选修1-1教案3.1.2瞬时变化率-导数

选修1-1教案3.1.2瞬时变化率-导数
选修1-1教案3.1.2瞬时变化率-导数

课题: 3.1.2瞬时变化率—导数

教学目标:

(1)理解并掌握曲线在某一点处的切线的概念

(2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度

(3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处 的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想

一、复习引入

1、什么叫做平均变化率;

2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率

3、如何精确地刻画曲线上某一点处的变化趋势呢?

下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。

所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势

二、新课讲解

1、曲线上一点处的切线斜率

不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0101)()(x x x f x f k PQ --=

, 设x 1-x 0=△x ,则x 1 =△x +x 0, ∴x

x f x x f k PQ ?-?+=)()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x

x f x x f k PQ ?-?+=)()(00无限趋近点Q 处切线斜率。

2、曲线上任一点(x 0,f(x 0))切线斜率的求法:

x

x f x x f k ?-?+=)()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的斜率。

3、瞬时速度与瞬时加速度

(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度

(2) 位移的平均变化率:t

t s t t s ?-?+)()(00 (3)瞬时速度:当无限趋近于0 时,t

t s t t s ?-?+)()(00无限趋近于一个常数,这个常数称为

t=t 0时的瞬时速度

求瞬时速度的步骤:

1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=?

2.再求平均速度t

s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t

s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率:t

t v t t v ?-?+)()(00 (5)瞬时加速度:当t ?无限趋近于0 时,

t t v t t v ?-?+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时加速度

注:瞬时加速度是速度对于时间的瞬时变化率

三、数学应用

例1、已知f(x)=x 2,求曲线在x=2处的切线的斜率。

变式:1.求2

1()f x x =过点(1,1)的切线方程 2.曲线y=x 3在点P 处切线斜率为k,当k=3时,P 点的坐标为_________

3.已知曲线()f x =

P(0,0)的切线斜率是否存在?

例2.一直线运动的物体,从时间t 到t t +?时,物体的位移为s ?,那么s t

??为( ) A.从时间t 到t t +?时,物体的平均速度; B.在t 时刻时该物体的瞬时速度; t ?时物体的速度; D.从时间t 到t t +?时物体的平均速度

例3.自由落体运动的位移s(m)与时间t(s)的关系为s=22

1gt (1)求t=t 0s 时的瞬时速度

(2)求t=3s 时的瞬时速度

(3)求t=3s 时的瞬时加速度

点评:求瞬时速度,也就转化为求极限,瞬时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景

苏教版高中数学选修2-2《1.1.2 瞬时变化率——导数(2)》教案

教学目标: 1.理解并掌握瞬时速度的定义; 2.会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度; 3.理解瞬时速度的实际背景,培养学生解决实际问题的能力. 教学重点: 会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度. 教学难点: 理解瞬时速度和瞬时加速度的定义. 教学过程: 一、问题情境 1.问题情境. 平均速度:物体的运动位移与所用时间的比称为平均速度. 问题一平均速度反映物体在某一段时间段内运动的快慢程度.那么如何刻画物体在某一时刻运动的快慢程度? 问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的.假设t 秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度. 2.探究活动: (1)计算运动员在2s到2.1s(t∈)内的平均速度. (2)计算运动员在2s到(2+?t)s(t∈)内的平均速度. (3)如何计算运动员在更短时间内的平均速度. 探究结论:

当?t →0时,v →-13.1, 该常数可作为运动员在2s 时的瞬时速度. 即t =2s 时,高度对于时间的瞬时变化率. 二、建构数学 1.平均速度. 设物体作直线运动所经过的路程为()s f t =,以0t 为起始时刻,物体在?t 时间内的平均速度为00()() ????f t t f t s v t t +-= =. v 可作为物体在0t 时刻的速度的近似值,?t 越小,近似的程度就越好.所以当 ?t →0时,v 极限就是物体在0t 时刻的瞬时速度. 三、数学运用 例1 物体作自由落体运动,运动方程为21 2 S gt =,其中位移单位是m ,时 间单位是s ,210m/s g =,求: (1) 物体在时间区间 s 上的平均速度;

苏教版数学高二- 选修2-2试题《瞬时变化率—导数—瞬时速度与瞬时加速度》(二)

1.1.3 瞬时变化率——导数 同步检测 (二) 一、基础过关 1.下列说法正确的是________(填序号). ①若f′(x 0)不存在,则曲线y =f(x)在点(x 0,f(x 0))处就没有切线; ②若曲线y =f(x)在点(x 0,f(x 0))处有切线,则f′(x 0)必存在; ③若f′(x 0)不存在,则曲线y =f(x)在点(x 0,f(x 0))处的切线斜率不存在; ④若曲线y =f(x)在点(x 0,f(x 0))处没有切线,则f′(x 0)有可能存在. 2.已知y =f(x)的图象如图所示,则f′(x A )与f′(x B )的大小关系是________. 3.已知f(x)=1x ,则当Δx→0时,f 2+Δx -f 2Δx 无限趋近于________. 4.曲线y =x 3+x -2在点P 处的切线平行于直线y =4x -1,则此切线方程为 ____________. 5.设函数f(x)=ax 3+2,若f′(-1)=3,则a =________. 6.设一汽车在公路上做加速直线运动,且t s 时速度为v(t)=8t 2+1,若在t =t 0时的加速度为6 m/s 2,则t 0=________ s. 二、能力提升 7.已知函数y =f(x)的图象在点M(1,f(1))处的切线方程是y =12 x +2,则f(1)+f′(1)=________. 8.若函数y =f(x)的导函数在区间上是增函数,则函数y =f(x)在区间上的图象可能是________.(填序号)

9.若曲线y=2x2-4x+P与直线y=1相切,则P=________. 10.用导数的定义,求函数y=f(x)=1 x 在x=1处的导数. 11.已知抛物线y=x2+4与直线y=x+10.求: (1)它们的交点; (2)抛物线在交点处的切线方程. 12.设函数f(x)=x3+ax2-9x-1(a<0),若曲线y=f(x)的斜率最小的切线与直线12x+y =6平行,求a的值. 三、探究与拓展 13.根据下面的文字描述,画出相应的路程s关于时间t的函数图象的大致形状: (1)小王骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (2)小华早上从家出发后,为了赶时间开始加速; (3)小白早上从家出发后越走越累,速度就慢下来了.

高中数学变化率问题教案

§1.1.1变化率问题 教学目标 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少 ?

《函数的单调性与导数》教学设计

教学设计 普通高中课程标准实验教科书《数学》选修1-1 (人教A版) 函数的单调性与导数 (第一课时) 张丽园 安阳市实验中学(第39中学) 2016年6月15日

《函数的单调性与导数》教学设计 安阳市实验中学(第39中学)张丽园 【课题】函数的单调性与导数 【教材】人教A版《数学》选修1-1 【课时】1课时 【教材分析】 函数的单调性与导数是人教A版选修1-1第三章第三课第一节的内容.在学习本节课之前学生已经学习了函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备. 函数的单调性是高中数学中极为重要的一个知识点.以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.同时,在本课第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助.因此,学习本节内容具有承上启下的作用. 【学生学情分析】 课堂学生为高二年级的的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点. 在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性. 【教学目标】 知识点:1.探索函数的单调性与导数的关系; 2.会利用导数判断函数的单调性并求函数的单调区间. 能力点:1.通过本节的学习,掌握用导数研究单调性的方法. 2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想. 教育点:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯. 自主探究点:通过问题的探究,体会知识的类比迁移.以已知探求未知,从特殊到一般的数学思想方法. 【教学重点】 利用导数研究函数的单调性,会求函数的单调区间. 【教学难点】 ⒈探究函数的单调性与导数的关系; ⒉如何用导数判断函数的单调性. 【教学方法】 启发式教学 【课时安排】 1 课时

瞬时变化率--导数

课题:瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处 的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢? 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0101)()(x x x f x f k PQ --= , 设x 1-x 0=△x ,则x 1 =△x +x 0, ∴x x f x x f k PQ ?-?+=)()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=)()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+=)()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的斜率。 3、瞬时速度与瞬时加速度

优秀教案21-变化率与导数

第三章 导数及其应用 3.1 变化率与导数(1) 教材分析 导数是微积分的核心概念之一.它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具,因而也是解决诸如运动速度、物种繁殖率、绿化面积增长率,以及用料最省、利润最大、效率最高等实际问题的最有力的工具.在本章,我们将利用丰富的背景与大量实例,学习导数的基本概念与思想方法;通过应用导数研究函数性质、解决生活中的最优化问题等实践活动,初步感受导数在解决数学问题与实际问题中的作用.教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的. 课时分配 本节课的教学内容选自人教社普通高中课程标准实验教科书(A 版)数学选修1-1第三章第一节的《变化率与导数》,《导数的概念》是第2课时,主要讲解导数的概念及利用定义求导数. 教学目标 重点: 通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念. 知识点:导数的概念. 能力点:掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤 教育点:通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验 自主探究点:通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要 过程. 考试点:利用导数的概念求导数. 易错易混点:对0x ?→的理解,0,0,x x ?>?<0,0x x ?>?≠但0x ?≠. 拓展点:导数的几何意义. 教具准备 多媒体课件和三角板 课堂模式 学案导学

变化率和导数(三个课时教案)

第一章导数及其应用 第一课时:变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴当V 从0增加到1时,气球半径增加了 )(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

3.1 变化率与导数 教学设计 教案

教学准备 1. 教学目标 知识与技能 1.理解平均变化率的概念. 2.了解瞬时速度、瞬时变化率、的概念. 3.理解导数的概念 4.会求函数在某点的导数或瞬时变化率. 过程与方法 理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率. 情感、态度与价值观 感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力. 2. 教学重点/难点 教学重点 平均变化率的概念. 教学难点 平均变化率概念的形成过程. 3. 教学用具 多媒体、板书 4. 标签 教学过程 教学过程设计

创设情景、引入课题 【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。 【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。 新知探究 1.变化率问题 探究1 气球膨胀率 【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是 如果将半径r表示为体积V的函数,那么 【分析】 (1)当V从0增加到1时,气球半径增加了 气球的平均膨胀率为 (2)当V从1增加到2时,气球半径增加了 气球的平均膨胀率为

苏教版高中数学选修2-2《1.1.2 瞬时变化率——导数(3)》教案

教学目标: 1.通过大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,体会导数的思想及其内涵; 2.会求简单函数的导数,通过函数图象直观地了解导数的几何意义; 3.体会建立数学模型刻画客观世界的“数学化”过程,进一步感受变量数学的思想方法. 教学重点: 导数概念的实际背景,导数的思想及其内涵,导数的几何意义. 教学难点: 对导数的几何意义理解. 教学过程: 一、复习回顾 1.曲线在某一点切线的斜率. ()()PQ f x x f x k x +-=??(当?x 无限趋向0时,k PQ 无限趋近于点P 处切线斜率) 2.瞬时速度. v 在t 0的瞬时速度=00()()f t t f t t ??+- 当?t →0时. 3.物体在某一时刻的加速度称为瞬时加速度. x

v 在t 0的瞬时加速度= 00()()v t t v t t ??+- 当?t →0时. 二、建构数学 导数的定义. 函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),如果自变量x 在x 0处 有增量△x ,那么函数y 相应地有增量△y =f (x 0+△x )-f (x 0);比值 y x ??就叫函数y =f (x )在x 0到(x 0+△x )之间的平均变化率,即00()()f x x f x y x x +?-?=??.如果当0x ?→时,y A x ?→?,我们就说函数y =f (x )在点x 0处可导,并把A 叫做函数y =f (x )在点x 0处的导数,记为0x x y =' , 0'000()()(),0x x f x x f x y y f x x x x =+?-?'===?→??当 三、数学运用 例1 求y =x 2+2在点x =1处的导数. 解 ?y =-(12+2)=2?x +(?x )2 y x ??=2 2()x x x ???+=2+?x ∴y x ??=2+?x ,当?x →0时,1x y '∣==2. 变式训练:求y =x 2+2在点x =a 处的导数. 解 ?y =-(a 2+2)=2a ?x +(?x )2 y x ??=2 2()a x x x ???+=2a +?x ∴y x ??=2a +?x ,当?x →0时,y '=2a . 小结 求函数y =f (x )在某一点处的导数的一般步骤: (1)求增量 ?y =f (x 0+?x )-f (x 0); (2)算比值 y x ??=00()()f x x f x x ??+-; (3)求0x x y '∣==y x ??,在?x →0时. 四、建构数学 导函数.

(word完整版)数学北师大版高中选修2-2北师大版高中数学选修2-2第二章《变化率与导数》教案

北师大版高中数学选修2-2第二章《变化率与导数》全部教案 §1变化的快慢与变化率 第一课时变化的快慢与变化率——平均变化率 一、教学目标:1、理解函数平均变化率的概念; 2、会求给定函数在某个区间上的平均变化率,并能根据函数的平均变化率判断函数在某区间上变化的快慢。 二、教学重点:从变化率的角度重新认识平均速度的概念,知道函数平均变化率就是函数在某区间上变化的快慢的数量描述。 教学难点:对平均速度的数学意义的认识 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题: 第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 第二类问题是求曲线的切线的问题。 第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是

1.1变化率与导数第1课时 精品教案

1.1变化率与导数 【课题】:1.1.1变化率问题 【教学目标】: (1)知识目标: ○1感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。体会数学的博大精深以及学习数学的意义。○2理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。 (2)情感目标:让学生充分体会到生活中处处有数学。 (3)能力目标:提高学生学习能力与探究能力、归纳表达能力。【教学重点】: 正确理解平均变化率; 【教学难点】: 平均变化率的概念。 【课前准备】:powerpoint 【教学过程设计】:

(基础题) 1.物体自由落体的运动方程是:()2 12 S t gt =,求1s 到2s 时的平均速度. 解:213 14.72 S S g m -= = ,211t t s -=,

则()21 21 14.7/S S v m s t t -= =- 2.水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体 积 (单位:3 cm ),计算第一个10s 内V 的平 均变化率。 注: (10)(0)100 V V -- 3.已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变 化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。 4.某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。 (难题) 5.思考: (1)课本P4思考题 (2)在高台跳水运动中,运动员相对水面的高度h (单位:m )与起跳后的时间t (单位: s )存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在65 049 t ≤≤这段时间里的平均速度, 并思考下面的问题: ○ 1运动员在这段时间里是静止的吗? ○ 2你认为用平均速度描述运动员的运动状态有什么问题吗? 答案: ○1不是. ○2不能客观描述运动员的运动状态. T(月) 3 9 12 t t V 1.025)(-? =

3.1变化率与导数(教学设计)(3)

3.1变化率与导数(教学设计)(3) 3.1.3导数的几何意义 教学目标: 知识与技能目标: 通过实验探究,理解导数的几何意义,体会导数在刻画函数性质中的作用。 过程与方法目标: 培养学生分析、抽象、概括等思维能力;通过“以直代曲”思想的具体运用,使学生达到思维方式的迁移,培养学生科学的思维习惯。 情感、态度与价值观目标: 渗透逼近和“以直代曲”思想,能激发学生的学习兴趣,培养学生不断发展、探索知识的精神,引导学生从有限中认识无限,体会量变和质变的辩证关系,感受数学思想方法的魅力。 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学过程: 一、复习回顾: 导数的概念: 从函数y =f (x )在x =x 0处的瞬时变化率是: 000 ()() lim lim x x f x x f x f x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0 ' |x x y =,即 0000 ()() ()lim x f x x f x f x x ?→+?-'=? 说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率 (2)0x x x ?=-,当0x ?→时,0x x →,所以000 ()() ()lim x f x f x f x x x ?→-'=- 二.创设情景,新课引入: (一)平均变化率、割线的斜率 (二)瞬时速度、导数 我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢? 三.师生互动,新课讲解: (一)曲线的切线及切线的斜率: 如图 3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n P P 的变化趋势是什么? 图3.1-2

§1.1.1变化率问题教学设计

§1.1.1变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r -- 问题2 高台跳水 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某

《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念 a 1.通过物理中的变化率问题和瞬时速度引入导数的概念. 2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤. 3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验. 4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢? 问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么: (1)在0≤t≤0.5这段时间里,运动员的平均速度= . (2)在1≤t≤2这段时间里, 运动员的平均速度= . 问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx

表示,平均变化率的公式是. 问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== . 问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但. 1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为(). A.0.40 B.0.41 C.0.43 D.0.44 2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(). A.f'(x)=a B.f'(x)=b C.f'(x0)=a D.f'(x0)=b 3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为. 4.求y=2x2+4x在点x=3处的导数.

瞬时变化率——导数

1.1.2瞬时变化率——导数 1.结合实际背景理解函数的瞬时变化率——导数的概念及其几何意义.(重点、难点) 2.会求简单函数在某点处的导数及切线方程.(重点) 3.理解导数与平均变化率的区别与联系.(易错点) [基础·初探] 教材整理1曲线上一点处的切线 阅读教材P8~P9“例1”以上部分,完成下列问题. 设Q为曲线C上不同于P的一点,这时,直线PQ称为曲线的割线,随着点Q沿曲线C向点P运动,割线PQ在点P附近越来越逼近曲线C.当点Q无限逼近点P时,直线PQ最终就成为在点P处最逼近曲线的直线l,这条直线l称为曲线在点P处的切线. 判断正误: (1)直线与曲线相切,则直线与已知曲线只有一个公共点.() (2)过曲线外一点作已知曲线的切线有且只有一条.() 【答案】(1)×(2)× 教材整理2瞬时速度与瞬时加速度 阅读教材P11~P12,完成下列问题. (1)一般地,如果当Δt无限趋近于0时,运动物体位移S(t)的平均变化率S(t0+Δt)-S(t0) Δt无限趋近于一个常数,那么这个常数称为物体在t=t0时的瞬时速度,也就是位移对于时间的瞬时变化率. (2)一般地,如果当Δt无限趋近于0时,运动物体速度v(t)的平均变化率

v (t 0+Δt )-v (t 0) Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加 速度,也就是速度对于时间的瞬时变化率. 1.判断正误: (1)自变量的改变量Δx 是一个较小的量,Δx 可正可负但不能为零.( ) (2)瞬时速度是刻画某物体在某一时间段内速度变化的快慢.( ) 【答案】 (1)√ (2)× 2.如果质点A 按规律s =3t 2运动,则在t =3时的瞬时速度为________. 【解析】 Δs Δt =3(3+Δt )2-3×3 2 Δt =18+3Δt , 当Δt →0时,Δs Δt =18+3×0=18. ∴质点A 在t =3时的瞬时速度为18. 【答案】 18 教材整理3 导数 阅读教材P 13~P 14,完成下列问题. 1.函数在一点处的导数及其几何意义 (1)导数 设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称 该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0). (2)导数的几何意义 导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率. 2.导函数 若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ).f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

导数:平均变化率与瞬时变化率

【同步教育信息】 一. 本周教学内容: 导数——平均变化率与瞬时变化率w 二. 本周教学目标: 1、了解导数概念的广阔背景,体会导数的思想及其内涵. 2、通过函数图象直观理解导数的几何意义. 三. 本周知识要点: (一)平均变化率 1、情境:观察某市某天的气温变化图 t (d) 20 2、一般地,函数f (x )在区间[x 1,x 2]上的平均变化率2121 ()()f x f x x x -- 平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”. (二)瞬时变化率——导数 1、曲线的切线 如图,设曲线c 是函数()y f x =的图象,点00(,)P x y 是曲线 c 上一点作割线PQ ,当 点Q 沿着曲线c 无限地趋近于点P ,割线PQ 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线c 在点P 处的切线

割线PQ 的斜率为 PQ k =00()()f x x f x x +?-?,即当0→?x 时,00()()f x x f x x +?-?无 限趋近于点P 的斜率. 2、瞬时速度与瞬时加速度 1)瞬时速度定义:运动物体经过某一时刻(某一位置)的速度,叫做瞬时速度. 2)确定物体在某一点A 处的瞬时速度的方法: 要确定物体在某一点A 处的瞬时速度,从A 点起取一小段位移AA 1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表示物体经过A 点的瞬时速度. 当位移足够小时,物体在这段时间内的运动可认为是匀速的,所得的平均速度就等于物体经过A 点的瞬时速度. 我们现在已经了解了一些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律用函数表示为s =s (t ),也叫做物体的运动方程或位移公式,现在有两个时刻t 0,t 0+Δt ,现在问从t 0到t 0+Δt 这段时间内,物体的位移、平均速度各是: 位移为Δs =s (t 0+Δt )-s (t 0)(Δt 称时间增量) 平均速度 t t s t t s t s v ?-?+=??= )()(00 根据对瞬时速度的直观描述,当位移足够小,现在位移由时间t 来表示,也就是说时间 足够短时,平均速度就等于瞬时速度. 现在是从t 0到t 0+Δt ,这段时间是Δt . 时间Δt 足够短,就是Δt 无限趋近于0.当Δt →0时,位移的平均变化率00()() s t t s t t +?-?无限趋近于一个常数,那么称这个常数为物体 在t = t 0的瞬时速度 同样,计算运动物体速度的平均变化率00()() v t t v t t +?-?,当Δt →0时,平均速度00()() v t t v t t +?-?无限趋近于一个常数,那么这个常数为在t = t 0时的瞬时加速度. 3、导数 设函数)(x f y =在(a,b )上有定义,0(,)x a b ∈.若x ?无限趋近于0时,比值 x x f x x f x y ?-?+=??)()(00无限趋近于一个常数A ,则称f (x )在x =0x 处可导,并称该常

瞬时变化率——导数(一)(含答案)

1.1.2 瞬时变化率——导数(一) 一、基础过关 1.一质点运动的方程为s =5-3t 2,若该质点在时间段[1,1+Δt ](Δt >0)内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度是________. 2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率的值为________. 3.已知曲线y =12 x 2-2上一点P ????1,-32,则过点P 的切线的倾斜角为________. 4.曲线y =4x -x 3在点(-1,-3)处的切线方程为______________.(已知(a +b )3=a 3+3a 2b +3ab 2+b 3) 二、能力提升 5.一物体的运动方程为s =7t 2+8,则其在t =______时的瞬时速度为1. 6.一物体的运动方程是s =12 at 2(a 为常数),则该物体在t =t 0时的瞬时速度为________. 7.已知物体运动的速度与时间之间的关系是:v (t )=t 2+2t +2,则在时间间隔[1,1+Δt ]内的平均加速度是________,在t =1时的瞬时加速度是________. 8.已知直线x -y -1=0与曲线y =ax 2相切,则a =________. 9.求曲线f (x )=3x 2-2x 在点(1,1)处切线的斜率. 10.以初速度v 0 (v 0>0)垂直上抛的物体,t 秒时间的高度为s (t )=v 0t -12 gt 2,求物体在时刻t 0处的瞬时速度. 11.高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间 的关系式为h (t )=-4.9t 2+6.5t +10,求运动员在t =6598 s 时的瞬时速度,并解释此时的运动状况. 三、探究与拓展 12.若一物体运动方程如下:(位移单位:m ,时间单位:s) s =????? 3t 2+2 (t ≥3) ①29+3(t -3)2 (0≤t <3) ② 求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0; (3)物体在t =1时的瞬时速度.

相关文档
最新文档