高等代数线性子空间

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。 答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列。例如:排列45312为偶排列。 10.对换一个排列中的任意两个数,该排列的奇偶性有什么变化?【知识点】:排列的对换对排列的奇偶性的影响。 答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列。例如:偶排列45312对换4与3,则变成排列35412,它的逆序数为7,排列35412是奇排列。 11.任一个n阶排列与标准排列可以互变吗?【知识点】:n阶排列与标准排列的关系。 答:可经过一系列对换互变。且所做对换的次数与排列具有相同的奇偶性。例如:排列32541的逆序数是6,因而是偶排列,它经过2次对换:3与1对换后变为12543,再对换5

线性代数总结归纳

线性代数总结归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

行列式 1.为何要学习《线性代数》 学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列【 知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列【 知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序【 知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数【 知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列【

高等代数北大版教案-第3章线性方程组

------------------------------------------------------------------------------------------------------------第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵

高等代数教案第四章线性方程组

第四章 线性方程组 一 综述 线性方程组是线性代数的主要内容之一.本章完满解决了关于线性方程组的三方面的问题,即何时有解、有解时如何求解、有解时解的个数,这在理论上是完美的. 作为本章的核心问题是线性方程组有解判定定理(相容性定理),为解决这个问题,从中学熟知的消元法入手,分析了解线性方程组的过程的实质是利用同解变换,即将方程的增广矩阵作行变换和列的换法变换化为阶梯形(相应得同解方程组),由此相应的简化形式可得出有无解及求其解.为表述由此得到的结果,引入了矩阵的秩的概念,用它来表述相容性定理.其中实质上也看到了一般线性方程组有解时,也可用克莱姆法则来求解(由此得所谓的公式解——用原方程组的系数及常数项表示解).内容紧凑,方法具体.其中矩阵的秩的概念及求法也比较重要,也体现了线性代数的重要思想(标准化方法). 线性方程组内容的处理方式很多,由于有至少五种表示形式,其中重要的是矩阵形式和线性形式,因而解线性方程组的问题与矩阵及所谓线性相关性关系密切;本教材用前者(矩阵)的有关问题讨论了有解判定定理,用后者讨论了(有无穷解时)解的结构.实际上线性相关性问题是线性代数非常重要的问题,在以后各章都与此有关.另外,从教材内容处理上来讲,不如先讲矩阵及线性相关性,这样关于线性方程组的四个问题便可同时讨论. 二 要求 掌握消元法、矩阵的初等变换、秩、线性方程组有解判定定理、齐次线性方程组的有关理论. 重点:线性方程组有解判别法,矩阵的秩的概念及求法. 4.1 消元法 一 教学思考 本节通过具体例子分析解线性方程组的方法——消元法,实质是作方程组的允许变换(同解变换)化为标准形,由此得有无解及有解时的所有解.其理论基础是线性方程组的允许变换(换法、倍法、消法)是方程组的同解变换.而从形式上看,施行变换的过程仅有方程组的系数与常数项参与,因而可用矩阵(线性方程组的增广矩阵)表述,也就是对(增广)矩阵作矩阵的行(或列换法)初等变换化为阶梯形,进而化为标准阶梯形,其体现了线性代数的一种重要的思想方法——标准化的方法. 二 内容要求 主要分析消元法解线性方程组的过程与实质,以及由同解方程组讨论解的情况(存在性与个数),为下节作准备,同时指出引入矩阵的有关问题(初等变换等)的必要性,矩阵的初等变换和方程组的同解变换间的关系. 三 教学过程 1.引例:解方程组???? ?????=++=++=++2534233351 3121321321321x x x x x x x x x (1) 定义:我们把上述三种变换叫做方程组的初等变换,且依次叫换法变换、倍法变换、消法变换. 2.消元法的理论依据 3.转引 在上面的讨论中,我们看到在对方程组作初等变换时,只是对方程组的系数与常数项进行了运算,而未知数没有参加运算,也就是说线性方程组有没有解以及有什么样的解完全决定于它的系数和常数项,因此在讨论线性方程组时,主要是研究它的系数和常数项.因而消元法的过程即用初等变换把方程组化为阶梯形方程组,来解决求解问题,此可转用另一种形式表述.为此引入:

高等代数 第四章 线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则

习题与复习题详解(线性空间)----高等代数

习题5. 1 1. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是. 因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈o 其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈. 因为,a b R a b ab R + + ?∈?⊕=∈, ,R a R a a R λλλ++?∈∈?=∈o , 所以R + 对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2) ()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ?a R +∈, 有11a a a ⊕=?=; (4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==o ; (6)()()a a a a a λ μμλμλμλλμ??==== ??? o o o o ; (7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕o o o ; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否. A B B A ∴⊕⊕与不一定相等. 故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间.

线性变换

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:+是V的线性变换. 二. 数乘运算 定义2(P311) 显然k也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握 与 ()关于同一个基的坐 标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. 与 ()关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

线性代数与工程管理

工程管理与线性代数的“线性相关” 我所学的专业是工程管理,由于学校为工科类石油特色高校,所以我所读的工管与在财经综合类学校的同学不同,他们学习的是经管类工程管理,而本校则为理工类工程管理专业,所以他们的高数为经管类高数且不学习线性代数。但作为以技术为导向的专业,线性代数与本专业可谓息息相关。首先说下线性代数所涉及的领域,线性代数理论有着悠久的历史和丰富的内容。随着科学技术的发展,特别是以矩阵运算为基础的电子计算机使用的日益普遍,作为重要的数学工具之一,线性代数的应用已经深入到了自然科学,社会科学,工程技术,经济,管理等各个领域。我所说的自然是线性代数在工程技术及管理学中的应用。 一,工程管理的基本介绍; 现代社会的发展趋势是社会分工越来越明确,社会生产越来越精细,专业管理越来越明显,各行如隔山的情形越来越普遍;而另一方面,现代社会生产却越来越要求复合型的人才,即常说的T型人才。单纯的具有管理技能,或者是单纯的具有工程技术的人才,已经不能适应社会的发展。工程管理专业出来的我们,正是T型人才的典范,懂技术,又懂得管理,恰好适合社会所需。 有不少人认为工程管理就是一种单纯的管理学科,这是不正确的。工程管理需要学习的不仅仅是一种管理的思想,同时还要求有一定的工程背景和数学知识。在这门专业的学习中,应明白一个基本的等式就是“工程管理=工程技术+经济管理”, 工程管理的服务领域涵盖工程项目管理、房地产管理经营、工程投资与造价管理、国际工程承包。而随着房地产、高铁等众多工程项目的发展,工程管理也越来越关注工程管理信息化的发展。 二,线性代数的内容; 线性代数是为培养我国社会主义现代化建设所需要的高质量人才服务的。通过本课程的学习,线性代数大致可分为两部分,其一是一算法为主的行列式,线性方程及矩阵的理论,其二是空间论,主要包括线性空间,线性变换,标准型,欧几里得空间,以及与现代计算机技术结合的MATLAB(矩阵工厂)实验等。 工程管理领域中复杂线性方程组的数值求解是经常遇见的问题,而工程管理中的一些多解问题,则可以应用矩阵图法进行求解。如当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,搞清这些不良现象及产生原因的相互关系,进而把这些不良现象一举消除,助于研制新产品改进老产品的切入点,保证产品的质量特性并提高生产效率等。 又比如在工程技术中,大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解。 在管理中,运筹学的一个重要议题是线性规划,许多重要的管理决策是在线性规划模型的基础上做出的。而线性规划则要用到大量的线性代数的知识进行处理。如果掌握了线性代数及线性规划的相关知识,那么就可以将实际生活中的大量问题抽象为线性规划问题,从而得到最优解。比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;如果作为一个商场的管理者,线性规划可以帮助合理安排各种商品的进货,以达到最大的利润。 从上述可知工程管理专业与线性代数的应用密不可分,线性代数这门课程对提高学生的素养,练习与提高学生的抽象思维能力与逻辑推理能力都有重要

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高等代数 线性变换自测题

线性变换自测题 一、填空题(每小题3分,共18分) 1.σ是22?F 上的线性变换,若??? ? ??=100 71 )(A σ,则=-)3(A σ . 2.σ:22R R →,)0,2(),(y x y x +-=σ;τ:22R R →,) ,3(),(y x y y x + -=τ, 则=+),)((y x τσ .=),)((y x τσ .=-),)(2(y x σ . 3.设???? ? ?=2231 A ,则向量???? ??11是A 的属于特征值 的特征向量. 4.若???? ? ??--=10 0001 011 A 与???? ? ? ?--10101 01k k B 相似,则k = . 5.设三阶方阵A 的特征多项式为322)(2 3 +--=λλλλf ,则=||A . 6.n 阶方阵A 满足A A =2,则A 的特征值为 . 二、判断说明题(每小题5分,共20分) 1.n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A . 2.已知1 -=PBP A ,其中P 为n 阶可逆矩阵,B 为一个对角矩阵.则A 的特 征向量与P 有关. 3.σ为V 上线性变换,n ααα,,,21 为V 的基,则)(,),(),(21n ασασασ 线性无关. 4.α为V 上的非零向量,σ为V 上的线性变换,则} )(|{)(1 αησηασ==-是 V 的子空间. 三、计算题(每小题14分,共42分) 1.设??? ? ? ? ?----=a A 3 3242 111 与??? ? ? ??=b B 0 0020 002 相似. (1)求b a ,的值; (2)求可逆矩阵,使B AP P =-1.

高等代数北大版课程教案-第3章线性方程组

第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵 ?????? ? ??s sn s s n n b b b a a a a a a a a a ΛΛΛΛΛΛΛΛ21212222111211 来表示. 在中学代数里,我们学习过用加减消元法和代入消元法解二元,三元

浅谈线性代数在生活中的应用

浅谈线性代数在生活中的应用 线性代数是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便!为了提高效率。把一些看似不相关的问题化归为一类问题。线性代数中的一个重要概念是线性空间(对所谓的“加法”和“数乘”满足8条公理的集合),而其元素被称为向量。也就是说,只要满足那么几条公理,我们就可以对一个集合进行线性化处理。可以把一个不太明白的结构用已经熟知的线性代数理论来处理,如果我们可以知道所研究的对象的维数(比如说是n),我们就可以把它等同为R^n,量决定了质!多么深刻而美妙的结论!上面我说的是代数的一个抽象特性。这个对我们的影响是思想性的!如果我们能够把他用在生活中,那么我们的生活将是高效率的。 下面简要谈一下线性代数的具体应用。线性代数研究最多的就是矩阵了。矩阵又是什么呢?矩阵就是一个数表,而这个数表可以进行变换,以形成新的数表。也就是说如果你抽象出某种变化的规律,你就可以用代数的理论对你研究的数表进行变换,并得出你想要的一些结论。 另外,进一步的学科有运筹学。运筹学的一个重要议题是线性规划,而线性规划要用到大量的线性代数的处理。如果掌握的线性代数及线性规划,那么你就可以讲实际生活中的大量问题抽象为线性规划问题。以得到最优解:比如你是一家小商店的老板,你可以合理的安排各种商品的进货,以达到最大利润。如果你是一个大家庭中的一员,你又可以用规划的办法来使你们的家庭预算达到最小。这些都是实际的应用啊! 总之,线性代数历经如此长的时间而生命力旺盛,可见它的应用之广! 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意, 而且写了成千篇关于这两个课题的文章。向量的概念, 从数学的观点来看不过是有序三元数组的一个集合, 然而它以力或速度作为直接的物理意义, 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度, 散度, 旋度就更有说服力。同样, 行列式和矩阵如导数一样(虽然dy/dx 在数学上不过是一个符号, 表示包括△y/△x 的极限的长式子, 但导数本身是一个强有力的概念, 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,意思是“ 解行列式问题的方法” ,书里对行列式的概念和它的展开已经有了清楚的叙述。Vandermonde 是第一个对行列式理论进行系统的阐述( 即把行列' 式理论与线性方程组求解相分离) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。Laplace 在1772 年的论文《对积分和世界体系的探讨》中, 证明了Vandermonde 的一些规则, 并推广了他的展开行列式的方法, 用r 行中所含的子式和它们的余子式的集合来展 开行列式,这个方法现在仍然以他的名字命名。德国数学家雅可比(Jacobi )

线性方程组的矩阵求法.

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++ = 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

高等代数-第四章-线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则 A (ka)=-i , k(A a)=i, A (ka )≠k A (a)

线性代数在生活中的应用

线性代数在生活中的运用 线性代数的研究对象就是向量,向量空间(或称线性空间),线性变换与有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正就是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。 线性方程组就是各个方程关于未知量均为一次的方程组 x j表示未知量,ai j为系数,bi 为常数项。则有 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c 2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题就是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。 当非齐次线性方程组有解时,解唯一的充要条件就是对应的齐次线性方程组只有零解;解无穷多的充要条件就是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解与有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。 克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。 线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请瞧下面一个例子。

线性代数在生活中的应用

线性代数在生活中的运用 线性代数的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。 线性方程组是各个方程关于未知量均为一次的方程组 xj 表示未知量,aij 为系数,bi 为常数项。则有 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c2,…,cn )为一个解。若c1,c2,…,cn 不全为0,则称(c1,c2,…,cn )为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。 当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。 克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n 维空间的一个子空间。 线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请看下面一个例子。 例: 一个庙里有一百个和尚, 这中间有大和尚有小和尚, 这一百个和尚每顿饭总共要吃一百个馒头, 其中大和尚一个人吃三个, 小和尚三个人吃一个, 问有多少大和尚, 多少小和尚? 那么, 假设大和尚的数目是x 1, 小和尚的数目是x 2, 那么由第一个条件, 总共 有100个和尚 可以知道: x 1+x 2=100 而由第二个条件, 大和尚一个人吃3个馒头, 小和尚一个人吃1/3个馒头, 吃的馒头的总数是100个, 那么就得第二个方程

相关文档
最新文档