高等代数 第四章 线性变换

高等代数 第四章 线性变换
高等代数 第四章 线性变换

大学高等数学阶段测验卷

第一章函数与极限阶段测验卷 学号 班级 成绩 考试说明:1、请将客观题答案全部填涂在答题卡上,写在试卷上一律无效。 2、请在答题卡上填涂好、班级、课程、考试日期、试卷类型和考号。试卷类型 划A;考号为学号的后九个数,请填涂在“考号”的九个空格并划线。 3、答题卡填涂不符合规者,一切后果自负。 一.是非判断题(本大题共10题,每题2分,共20分) 1. x y 2cos 1-=与x y sin =是相同的函数. ( ) A 、正确 B 、错误 2. 函数ln(1)y x x =-+在区间(,1)-∞-单调递增.( ) A 、正确 B 、错误 3. 函数x y e =在(0,)+∞有界. ( ) A. 正确 B. 错误 4. 设()f x 在[,](0)a a a ->上有定义,则函数1 ()[()()]2 g x f x f x =--是奇函数.( ) A. 正确 B. 错误 5. 函数2sin y x =是当0x →时的无穷小.( ) A. 正确 B. 错误 6.函数y = 是初等函数.( ) A 、正确 B 、错误 7. 当x →∞时,函数22135x y x +=+趋向于1 3 .( ) A 、正确 B 、错误 8. 当0x →时,函数2 12 y x = 与1cos y x =-是等价无穷小.( ) A 、正确 B 、错误 9. 211lim cos 2 x x x →∞=-( ) A 、正确 B 、错误

10. 函数1 (12),0;, 0x x x y e x ?? +≠=??=? 在0x =处连续. ( ) A 、正确 B 、错误 二.单项选择题(本大题共12个,每题3分,共36分) 11.函数)5)(2ln(+-=x x y 的定义域为( ). A. 25≤≤-x ; B. 2>x ; C. 2>x 或5-

高等数学第一章练习题答案

第一章 练习题 一、 设()0112>++=?? ? ??x x x x f ,求)(x f 。 二、 求极限: 思路与方法: 1、利用极限的运算法则求极限; 2、利用有界变量与无穷小的乘积仍是无穷小这一性质; 3、利用两个重要极限:1sin lim 0=→x x x ,e x x x =??? ??+∞→11lim ; 4、利用极限存在准则; 5、用等价无穷小替换。注意:用等价无穷小代替时被代替的应是分子、分母或其无穷小因子。如果分子或分母是无穷小的和差,必须将和差化为积后方可用等价无穷小代替积中的因子部分。 6、利用函数的连续性求极限,在求极限时如出现∞-∞∞ ∞,,00等类型的未定式时,总是先对函数进行各种恒等变形,消去不定因素后再求极限。 7、利用洛比达法则求极限。 1、()()()35321lim n n n n n +++∞ → 2、???? ? ?---→311311lim x x x 3、122lim +∞ →x x x 4、x x x arctan lim ∞ →

5、x x x x sin 2cos 1lim 0-→ 6、x x x x 30 sin sin tan lim -→ 7、()x x 3cos 2ln lim 9 π → 8、11232lim +∞→??? ??++x x x x 三、 已知(),0112lim =??? ?????+-++∞→b ax x x x 求常数b a ,。 四、 讨论()nx nx n e e x x x f ++=∞→12lim 的连续性。 五、 设()12212lim +++=-∞→n n n x bx ax x x f 为连续函数,试确定a 和b 的值。 六、 求()x x e x f --=111 的连续区间、间断点并判别其类型。 七、 设函数()x f 在闭区间[]a 2,0上连续,且()()a f f 20=,则在[]a ,0上 至少有一点,使()()a x f x f +=。 八、 设()x f 在[]b a ,上连续,b d c a <<<,试证明:对任意正数p 和q , 至少有一点[]b a ,∈ξ,使 ()()()()ξf q p d qf c pf +=+

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

高等数学第一章测试卷

高等数学第一章测试卷(B ) 一、选择题。(每题4分,共20分) 1?假设对任意的 x R ,都有(x) f(x) g(x),且]im[g(x) (x)] 0,则 lim f (x)() A.存在且等于零 B.存在但不一定为零 C. 一定不存在 D.不一定存在 1 x 2. 设函数f(x) lim 2n ,讨论函数f (x)的间断点,其结论为( ) n 1 x A.不存在间断点 B.存在间断点x 1 C.存在间断点x 0 D.存在间断点x 1 x 2 X 1 3. 函数f (x) 一2 . 1 —2的无穷间断点的个数为( ) X 1 \ x 7.[x]表示取小于等于x 的最大整数,则lim x - x 0 x f(x) asinx A. 0 B. 1 C. 2 D. 3 4.设函数f (x)在( )内单调有界, {X n }为数列,下列命题正确的是( A.若{x n }收敛,则{ f (x n ) }收敛 B.若{&}单调,则{ f (x n ) }收敛 0若{ f (X n ) }收敛,则仏}收敛 D.若{ f (X n ) }单调,则 {X n }收敛 5.设{a n }, {b n }, {C n }均为非负数列,且 lim n a n 0,lim b n 1,limc n n n ,则() A. a n b n 对任意n 成立 B. b n C n 对任意n 成立 C.极限lim a n C n 不存在 n D. 极限lim b n C n 不存在 n 二、填空题(每题 4分,共 20分) 6.设 X, f (X) 2f (1 X) 2 x 2x , 则 f (X) 8.若 lim]1 X X ( 丄 X a)e x ] 1, 则实数a 9.极限lim X (X 2 X a)(x b) 10.设 f (X)在 x 0处可导, f (0) 0,且f (0) b ,若函数 F(x) 在x 0处连续, 则常数 A

高等数学第一章测试题

高等数学第一章测试题 一、单项选择题(20分) 1、当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( )不一定是无穷小. (A) ()()x x βα+ (B) ()()x x 22 βα + (C) [])()(1ln x x βα?+ (D) )() (2 x x βα 2、极限a x a x a x -→??? ??1 sin sin lim 的值是( ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3、 ??? ??=≠-+=0 01sin )(2x a x x e x x f ax 在0x =处连续,则a =( ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4、函数 ??? ?? ? ???<+<≤>-+=0,sin 1 0,2tan 1,1) 1ln()(x x x x x x x x x f π 的全体连续点的集合是 ( ) (A) (-∞,+∞) (B) (-∞,1) (1,+ ∞) (C) (-∞,0) (0, +∞) (D) (-∞,0) (0,1) (1,+ ∞) 5、 设 )1 1( lim 2 =--++∞ →b ax x x x ,则常数a ,b 的值所组成的数组(a ,b )为( ) (A ) (1,0) (B ) (0,1) (C ) (1,1) (D ) (1,-1) 6、已知函数 231 )(2 2 +--= x x x x f ,下列说法正确的是( )。 (A) )(x f 有2个无穷间断点 (B) )(x f 有1个可去间断点,1个无穷间断点 (C) )(x f 有2个第一类间断点 (D) )(x f 有1个无穷间断点,1个跳跃间断

高数第一章综合测试题复习过程

第一章综合测试题 一、填空题 1 、函数1()arccos(1) f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )f g x x =-, 则()g x = . 3、已知1tan ,0,()ln(1) , 0ax x e e x f x x a x +?+-≠?=+??=? 在0x =连续,则a = . 4、若lim 25n n n c n c →∞+??= ?-?? ,则c = . 5 、函数y =的连续区间为 . 二、选择题 1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数. (A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x 2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ). (A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛 (C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2, x x f x x x ?+≠±?=-??=±? 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断 (C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续 4、 设lim 0n n n x y →∞ =,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界 (C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ?????? 收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无

高等数学第一章练习题

第一章函数、极限、连续 一、单项选择题 1.区间[a,+∞),表示不等式() 2.若 3.函数是()。 (A)偶函数(B)奇函数(C)非奇非偶函数(D)既是奇函数又是偶函数 4.函数y=f(x)与其反函数 y=f-1(x)的图形对称于直线()。 5.函数 6.函数 7.若数列{x n}有极限a,则在a的ε邻域之外,数列中的点() (A)必不存在 (B)至多只有有限多个 (C)必定有无穷多个 (D)可以有有限个,也可以有无限多个 8.若数列{ x n }在(a-ε, a+ε)邻域内有无穷多个数列的点,则(),(其中为某一取定的正数) (A)数列{ x n }必有极限,但不一定等于 a (B)数列{ x n }极限存在且一定等于 a (C)数列{ x n }的极限不一定存在 (D)数列{ x n }一定不存在极限

9.数列 (A)以0为极限(B)以1为极限(C)以(n-2)/n为极限(D)不存在极限 10.极限定义中ε与δ的关系是() (A)先给定ε后唯一确定δ (B)先确定ε后确定δ,但δ的值不唯一 (C)先确定δ后给定ε  (D)ε与δ无关 11.任意给定 12.若函数f(x)在某点x0极限存在,则() (A) f(x)在 x0的函数值必存在且等于极限值 (B) f(x)在x0的函数值必存在,但不一定等于极限值 (C) f(x)在x0的函数值可以不存在 (D)如果f(x0)存在则必等于极限值 13.如果 14.无穷小量是() (A)比0稍大一点的一个数 (B)一个很小很小的数 (C)以0为极限的一个变量 (D)0数 15.无穷大量与有界量的关系是() (A)无穷大量可能是有界量

七年级数学下册第一章单元测试题及答案

第一章 整式的乘除单元测试 卷(一) 一、精心选一选(每小题3分,共21分) 1.多项式8923 3 4 +-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 6 2.下列计算正确的是 ( ) A. 8 421262x x x =? B. ()() m m m y y y =÷34 C. ()2 2 2 y x y x +=+ D. 342 2 =-a a 3.计算()()b a b a +-+的结果是 ( ) A. 2 2 a b - B. 2 2 b a - C. 222b ab a +-- D. 2 22b ab a ++- 4. 1532 +-a a 与4322 ---a a 的和为 ( ) A.3252--a a B. 382 --a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( ) A. 9 1 312 -=? ? ? ??- B. 0590=? C. ()17530 =-. D. 8 1 23-=- 6. 若 () 682 b a b a n m =,那么n m 22-的值是 ( ) A. 10 B. 52 C. 20 D. 32 7.要使式子2 2259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30± 二、耐心填一填(第1~4题1分,第 5、6题2 分,共28分) 1.在代数式2 3xy , m ,362 +-a a , 12 , 22514xy yz x - , ab 32 中,单项式有 个,多项式有 个。 2.单项式z y x 4 2 5-的系数是 ,次数是 。 3.多项式51 34 +-ab ab 有 项,它们分别 是 。 4. ⑴ =?5 2x x 。 ⑵ () =4 3y 。 ⑶ () =3 22b a 。 ⑷ () =-425 y x 。 ⑸ =÷3 9 a a 。 ⑹ =??-024510 。 5.⑴=?? ? ??-???? ??325631mn mn 。 ⑵()()=+-55x x 。 ⑶ =-2 2)(b a 。 ⑷( )()=-÷-2 3 5312xy y x 。

高等代数 第四章 线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则

高等数学第一章测试卷

高等数学第一章测试卷(B ) 一、选择题。(每题4分,共20分) 1.假设对任意的∈x R ,都有)()()(x g x f x ≤≤?,且0)]()([lim =-∞→x x g x ?,则)(lim x f x ∞ →( ) A.存在且等于零 B.存在但不一定为零 C.一定不存在 D.不一定存在 2.设函数n n x x x f 211lim )(++=∞→,讨论函数)(x f 的间断点,其结论为( ) A.不存在间断点 B.存在间断点1=x C.存在间断点0=x D. 存在间断点1-=x 3.函数222111)(x x x x x f +--=的无穷间断点的个数为( ) A. 0 B. 1 C. 2 D. 3 4.设函数)(x f 在),(+∞-∞内单调有界,}{n x 为数列,下列命题正确的是( ) A.若}{n x 收敛,则{)(n x f }收敛 B.若}{n x 单调,则{)(n x f }收敛 C.若{)(n x f }收敛,则}{n x 收敛 D.若{)(n x f }单调,则}{n x 收敛 5.设}{},{},{n n n c b a 均为非负数列,且∞===∞ →∞→∞→n n n n n n c b a lim ,1lim ,0lim ,则( ) A. n n b a <对任意n 成立 B. n n c b <对任意n 成立 C. 极限n n n c a ∞→lim 不存在 D. 极限n n n c b ∞ →lim 不存在 二、填空题(每题4分,共20分) 6.设x x x f x f x 2)1(2)(,2-=-+?,则=)(x f ____________。 7.][x 表示取小于等于x 的最大整数,则=??????→x x x 2lim 0__________。 8.若1])1(1[lim 0=--→x x e a x x ,则实数=a ___________。 9.极限=???? ??+-∞→x x b x a x x ))((lim 2 ___________。 10.设)(x f 在0=x 处可导,b f f ='=)0(,0)0(且,若函数?????=≠+=00sin )()(x A x x x a x f x F 在0=x 处连续,则常数=A ___________。

线性变换

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:+是V的线性变换. 二. 数乘运算 定义2(P311) 显然k也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握 与 ()关于同一个基的坐 标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. 与 ()关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

高等代数 线性变换自测题

线性变换自测题 一、填空题(每小题3分,共18分) 1.σ是22?F 上的线性变换,若??? ? ??=100 71 )(A σ,则=-)3(A σ . 2.σ:22R R →,)0,2(),(y x y x +-=σ;τ:22R R →,) ,3(),(y x y y x + -=τ, 则=+),)((y x τσ .=),)((y x τσ .=-),)(2(y x σ . 3.设???? ? ?=2231 A ,则向量???? ??11是A 的属于特征值 的特征向量. 4.若???? ? ??--=10 0001 011 A 与???? ? ? ?--10101 01k k B 相似,则k = . 5.设三阶方阵A 的特征多项式为322)(2 3 +--=λλλλf ,则=||A . 6.n 阶方阵A 满足A A =2,则A 的特征值为 . 二、判断说明题(每小题5分,共20分) 1.n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A . 2.已知1 -=PBP A ,其中P 为n 阶可逆矩阵,B 为一个对角矩阵.则A 的特 征向量与P 有关. 3.σ为V 上线性变换,n ααα,,,21 为V 的基,则)(,),(),(21n ασασασ 线性无关. 4.α为V 上的非零向量,σ为V 上的线性变换,则} )(|{)(1 αησηασ==-是 V 的子空间. 三、计算题(每小题14分,共42分) 1.设??? ? ? ? ?----=a A 3 3242 111 与??? ? ? ??=b B 0 0020 002 相似. (1)求b a ,的值; (2)求可逆矩阵,使B AP P =-1.

高等代数-第四章-线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则 A (ka)=-i , k(A a)=i, A (ka )≠k A (a)

高等数学上册第一章测试试卷

理科A 班第一章综合测试题 一、填空题 1 、函数1()arccos(1) f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )f g x x =-, 则()g x = . 3、已知1tan ,0,()ln(1) , 0ax x e e x f x x a x +?+-≠?=+??=? 在0x =连续,则a = . 4、若lim 25n n n c n c →∞+??= ?-?? ,则c = . 5 、函数y =的连续区间为 . 二、选择题 1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数. (A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x 2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ). (A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛 (C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2, x x f x x x ?+≠±?=-??=±? 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断 (C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续 4、 设lim 0n n n x y →∞ =,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界 (C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ?????? 收敛 ,则{}n y 必为无穷

高等数学(上)第一章练习题

高等数学(上)第一章练习题 一.填空题 1. 12sin lim sin _________.x x x x x →∞??+= ??? 2. lim 9x x x a x a →∞+??= ?-?? , 则__________.a = 3. 若21lim 51x x ax b x →++=-,则___________,___________.a b == 4. 02lim __________.2x x x e e x -→+-= 5. 1(12)0()ln(1)0 x x x f x x k x ?-<=?++≥?在0x =连续,则k = 6. 已知当0x →时,()1 2311ax +-与cos 1x -是等价无穷小,则常数________.a = 7. 设21()cos 1 x k x f x x x π?+≥=??? 在0x =处间断,则常数a 和b 应满足关系____________. 9.()1lim 123n n n n →∞++= 10 .lim x →+∞?=? 11 .lim x ax b →+∞?-=? 0 ,则a = b = 12.已知111()23x x e f x e +=+ ,则0x =是第 类间断点 二.单项选择题 13. 当0x →时, 变量211sin x x 是____________. A. 无穷小量 B. 无穷大量 C. 有界变量但不是无穷小, D. 无界变量但不是无穷大. 14.. 如果0 lim ()x x f x →存在,则0()f x ____________. A. 不一定存在, B. 无定义, C. 有定义, D. 0=. 15. 如果0lim ()x x f x -→和0 lim ()x x f x +→存在, 则_____________.

高等代数第七章 线性变换复习讲义

第七章线性变换 一.线性变换的定义和运算 1.线性变换的定义 (1)定义:设V是数域p上的线性空间,A是V上的一个变换,如果对任意α,β∈V和k∈P都有A(α+β)=A(α)+A(β),A(kα)=kA(α)则称A为V的一个线性变换。(2)恒等变换(单位变换)和零变换的定义:ε(α)=α,ο(α)=0,任意α∈V. 它们都是V的线性变换。 (3)A是线性变换的充要条件:A(kα+lβ)=kA(α)+lA(β),任意α,β∈V,k,l∈P. 2.线性变换的性质 设V是数域P上的线性空间,A是V的线性变换,则有(1)A(0)=0; (2)A(-α)=-A(α),任意α∈V; (3)A(∑kiαi)=ΣkiA(α),α∈V,ki∈P,i=1,…,s;(4)若α1,α2,…,αs∈V,且线性相关,则A(α1),A (α2),…,A(αs)也线性相关,但当α1,α2,…,α s线性无关时,不能推出A(α1),A(α2),…,A(α

s)线性无关。 3.线性变换的运算

4.线性变换与基的关系 (1)设ε1,ε2,…,εn是线性空间v的一组基,如果线性变换A和B在这组基上的作用相同,即Aεi=Bεi,i=1,2,…,n,则有A=B. (2)设ε1,ε2,…,εn是线性空间v的一组基,对于V 中任意一组向量α1,α2,…,αn,存在唯一一个线性变换A 使Aεi=αi,i=1,2,…,n. 二.线性变换的矩阵 1.定义:设ε1,ε2,…,εn是数域P上n维线性空间v的一组基,A是V中的一个线性变换,基向量的像可以被基线性表出 Aε1=a11ε1+a21ε2+…an1εn Aε2=a12ε1+a22ε2+…an2εn …… Aεn= a1nε1+a2nε2+…annεn 用矩阵表示就是A(ε1,ε2,…,εn)=(ε1,ε2,…,εn)A,其中 a 11 a 12 …… a 1n a 21 a 22 …… a 2n A= …… a n1 a n2 …… a nn 称为A在基ε1,ε2,…,εn下的矩阵。 2.线性变换与其矩阵的关系 (1)线性变换的和对应于矩阵的和; (2)线性变换的乘积对应于矩阵的乘积; (3)线性变换的数量乘积对应于矩阵的数量乘积;

(完整word版)专升本高数第一章练习题(带答案)

第一部分: 1.下面函数与y x =为同一函数的是() 2 .A y= .B y=ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域() , -∞+∞,∴选D 2.已知?是f的反函数,则()2 f x的反函数是() () 1 . 2 A y x ? =() .2 B y x ? =() 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数为奇函数的是() ()() .A y f x f x =+-()() .B y x f x f x =-- ?? ?? () 32 .C y x f x =()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且()()()()() 3232 y x x f x x f x y x -=-=-=-∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x =.sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界,B arctan 2 x π <有界, C sin cos x x +≤,故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即n x M ≤),反之不成立,(如() {}11n--有界,但不收敛,选A. 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小,则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C

第七章线性变换.

第七章线性变换 计划课时:24 学时.(P 307—334) §7.1 线性变换的定义及性质( 2 学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1 (P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意: 1.定理7.1.2 给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2. 两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1 ,2, 3. §7.2 线性变换的运算( 4 学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义 1 (P310) 注意:+ 是V的线性变换. 二. 数乘运算 定义 2 (P311) 显然k 也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义 3 (P311-312)

注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可能是零变换. (2). 线性变换的方幂 四. 可逆线性变换定义 4 ( P313) 线性变换可逆的充要条件例 2 ( P314) 线性变换的多项式的概念( 阅读 内容). 作业:P330 习题七4, 5. §7.3 线性变换的矩阵( 6 学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握与( ) 关于同一个基的坐标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L(V)与M(F)的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L(V)与M(F)的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一.线性变换关于基的矩阵 定义 ( P316) 。 注意:取定n维向量空间V的一个基之后,对于V的每一个线性变换,有唯一确定的n阶矩阵与 它对应. 例 1 ( P316 ) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例 2 ( P317) 例 3 ( P317) 二.与( )关于同一个基的坐标之间的关系. 定理7.3.1 例 4 ( P318 ) 三? L(V)与M(F)的同构 定理7.3.2 (P320) 定理7.3.3 (P320) 注意:1.定理732 ( P320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2. 由于L(V) 同构于M n ( F ) ,所以就把研究一个很复杂的向量空间L(V) 的问题转化成研究一个很直观具体的向量空间M n(F) 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3 不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求 逆变换的方法。 四. 同一个线性变换在不同基下的矩阵之间的关系定理7.3.4 (P321). 作业:P331 习题七6,9,12,17.

相关文档
最新文档