智能天线技术及其应用

智能天线技术及其应用
智能天线技术及其应用

车辆智能控制技术的研究与应用

车辆智能控制技术的研究与应用 车辆1003 20104043 李琳

车辆智能控制技术的研究与应用 自从汽车被发明以来,人类对于驾驶汽车的看法就一直存在分歧,一部分人热衷于让汽车变得越来越好开,强调驾驶乐趣,让你的双手舍不得离开方向盘;然而另一部分人则更热衷于让汽车变得越来越“傻瓜化”,甚至要将驾驶者的双手从方向盘上解放出来……上世纪80年代开始热播的美剧《霹雳游侠》当中的KITT,正是后者思想的集大成者。正在读这篇文章的您也许就曾经被无敌的KITT 所深深吸引吧?当然人类的科技还根本无法达到科幻电视剧当中的效果,KITT 无与伦比的人工智能、让主人公高枕无忧的自动驾驶、车身超级耐打击的能力以及几乎不用加油的动力科技看上去几乎都是天方夜谭。然而随着汽车技术的发展,现实版“KITT”正在向人们走来,近些年来许多厂商都致力于无人自动驾驶技术的研发,宝马在这领域走在时代的前边。 现阶段的技术成果虽然无法实现《霹雳游侠》或者《钢铁侠》里面那样强大的技术,但是让车子短暂脱离驾驶员的控制而自主驾驶,还是已经成功实现了。宝马将一系列最先进的无人驾驶技术设备集成到了一辆看似非常普通的5系轿车里,这些设备能够在高速公路行驶时,接管驾驶员的所有操作,自主进行油门、刹车甚至超车的动作。 车辆自主变线超车 借助布置在车身四周的传感器,它甚至可以发现从辅路匝道进入主干道的车辆,自主采取加减速或者变道的措施,而具体选择那种操作,也是通过计算当时的行驶条件而决定的,也就是说它具备了自主判断交通状况的能力。而这一切,目前都能够在130km/h以下的车速来完成。

其实这些对于驾驶员来说再容易不过的驾驶操作,对于自动驾驶系统来说可是超级复杂的一件事情。车辆不仅需要随时准确侦测出自己处于道路中的哪一条车道上,更要认出车身周边的车辆或者物体。实现这样的感知,不仅需要普通雷达,更需要激光、超声波以及摄像头的辅助。 若要精确做出判断,上述的集中探测装置至少需要两种协同作用。目前这辆能够自主驾驶的宝马5系轿车已经在驾驶员极少干预的前提下,安全行驶了3000英里。这都要归功于全车所有精良的设备。再有一点就是,这项技术的应用普及速度可能远超过你的想象,有消息称该技术在2014年的宝马i3上就会开始搭载,届时你可要分清路上开车的到底是人还是车自己了。然而一向强调给驾驶者带去驾驶乐趣的宝马开发这么一个产品,缺失会让人觉得有些意外,宝马官方给出的解释是,这项技术并不会完全将驾驶者从眼观六路耳听八方中抽离开来,所以不要指望你能在开车上班的路上睡上一觉…… 1 悬架的研究方法 (1)理论研究[1] 悬架系统的理论研究具有前瞻性和探索性,为智能悬架系统的物理实现奠定理论基础。其主要研究内容: a.悬架力学模型理论研究。悬架力学模型是振动理论中的隔振和减振理论的实际应用,通过振动理论的深入研究,全面综合研究悬架的减振和隔振性能、悬挂系统的非线性特性。 未来几年中,动力学、振动与控制领域的下述研究前沿值重视:①高维非

智能控制理论简述

智能控制理论简述 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。智能控制是指驱动智能机器自主地实现其目标的过程,即无需人的直接干预就能独立地驱动智能机器实现其目标。其基础是人工智能、控制论、运筹学和信息论等学科的交叉,也就是说它是一门边缘交叉学科。 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 近20年来,智能控制理论(IntelligentControl Theory)与智能化系统发展十分迅速[1].智能控制理论被誉为最新一代的控制理论,代表性的理论有模糊控制(Fuzzy Control)、神经网络控制(Neural Networks Control)、基因控制即遗传算法(Genetic Aigorithms)、混沌控制[2](Chaotic Control)、小波理论[3](Wavelets Theo-ry)、分层递阶控制、拟人化智能控制、博奕论等.应用智能控制理论解决工程控制系统问题,这样一类系统称为智能化系统。它广泛应用于复杂的工业过程控制[4]、机器人与机械手控制[5]、航天航空控制、交通运输控制等.它尤其对于被控对象模型包含有不确定性、时变、非线性、时滞、耦合等难以控制的因素.采用其它控制理论难以设计出合适与符合要求的系统时,都有可能期望应用智能化理论获得满意的解决。 自从“智能控制”概念的提出到现在,自动控制和人士_智能专家、学者们提出了各种智能控制理论,下面对一些有影响的智能控制理论进行介绍。 (1)递阶智能(Hierarchical IntelligentControl) 阶智能控制是由G.N.Saridis提出的,它是最早的智能控制理论之一。它以早期的学习控制系统为基础,总结人工智能与自适应控制、自学习控制和自组织控制的关系后逐渐形成的。递阶智能控制遵循“精度随智能降低而提高”的原理分级分布。该控制系统由组织级、协调级、执行级组成。在递阶智能控制系统中,

智能天线技术原理及其应用

智能天线技术原理及其应用 一、智能天线技术的原理 智能天线原名自适应天线阵列(AAA,Adaptive Antenna Ar-ray)。最初的智能天线技术主要用于雷达、声纳、抗干扰通信等,用来完成空间滤波和定位,后来被引入移动通信系统中。智能天线通常包括波束转换智能天线(Switched Beam Antenna)和自适应阵列智能天线(Adaptive Array Antennal。智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向DOA(DirectionofArrlnal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。同时,智能天线技术利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。总之。自适应阵列智能天线利用基带数字信号处理技术,通过先进的算法处理,对基站的接收和发射波束进行自适应的赋形,从而达到降低干扰、增加容量、扩大覆盖和提高无线数据传输速率的目的。 移动通信信道传输环境较恶劣。实际环境中的干扰和多径衰落现象异常复杂。多径衰落、时延扩展造成的符号间串扰ISI、FDMATDMA系统(如GSM)由于频率复用引入的同信道干扰、CDMA系统中的MAI等都使链路性能、系统容量下降。使用自适应阵列天线技术能带来很多好处,如扩大系统覆盖区域、提高系统容量、提高数据传输速率、提高频谱利用效率、降低基站发射功率、节省系统成本、减少信号间干扰与电磁环境污染等。自适应阵天线一般采用4-16天线阵元结构,在FDD中阵元间距1/2波长,若阵元间距过大,则接收信号彼此相关程度降低:太小则会在方向图形成不必要的栅瓣,故一般取半波长。而在TDD 中,如美国Ar-rayComm公司在PHS系统中的自适应阵列天线的阵元间距为5个波长。间距宽而波束更窄,而PHS系统中采用TDD模式,因而更容易进行定位处理。即使旁瓣多,但由于用户和信道都比较少,因而不会带来不利的影响。阵元分布方式有直线型、圆环型和平面型。自适应天线是智能天线的主要类型,可以实现全向天线,完成用户信号接收和发送。自适应阵天线系统采用数字信号处理技术识别用户信号到达方向,并在此方向形成天线主波束。自适应阵天线根据用户信号的不同空间传播方向提供不同的空间信道,等同于信号有线传输的线缆,有效克服了干扰对系统的影响。虽然天线阵列是射频前端的很重要的设备,但自适应阵列天线技术最重要的部分还在于基带处理部分。基带部分将自适应天线阵接收到的信号进行加权和合并,从而使信号与干扰加噪声比最大。 二、智能天线在移动通信中的应用 第三代移动通信标准组织已经认识到智能天线在降低网络干扰方面的重要作用,因此,在3G标准如WCDMA和CDMA2000中,支持智能天线的条款已经出现,智能天线已成为3G的重要组成部分。

智能天线技术的工作原理概要

智能天线技术的工作原理 智能天线技术的工作原理,特征和技术优势分析 智能天线(SmartAntenna或IntelligentAntenna)最初应用于雷达,声纳及军用通信领域.近年来,现代数字信号 处理技术发展迅速,DSP芯片处理能力的不断提高和芯片价格的不断下降,使得 利用数字技术在基带形成天线波束成为可行,促使智能天线技术开始在.采用波束空间处理方式可以从多波束中选择信号最强的几个波束,以取得符合质量要求的信号,在满足阵列接收效果的前提下减少运算量和降低系统复杂度.波束赋型算法概况 智能天线技术研究的核心是波束赋型的算法.从是否需要参考信号(导频序列或导频信道)的角度来划分,这些算法可分为盲算法,半盲算法和非盲算法三类.非盲算法是指须借助参考信号的算法.由于发送时的参考信号是预先知道的,对接收到的参考信号进行处理可以确定出信道响应,再按一定准则(如著名的迫零准则)确定各加权值,或者直接根据某一准则自适应地调整权值(也即算法模型的抽头系数),以使输出误差尽量减小或稳定在可预知的范围内.常用的准则有 MMSE(最小均方误差),LMS(最小均方)和RLS(递归最小二乘)等等;而自适应调整则采取最优化方法,最常见的就是最大梯度下降法.盲算法则无须发送参考信号或导频信号,而是充分利用调制信号本身固有的,与具体承载信息比特无关的一些特征(如恒包络,子空间,有限符号集,循环平稳等)来调整权值以使输出误差尽量小.常见的算法有常数模算法(CMA),子空间算法,判决反馈算法等等.常数模算法利用了调制信号具有恒定的包络这一特点,具体又分最小二乘CMA算法,解析CMA算法,多目标LS-CMA算法等;子空间算法则将接收端包含有其它用户干扰及信道噪声的混合空间划分为信号子空间和噪声子空间,对信号子空间进行处理;判决反馈算法则由收端自己估计发送的信号,通过多次的迭代,使智能天线输出向最优结果不断逼近.非盲算法相对盲算法而言,通常误差较小,收敛速度也较快,但发送参考信号浪费了一定的系统带宽.为此,学者们又发展了半盲算法,即先用非盲算法确定初始权值,再用盲算法进行跟踪和调整.这样做一方面可综合二者的优点,一方面也是与实际的通信系统相一致的,因为通常导频信息不是时时发送而是与对应的业务信道时分复用的.智能天线的优点 智能天线可以明显改善无线通信系统的性能,提高系统的容量.具体体现在下列方面: 提高频谱利用率.采用智能天线技术代替普通天线,提高小区内频谱复用率,可以在不新建或尽量少建基站的基础上增加系统容量,降低运营商成本. 迅速解决稠密市区容量瓶颈.未来的智能天线应能允许任一无线信道与任一波束配对,这样就可按需分配信道,保证呼叫阻塞严重的地区获得较多信道资源,等效于增加了此类地区的无线网络容量. 抑制干扰信号.智能天线对来自各个方向的波束进行空间滤波.它通过对各天线元的激励进行调整,优化天线阵列方向图,将零点对准干扰方向,大大提高阵列的输出信干比,改善了系统质量,提高了系统可靠性.对于软容量的CDMA系统,信干比的提高还意味着系统容量的提高. 抗衰落.高频无线通信的主要问题是信号的衰落,普通全向天线或定向天线都会因衰落使信号失真较大.如果采用智能天线

探讨智能天线在移动通信中的应用

探讨智能天线在移动通信中的应用 摘要:智能天线是移动通信领域的研究热点。作为具有测向和波束形成能力的天线阵列技术, 智能天线是提升频谱资源效率、系统容量和通信质量的有效途径之一, 被广泛应用于各类移动通信系统中。文章介绍智能天线的基本概念、工作原理、分类及其在第二代和第三代移动通信系统中的应用。 关键词:智能天线;软件无线电;移动通信 0 引言 随着移动通信产业的高速发展, 用户数量迅速增加, 频谱资源越发紧张, 如何提高现有频谱的使用效率, 扩展网络容量已成为移动通信发展的关键问题。尤其是中国入世后加快了通信行业对外开放步伐, 同世界全面接轨, 使我国的通信行业面临新的机遇和挑战。从国际上 3G 牌照拍卖情况看, 频率资源的投入已成为全球各运营商资金投入成本的重要组成部分。运营商迫切希望提高系统的频谱利用率, 从而提供更大的容量, 智能天线作为解决这个矛盾的核心技术之一, 受到业界的广泛关注。 1 智能天线的基本概念 智能天线是一种具有测向和波束形成能力的天线阵列, 最初广泛应用于雷达、声纳和军事通信领域。近年来, 由于数字信号处理技术的迅速发展、 IC 处理速度的提高和价格的普及, 使其在商用无线通信系统中的应用可能性大幅提高。智能天线主要由天线阵、波束形成单元和自适应控制单元三部分组成。其中天线阵列是收发射频信号的辐射单元, 常用的阵列形式有直线阵列与圆形阵列。波束形成单元则将来自每个单元天线的空间感应信号加权相加, 其中的权系数为复数。自适应控制单元是智能天线的核心, 该单元的功能是根据一定算法和优化准则, 主动适应周围电磁环境的变化。它利用数字信号处理技术, 通过满足某一准则的算法来调节各个阵元的加权幅度和相位,动态地产生空间定向波束, 使天线的主波束跟踪用户信号的到达方向, 旁瓣或零辐射方向对准干扰信号的到达方向, 进而达到抑制干扰信号, 提高所需信号信噪比的目的。 虽然天线阵列是射频前端的很重要的设备,但自适应阵列天线技术最重要的部分还在于基频(或包括中频) 数字信号处理算法, 算法决定了瞬时响应速率和电路实现的复杂程度, 其好坏将直接影响系统的工作指标。从是否需要参考信号(导频序列或导频信道)的角度来划分, 这些算法可分为盲算法和非盲算法两大类。在多址方式上,智能天线技术突破了传统的三维思维模式, 引入了空分多址( SDMA )方式, 在第四维空间上极大地拓宽了频谱的使用方式。SDMA的主要作用是压制同信道干扰, 可在不影响通信质量的前提下提升系统容量, 或在不改变系统容量的前提下提升通信质量。传统的固定扇形划分通常可提升少许容量或通信质量, 但在引进智能天线后, 改善程度可大幅提高, 其原因是智能天线不仅能有效消除干扰, 同时也能对目标信号提供较大增益。SDMA的终极理想目标是希望能达到每一用户与基地台之间均有一条专属的波束作为上下行链路信道,而不同用户的波束经过特殊设计和处理后,可以避免相互间干扰。 系统理论与实验模拟证明, 在无线通信系统中采用智能天线技术, 对于系统性能特别是系统容量的改善作用十分显著。 2 智能天线的分类 根据不同的复杂度和结构, 智能天线可分为波束转换智能天线和自适应阵列智能天线两大类。 2.1 波束转换智能天线 波束转换天线将传统的一个扇区一个波束变为一个扇区数个波束来覆盖, 每个波束的指向是固定和预定义的, 波束宽度随阵元数目而定。它采用波束切换技术, 随着用户在小区内的移动, 基地台自动选择不同的相应波束, 使接收信号最强。波束转换天线虽然不能实现信号最佳接收, 但结构简单, 便于实现, 且无需判定所接收信号的方向。波束转换天线的波束宽度由天线阵列的口径决定。对于处于主波束外的干扰, 波束转换天线通过控制低的旁瓣电平确保抑制。而对于处于主波束内的干扰, 波束转换天线则无法抑制, 所以它对于主波束内的干扰信号的抑制能力是有限的。由于所需信号的到达方向并不一定固定在主波束中央, 当信号的到达方向随着移动台的移动位于波束边缘, 而干扰信号位于波束中心时, 接收效果最差。此时必须进行波

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

第四代移动通信系统中的多天线技术

第四代移动通信系统中的多天线技术[转] (2008-09-15 15:46:44) 转载 分类:信息论与编码 标签: 杂谈 一、引言 由于第三代移动通信系统(3G)还存在一些不足,包括很难达到较高的通信速率,提供服务速率的动态范围不大,不能满足各种业务类型要求,以及分配给3G系统的频率资源已经趋于饱和等,于是人们提出了第四代移动通信系统(4G)的构想。4G的关键技术包括: (1)调制和信号传输技术(OFDM); (2)先进的信道编码方式(Turbo码和LDPC); (3)多址接入方案(MC-CDMA和FH-OFCDMA); (4)软件无线电技术; (5)MIMO和智能天线技术; (6)基于公共IP网的开放结构。 研究表明,在基于CDMA技术的3G中使用多天线技术能够有效降低多址干扰,空时处理能够极大增加CDMA系统容量。凭在提高频谱利用率方面的卓越表现,MIMO和智能天线成为4G发展中炙手可热的课题。 二、智能天线技术 智能天线最初用于雷达、声纳及军事通信领域。使用智能天线可以在不显著增加系统复杂程度的情况下满足服务质量和扩充容量的需要。 1.基本原理和结构 智能天线利用数字信号处理技术,采用先进的波束转换技术(switched beam technology)和自适应空间数字处理技术(adaptive spatial digital processing technology),判断有用信号到达方向(DOA)通过选择适当的合并权值,在此方向上形成天线主波束,同时将低增益旁瓣或零陷对准干扰信号方向。在发射时,能使期望用户的接收信号功率最大化,同时使窄波束照射范围外的非期望用户受到的干扰最小,甚至为零。 智能天线引入空分多址(SDMA)方式。在相同时隙、相同频率或相同地址码的情况下,用户仍可以根据信号空间传播路径的不同而区分。实际应用中,天线阵多采用均匀线阵或均匀圆阵。智能天线系统由天线阵;波束成形成网络;自适应算法控制三部分组成

智能天线在TD—LTE中的应用分析

智能天线在TD—LTE中的应用分析 【摘要】文章从技术层面介绍了智能天线的基础技术、波束赋形技术和自适应算法,介绍了TD-LTE中智能天线的单流波束赋形、双流波束赋形技术及相关算法,分析了智能 天线在TD-LTE中的应用情况,最后简述了智能天线技术的发展态势。 【关键词】TD-LTE 智能天线波束赋形 1 概述 智能天线(Smart Antenna)技术是在微波技术、自动控制理论、自适应天线技术、数 字信号处理DSP(Digital Signal Processing)技术和软件无线电技术等多学科基础上综合发 展而成的一门新技术。智能天线是具有一定程度智能性的自适应天线阵列。智能天线早期应用于军事领域,自3G时代开始走向民用通信,在今天的TD-LTE试验网和商用网中, 智能天线技术得到了飞速发展。 智能天线技术利用信号传输的空间相干性,通过调整天线阵列阵元发送信号的权值,产生空间预定波束,将无线信号导向具体方向,使主瓣波束自适应地跟踪用户主信号到达的方向,旁瓣或零陷对准干扰信号到达的方向,达到充分和高效利用移动用户信号,删除或抑制干扰信号的双重目的。智能天线可实现信号的空域滤波和定位,在多个指向不同用户的并行天线波束控制下,可以显著降低用户信号彼此间的干扰。 智能天线通常应用在基站侧,可在下行链路对发射信号进行预加权实现选择性发送,也可在上行链路对接收的混叠信号进行不同加权合并得到对应的波形。智能天线因其具有增加系统容量、提高通信质量和扩大小区覆盖等优点,已广泛应用于TD-SCDMA和TD-LTE网络。可以肯定的是,情景化、小型化、电调化、宽带化和集成化相结合的智能天线,将在TD-LTE及后期演进系统中发挥不可替代的作用。 2 智能天线简介[1] 由于无线移动通信信道传输环境具有复杂性和不确定性,主要受多径衰落、时延扩展等不利因素影响,存在符号间串扰、同信道间干扰和多址干扰等恶化通信环境的情况,直接降低了链路性能和系统容量,而智能天线是解决这些问题的重要手段之一。 2.1 智能天线的信号模型 图1为智能天线接收部分简图,由阵元、加权和合并三部分组成。用户发射信号经 过多径信道衰减和延迟后,到达天线阵列各阵元的是所有发射信号及各自延迟副本的叠加。

商业智能分析论文

数据仓库与数据挖掘论文题目BI技术应用现状及相应软件工具介绍评语: 学院计算机工程学院班级计算1314 姓名 __苏帅豪___ 学号 201321121109 成绩指导老师曾勇进 2016年 6 月 12 日

BI技术应用现状及相应软件工具介绍 [摘要] 商业智能是从大量的数据和信息中发掘有用的知识,并用于决策以增加商业利润,是一个从数据到信息到知识的处理过程。本文从当前商业智能实际出发,清晰阐述了商业智能的概念,总结和分析了商业智能发展的现状,并对商业智能今后的发展做出了展望。与此同时,客观分析了目前我国商业智能发展的状况,介绍了BI工具的情况。使我们能够认清形势,更好地发展。 [关键词] 商业智能、cognos、数据仓库、查询与报表 [正文] 1.商业智能概念: 提到“商业智能”这个词,网上普遍认为是Gartner机构在1996年第一次提出来的,但事实上IBM的研究员Hans Peter Luhn早在1958年就用到了这一概念。他将“智能”定义为“对事物相互关系的一种理解能力,并依靠这种能力去指导决策,以达到预期的目标。” 在1989年,Howard Dresner将商业智能描述为“使用基于事实的决策支持系统,来改善业务决策的一套理论与方法。”商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商等来自企业所处行业和竞争对手的数据以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策,既可以是操作层的,也可以是战术层和战略层的决策。为了将数据转化为知识,需要利用数据仓库、联机分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是数据仓库、OLAP和数据挖掘等技术的综合运用。 可以认为,商业智能是对商业信息的搜集、管理和分析过程,目的是使企业的各级决策者获得知识或洞察力,促使他们做出对企业更有利的决策。商业智能一般由数据仓库、联机分析处理、数据挖掘、数据备份和恢复等部分组成。商业智能的实现涉及到软件、硬件、咨询服务及应用,其基本体系结构包括数据仓库、联机分析处理和数据挖掘三个部分。因此,把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取、转换和装载,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、联机分析处理工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。

自动控制现代控制与智能控制的关系

自动控制、现代控制与智能控制的关系 一、基本区别 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。 在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 二、华山论剑:自动控制的机遇与挑战 传统控制理论在应用中面临的难题包括:(1)传统控制系统的设计与分析是建立在已知系统精确数学模型的基础上,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型;(2)研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合;(3)对于某些复杂的和包含不确定性的对象,根本无法用传统数学模型来表示,即无法解决建模问题;(4)为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初始投资和维修费用,降低了系统的可靠性。 为了讨论和研究自动控制面临的挑战,早在1986年9月,美国国家科学基金会(NSF)及电气与电子工程师学会(1EEE)的控制系统学会在加利福尼亚州桑克拉拉大学(University of Santa Clare)联合组织了一次名为“对控制的挑战”的专题报告会。有50多位知名的自动控制专家出席了这一会议。他们讨论和确认了每个挑战。根据与会自动控制专家的集体意见,他们发表了《对控制的挑战——集体的观点》,洋洋数万言,简直成为这一挑战的宣言书。 到底为什么自动控制会面临这一挑战,还面临哪些挑战,以及在哪些研究领域存在挑战呢? 在自动控制发展的现阶段,存在一些至关重要的挑战是基于下列原因的:(1)科学技术

自动化毕业论文智能无线技术简介

智能无线技术简介 智能天线原名自适应天线阵列(AAA,Adaptive Antenna Array),最初应用于雷达、声纳、军事方面,主要用来完成空间 滤波和定位,大家熟悉的相挂阵雷达就是一种较简单的自适应无 线阵。移动通信研究者给应用于移动通信的自适应无线阵起了一 个较吸引入的名字:智能无线,英文名为smart antenna或Intelligent antenna。 1.基本结构顾名思义自适应天线阵由多 个天线单元组成,每一个天线后接一个加权器(即乘以某一个系数,这个系数通常是复数,既调节幅度又调节相位,而在相控阵 雷达中只有相位可调),最后用相加器进行合并。这种结构的智 能天线只能完成空域处理,同时具有空域、时域处理能刀的智能 天线在结构上相对复杂些,每个天线后接的是一个延时抽头加权 网(结构上与时城FIR均衡器相同)。自适应或智能的主要含义 是指这些加权系数可以恰当改变自适应调整。上面介绍的其实是 智能天线用作接收天线时的结构,当用它进行发射时结构稍有变化,加权器或加权网络置于天线之前,也没有相加合并器。 2.工 作原理假设满足天线传输窄带条件,即某~人射信号在各天线单 元的响应输出只有相位差异而没有幅度变化,这些相位差异由人 射信号到达各天线所走路线的长度差决定。若人射信号为平面波(只有一个人射方向),则这些相位差由载波波长、人射角度、 天线位置分布唯一确定。给足~粗加权值,一定的人射信号强度,不同人射角度的信号由于在天线问的相位差不同,合并器后的输 出信号强度也会不同。以人射角为横坐标对应的智能无线输出增 益(dB)为纵坐标所作的图被称为方向图(天线术语),智能天 线的方向图不同于全向(omni-)天线(理想时为一直线),而

智能控制技术及其发展趋势

智能控制技术及其发展趋势 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。 一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统。智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境。 智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。

智能天线工作原理及其在现代通信系统中的应用

天线与电波结课论文 题目:智能天线工作原理及其在 现代通信系统中的应用 院系:电气信息工程学院 专业班级:电信12-01 学号:541201030121 姓名:李松霖

智能天线工作原理及其在现代通信系统中的应用论文摘要:介绍了智能天线的基本原理、实现方法及其在现代通信中的应用。 最初的智能天线技术主要用于军事抗干扰通信和定位等。近年来,随着现代通信的发展及对移动通信电波传播、组网技术、天线理论等方面的研究逐渐深入,智能天线开始用于具有复杂电波传播环境的移动通信。此外,随着移动用户数迅速增长和人们对通话质量要求的不断提高,要求移动通信网在大容量下仍具有较高的话音质量。经研究发现,在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。 1 智能天线的基本原理 智能天线包括多波束天线阵列和自适应天线阵列,后者是智能天线的主要形式。智能天线技术主要基于自适应天线阵列原理,天线阵收到信号后,通过由处理器和权值调整算法组成的反馈控制系统,根据一定的算法分析该信号,判断信号及干扰到达的方位角度,将计算分析所得的信号作为天线阵元的激励信号,调整天线阵列单元的辐射方向图、频率响应及其它参数。利用天线阵列的波束合成和指向,产生多个独立的波束,自适应地调整其方向图,跟踪信号变化,对干扰方向调零,减弱甚至抵消干扰,从而提高接收信号的载干比,改善无线网基站覆盖质量,增加系统容量。 基站使用智能天线,可为用户提供窄定向波束,在一定的方向区域内收发信号。这样既充分利用信号发射功率,又可降低发射信号带

来的电磁干扰。智能天线引入空分多址(SDMA)方式,根据信号的空间传播方向不同,区分用户。 2 智能天线的实现 智能天线阵系统主要包括天线阵列、自适应处理器和波束形成网络。天线阵列是收发射频信号的辐射单元。自适应处理器把有一定规律的激励信号转换成与各波束相对应的幅度和相位,提供给各辐射单元,用来确定波束形成网络各部分方向图的增益。波束形成网络利用天线阵元产生的方向图,实现智能天线的各种应用。 自适应处理器产生的各支路幅度和相位调整系数,是波束形成网络工作的重要依据。自适应处理器包括信号处理器和自适应算法器。信号处理器根据所需进行的信号处理,自适应算法器根据均方误差、信噪比、输出噪声功率等性能量度,用适当的算法调整方向图,形成网络的加权系数,使智能天线阵系统性能达到最优化。 最初的智能天线采用复杂的模拟电路,如今采用数字波束形成(DBF)方式,用软件完成算法更新,也可采用数模相结合的处理方法,既保证处理精度,又保证处理速度及灵活性。此外,为了使智能天线具有良好性能,应根据具体的电波传播环境,选择相应的智能算法。采用软件无线电技术使系统具有良好的改善能力,提高系统性能。为了尽量减少对现有系统的改动,也可使用多波束智能天线。多波束天线利用多个指向固定的波束覆盖全方向,虽然不能实现信号最佳接收,但结构简单,便于实现,且无需判定所接收信号的方向。 3 智能天线在通信中的用途

智能控制及其在机电一体化系统中的应用 张惠

智能控制及其在机电一体化系统中的应用张惠 发表时间:2019-06-10T14:14:59.703Z 来源:《防护工程》2019年第5期作者:张惠李春生郭慧洁连丽锋 [导读] 智能控制技术弥补了传统控制技术的缺点,并将其自身优点发扬光大,使机电一体化系统更加完善,其作用运用在各个领域。 摘要:目前我国科技发展的十分迅速,智能控制被广泛应用于机电一体化系统中。本文分析机电一体化系统中智能控制的应用,它改变了传统的生产效率低,质量差等问题,节省了人工,提高工作效率,备受各行各业青睐。以推动工业发展为前提,阐述机电一体化系统中智能控制的应用,有效地促进企业的现代化发展。 关键词:智能控制;机电一体化系统;应用 引言 机电一体化系统的重要组成包括驱动、机械、测试、控制、信息等方面,随着经济科技的飞速发展,这些综合技术也要随着时代去改变、去创新。其中在机电一体化系统中融入智能控制技术就是信息化的体现。智能控制技术弥补了传统控制技术的缺点,并将其自身优点发扬光大,使机电一体化系统更加完善,其作用运用在各个领域。 1机电一体化系统 我们通常所说的机电一体化系统,就是指最近兴起的一种用于微电子方面的技术,这个系统有机地对多项技术进行融合,其中就包括了机械、信息、电工、微电子、传感器等多项技术,依靠包括机械设备、计算机设备与电子元件在内的多项硬件构成,并依赖电子、微机还有通信等多项操作用于系统的软件构成,管控用于生产的系统还有设备。 我们将大部分应用于机电一体化成品和执行一体化的系统称为机电一体化系统,这个系统主要由五个部分构件所构成,一是信息处理的构件,二是控制的构件,三是用于供应电力的构件,最后还有机械的构件和用于执行的构件。这个系统的应用在于可以很大程度的减少能源损耗,提高生产的精细程度。所以可以说是一种综合性的功能性技术。 2智能控制技术 2.1数字控制技术 数字控制主要是应用数字化、智能化设备,将其应用在机电一体化系统中,是对预定的产品精密的加工,加工过程中的问题可以进行自动处理,除此之外还可以检测作业环境。 2.2智能数控机床设备 数控机床在机电一体化系统中是不可缺少的一部分,通过智能控制技术,直接提高机床设备运行效率,保证精准性。将智能控制技术和数控机床相结合,芯片、CPU控制系统会在智能控制的作用下得到优化,提高产品质量。由此可见,将智能控制技术应用于机床设备,为其赋予智能性特点,全面提高机床工作效率,保证生产过程的安全性与准确性,这对于机电一体化系统运行有重要作用。 2.3智能机器人(机械臂) 机器人技术在我国已经有一些研究成果,相关技术的实际应用十分复杂。例如应用在动力领域,不仅具有多变性,还呈现出使用领域的限制,对于环境感受传导,会应用到诸多传感器,增加接收的信息以及传感任务。如果应用智能控制技术,便可以将机器人技术进行优化,获得更好的效果。 3机电一体化系统中智能控制的应用 3.1机电一体化系统中智能控制在机械制造中的应用 智能控制是当下机电一体化的发展方向。智能控制可以模拟人的脑力劳动、动作以及专家的一系列智能活动,为我们提供更好的服务。机械制造是机电一体化系统中的重要环节之一,在机械制造中对智能控制的应用,可有根据智能控制中的数据得出相关的结论,可以利用数学理念以及神经网络系统监控整个机械制造的过程,构建动态、立体的环境建设模型。智能控制在机械制造中的应用,实现了智能学习、智能诊断、智能监控、智能传感器等方面技术的融合,推动了机械制造的数字化进程。 3.2应用在GPS农业机械系统中 随着机电一体化系统的不断完善,农业机械领域也运用了智能控制技术,使农业作业效率大大提升。要想农业机械的工作更加完美,绝对离不开GPS的应用。使用GPS定位系统,同时利用信息技术,可以将各种气候、各种地区的农作物的产量和农作物的其他信息采集起来,制作数据表格来作为农业方面的研究。将信息技术与GPS相结合,使GPS有着更加强大的功能,它可以将农业机械的位置坐标、农业现场的三维图像等等以电子信息的形式展现出来。有时候大型农业作业需要很多的农业机械来集体运作,GPS定位将在这个过程当中发挥极大的作用。 3.3机电一体化系统中智能控制在机器人研发中的应用 智能控制在机器人研发中的应用越来越广泛,机器人技术是当下高端技术之一。对机器人行为的控制,核心是要实现动力学控制,动力学理论具有非线性、实时变化性、高内聚性的特点。比如对于双足行走的机器人,我们可以将其看作动态二级倒立摆,体现了非线性的特点。在机器人的研发中还涉及繁杂的传感器信息数据,而机器人的控制系统属于多变量系统,具有较高的复杂性,要想机器人的平衡行动得到保障,就要同时执行多个命令,比如平衡调整命令、躲避障碍命令、规划动作命令等。传统的控制系统由于自身限制无法实现对机器人的全方位控制,而机电一体化系统中智能控制有效地弥补了传统控制系统存在的不足。 3.4在数控领域的应用 对于数控领域需求来说,数控机床的控制需求主要是依赖于传统的经典控制来建立部分模型,然而在模糊信息中,对于以往的经典控制离乱,没办法通过其进行建模,就是因为建模的一个条件是需要高准确度的信息,模糊推理规则的构建,模糊控制的实现,数据精确程度的降低,还有对加工步骤的不断改善,降低机床对运行环境的条件都是智能控制的应用。模糊理论,能够在数控系统中,通过轻微调节参数,有效地提高数控机床的性能,尤其是在适应性这一方面。而这一理论的基础,就是一体化系统中的一个部分,即智能控制。数控加工在算法方面有许多妙处,而插补计算就是其核心之一,然而在现实的计算过程中我们往往需要取点加工信息,见的最多的加工信息就是包括多个方面,即起点,终点、线型等,在以往的加工系统中,位置软件在调控增益方面的表现往往不尽人意依据现有的技术条件,我们

智能控制理论及其应用论文

智能控制理论及其应用 [摘要] 本文回顾了智能控制理论的提出与发展过程,介绍了智能控制的特点,给出了智能控制理论的主要类型及其特点,列举了智能控制理论与技术的主要应用领域,最后总结了智能控制理论的发展趋势。 [关键词] 智能控制模糊控制神经网络专家控制[abstract] this paper reviewed the development of intelligence control, and introduced its main methods and characteristics, and particularized their mostly application fields, and pointed out the prospects of intelligent control development trend and put forward the study direction. [key words] intelligent control fuzzy control net neural expert control 0.引言 随着工业和自动化技术的发展,控制理论的应用日趋广泛,所涉及的控制对象日益复杂化,对控制性能的要求也越来越高,控制对象或过程的复杂性主要体现在系统缺乏精确的数学模型、具有高维的判定空间、多种时间尺度和多种性能判据等,要求控制理论能够处理复杂的控制问题和提供更为有效的控制策略。现代控制理论从理论上解决了系统的可观、可控、稳定性以及许多复杂系统的控制。但实际中的许多复杂系统具有非线性、时变性、不确定性、多层次、多因素等热点,难以建立精确的数学模型,因此需要引入新

智能天线综述

文章编号:1006-7043(2000)06-0051-06 智能天线综述 肖炜丹,楼 吉吉,张 曙 (哈尔滨工程大学电子工程系,黑龙江哈尔滨150001) 摘 要:智能天线技术作为ITM -2000(International Mobile Telephone -2000,2000年全球移动电话)的核心技术之一,受到国内外移动通信业的高度重视.本文对智能天线的基本概念、基本原理和国内外研究现状等进行了综合论述,并讨论了其相关技术及应用和发展前景,最后对智能天线技术研究中的难点和应注意的问题发表了看法.① 关 键 词:智能天线;软件无线电;移动通信;ITM -2000;第二代移动通信系统;第三代移动通信系统中图分类号:TN911.25 文献标识码:A Summ arization of Sm art Antennas XIAO Wei-dan ,LOU Zhe ,ZAN G Shu (Dept.of Electronic Eng.,Harbin Engineering University ,Harbin 150001,China ) Abstract :Great attention is paid to the application of smart antennas by mobile communication trade both here and abroad as one of the key techniques for ITM -2000(International Mobile Telephone -2000).The paper presented basic concepts and principles of the smart antennas ,including its research situation at home and abroad ,and then discussed correlated technologies and potential applications.Finally ,the authors ’opinions were presented about the difficulties and the problems that should be considered in the research of smart antennas. K ey w ords :smart antenna ;software radio ;mobile communication ;ITM -2000;2G;3G 近年来全球通信事业飞速发展,通信业务的需求量越来越大,特别是第三代移动通信等新概念的出现,对通信技术提出了更高的要求.第三代移动通信系统的理想目标是有极大的通信容量,有极好的通信质量,有极高的频带利用率.在复杂的移动通信环境和频带资源受限的条件下达到这一目标,主要受3个因素的限制:1)多径衰落;2)时延扩展;3)多址干扰.为克服这些限制,仅仅采用目前的数字通信技术是远远不够的.近几年开始研究的移动通信的智能技术,即智能移动通信技术,包括智能天线、智能传输、智能接收和智能 化通信协议等,为克服和减轻这些限制,达到或接近第三代移动通信系统的理想目的,提供了最有力的技术支持,已成为第三代移动通信系统最重要的技术保证.而其中的智能天线技术以其独特的抗多址干扰和扩容能力,不仅是目前解决个人通信多址干扰、容量限制等问题的最有效的手段,也被公认为是未来移动通信的一种发展趋势,成为第三代移动通信系统的核心技术.为便于广大通信爱好者能够对智能天线技术有所了解,本文将从智能天线的概念、原理、相关技术及其应用做一简要介绍. ①收稿日期:2000-06-01;修订日期:2000-11-15 作者简介:肖炜丹(1975-),男,黑龙江哈尔滨人,哈尔滨工程大学电子工程系硕士研究生,主要研究方向:通信与信息系统. 第21卷第6期 哈 尔 滨 工 程 大 学 学 报 Vol.21,№.62000年12月 Journal of Harbin Engineering University Dec.,2000

相关文档
最新文档