预计。它与雷达参数(如发射功率、接收机噪声系数、天线增益、波长等)、目标特性(如目标的雷达截面积等)和传播性能(如大气衰减、反射等)有关。

隐身技术的物理原理及其应用

隐身技术的物理原理及其应用 段改丽 李爱玲 李 军 (西安陆军学院 陕西 710108) 隐身技术又称隐形技术,是物理学中流体动力学、材料科学、电子学、光学、声学等学科技术的交叉应用技术,是传统伪装技术走向高技术化的发展和延伸。利用隐身技术可以大大降低武器等目标的信号特征,使其难以被发现、识别、跟踪和攻击。在现代军事侦察中,往往是多种技术侦察手段并用,因此在反侦察的隐身技术中也要针锋相对地同时采用多种隐身方法。 一、隐身技术的分类 隐身技术按其物理学基础可分为无源隐身技术和有源隐身技术两类。 所谓无源隐身技术,从物理学的观点来看,就是根据波的反射和吸收规律,在目标上采用吸波材料和透波材料,以吸收或减弱对方侦察系统的回波能量;根据波的反射规律,改变武器装备的外形与结构,使目标的反射波偏离对方探测系统的作用范围,从而使对方的各种探测系统不能发现或发现概率降低。 有源隐身技术就是设置新的波源,发射各种波束(如电磁波、声波等)来迷惑、干扰或抵消对方探测系统的工作波束,以达到隐蔽己方的目标。例如施放光弹或电子干扰波使对方的光电探测系统迷盲,施放电子诱饵使对方的探测系统跟踪假目标等。这类技术靠加强而不是减弱目标的可探测信息特征来达到目标隐身的目标。 二、隐身技术的物理原理 由于波的共同特点,有时采用一种技术措施,可对几种侦察波同时起到隐身效果。然而,由于各种波有其自身的物理特性,因此也要根据具体情况相应采取一些不同的隐身技术措施。常用的隐身技术主要有以下几种: (一)雷达波隐身技术的物理原理 “雷达”这个术语大家都很熟悉,它是由“无线电探测和测距”这一短语派生出来的。雷达波实际上是天线发射的波长在微波波段的电磁波。发动机将雷达波束朝某个方向定向发射,目标就会把雷达波反射到雷达接收器上。由于目标的性质不同,所以会产生强弱不同的反射信号,雷达就是靠接收被目标反射的电磁波信号发现目标的。波的反射定律指出,反射角等于入射角,若入射角等于零,则反射角也等于零。因此,只有当雷达电磁波的方向垂直于目标表面时,被反射的电磁波才能按原方向返回,这时雷达才能接收到较强的回波;而以其他角度射向目标表面的雷达电磁波都会被反射到别处,即发生散射效应。如果目标的表面能使雷达发射来的电磁波被散射或被吸收,就可大大减小被对方雷达发现的概率,从而达到“隐身”的目的。雷达隐身技术就是依照这而发展起来的。一般飞机的整体布局为圆形机身、平面机翼和垂直机翼,三者之间有明显的分界。根据电磁波所遵循的传播规律,当电磁波入射到物体的直角表面处,容易形成多次反射,而产生角反射器效应,反射雷达波很强。而隐身飞机在总体外形上采用多面、多锥体和飞翼式布置及燕尾形尾翼的设计,把机身与机翼融为一体,从而达到了隐身的目的。例如,美国的F2117A隐身战斗机外表光滑且无外挂装置,武器都装在弹舱内。 (二)可见光隐身技术的物理原理 根据物理学原理可知,在可见光范围内,探测系统的探测效果决定于目标与背景之间的亮度、色度、运动这三个视觉信息参数的对比特征,其中目标与背景之间的亮度比是最重要的。如果目标的结构体和表面的反射光,发动机喷口的喷焰和烟迹,灯光及照明光等,与背景亮度的对比度较大,容易被发现。因此,可见光隐身技术就是通过改变目标与背景之间的亮度、色度等的对比特征,来降低对方可见光探测系统的探测概率,从而达到隐身的目的。比如将飞机曲面外形的座舱罩改变为平板或近似平板外形的座舱罩,以减小太阳光反射的角度范围和光学探测器瞄准、跟踪的时间;在目标表面涂敷与周围色彩类同的颜色或加伪装网,以使目标与背景的亮度和色度相当。比如战士的“迷彩装”,炮车外面的“伪装网”等,都是可见光隐身技术中的一种。 (三)红外隐身技术的物理原理 随着红外侦察、探测、制导和热成像处理技术的 · 7 3 · 16卷1期(总91期)

相关文档
最新文档