初中数学分式方程增根

初中数学分式方程增根
初中数学分式方程增根

初三数学上册期末复习—分式方程的解专项训练

1.若分式方程

=1有增根,则m 的值为_______.

2.若方程有增根,则.

3.若关于x 的方程=3有增根,则m=_______.

4.若解分式方程产生增根,则_______

5.已知分式方程产生增根,则m=_______.

6.已知分式方程有增根,则m 为______.

7.如果方程

有增根,那么

的值为_______.

8.若分式方程的增根,那么增根是______,

这时

_______.

9.若分式方程

有增根,则m 的值为______.

10.若分式方程有增根,则m=____,

它的增根是_______

11.分式方程=有增根,则m 为_______

12.若分式方程x

x kx -=--+

21

212有增根,则k=_________ 13.若分式方程13

2

3+-=-x x m 有增根,则m=_________. 14.若分式方程

x

x x x m x x 1

1122+=

++-+有增根,则m=_______. 15.若方程

有增根,则=________.

16.若关于的分式方程

无解,则a=______.

17.若关于x 的方程无解,则为_________

18.若方程无解,则.

19.若分式方程无解,则为_______

20.如果分式方程无解,则m=_________

21.若分式方程12

4

2+-=-x x ax 无解,则a 的值是______.

22.若方程

无解,则m=_________

23.若方程

无解,则m=_________. 24.要使方程

无解,则a=_________.

25.若关于x 的方程x

m

x x 21051-=--无解,则m=_________. 26.若分式方程

211=---x

m

x x 无解,

则m 的值是_________. 27.若关于的分式方程无解,则_________.

28.已知分式方程-=0无解,则a =_______.

29.关于的分式方程的解为正数,则的

取值范围是___________.

30.关于x 的方程的解是正数,则a 的取值范围

是________

31.若关于x 的分式方程

11

2=--x a

x 的解为正数,那么字母a 的取值范围是__________.

32.已知关于的方程的解是正数,则m 的取

值范围为______________.

33.若关于x 的方程的解是正数,则x 的

取值范围是____________.

34.关于的方程的解为正数,那么的取值范

围是___________.

35.关于x 的方程的解是负数,则a 的取值范围

是_____________. 36.已知关于x 的分式方程

11

2

=++x a 的解是非正数,则a 的取值范围是_______________.

37.已知关于的方程的解是负数,则m 的取

值范围为________

参考答案

一、填空题

1、-1

2、5

3、;

4、-5

5、

6、2

7、-1

8、9、2

10、m =3,x=1 (每空各2分)

11、0和3

12、m=2

13、

14、2

答:

解:方程两边都乘(x﹣3),得

m=2+(x ﹣3),

∵方程有增根,

∴最简公分母x ﹣3=0,即增根是x=3,

把x=3代入整式方程,得m=2.

故答案为2.

15、m=-2或m=1

解:∵,∴

2x2-(m+1)=(x+1)2,2x2-m-1=x2+2x+1,x2-2x-m-2=0,

欲使原方程有增根,需x=0或x=-1,当x=0时,02-2×0-m-2=0,

∴m=-2,当x=-1时,(-1)2-2×(-1)-m-2=0,∴m=1,故m=-2或m=1.

点拨:此题运用方程增根的意义使问题得以解决,这种方法经

常使用, 应要熟练掌握.

16、4;

17、

18、3

19、1或—2

20、1

21、4

22、-5

23、-1

24、2或1

25、1____

26、-4

27、

28、点拨:原方程可化为,方程两边都

乘,得,解得,∵方程无解,

∴,∴,∴,解得.

分式方程无解的情况就是出现了增根,而这个增根产生的原因就是在

从分式方程转化为整式方程时方程两边都乘了个0,据此可以得出增

根的值,从而可以求得未知字母的值.

29、-1

30、-2或1

31、-1或0或

32、m >2且m≠3

33、答案:a<-1 且a≠-2;

34、a>1且a≠2

35、

36、m<8且m4。

37、

38、a<6且a≠4

39、

40、a≤-1且a≠-2

解分式方程及增根-无解的典型问题含答案

解分式方程及增根-无解的典型问题含答案 优博辅导中心 当堂检测 1. 解方程 1x?2?1?x2?x?3 答案:x?2是增根原方程无解。 2. 关于x的方程a1?2x?4?1?x4?x有增根,则a=-------答案:7 3. 解关于x 的方程 mx?5?1下列说法正确的是(C ) A.方程的解为x?m?5 B.当m??5时,方程的解 为正数 C.当m??5时,方程的解为负数 D.无法确定 4.若分式方程 x?ax?1?a无解,则a的值为-----------答案:1或-1 5. 若 分式方程 m?xx?1=1有增根,则m的值为-------------答案:-1 6.分 式方程1x?2?mx?1有增根,则增根为------------答案:2或-1 7. 关于x的方程1x?2?1?kx?2有增根,则k的值为-----------答 案:1 8. 若分式方程x?aa?a无解,则a的值是----------答 案:0 9.若分式方程2m?m?x1x?1?0无解,则m的取值是------答案:-1或-2 10. 若关于x的方程 m(x?1)?52x?1?m?3无解,则m的值为-------答案:6,10 11. 若关于x的方程

x?mx?1?3x?1无解,求m的值为-------答案: 12.解方程1162-x?x?2??x3x?12答案x??627 13.解方程 2x-1?4x2?1?0 14. 解方程 2x2x?5?22x?5?1 15. 解方程x?22x2x?3?3??13x2?9 x?1m216. 关于x的方程x?3?2x?6有增根,则m的值-----答案:m=2或-2 17.当a为何值时,关于x的分式方程 x?ax?1?3x?1无解。答案:-2或1 1

分式方程增根分类举例(含答案)

与分式方程根有关的问题分类举例 与分式方程的根有关的问题,在近年的中考试题中时有出现,现结合近年的中考题分类举例,介绍给读者,供学习、复习有关内容时参考。 1. 已知分式方程有增根,求字母系数的值 解答此类问题必须明确增根的意义: (1)增根是使所给分式方程分母为零的未知数的值。 (2)增根是将所给分式方程去分母后所得整式方程的根。 利用(1)可以确定出分式方程的增根,利用(2)可以求出分式方程有增根时的字母系数的值。 例1. (2000年潜江市) 使关于x 的方程a x x a x 2 2 24222-+-= -产生增根的a 的值是( ) A. 2 B. -2 C. ±2 D. 与a 无关 解:去分母并整理,得: () a x 2 240 1--=<> 因为原方程的增根为x =2,把x =2代入<1>,得a 2=4 所以a =±2 故应选C 。 例2. (1997年山东省) 若解分式方程2111 2x x m x x x x +-++=+产生增根,则m 的值是( ) A. -1或-2 B. -1或2 C. 1或2 D. 1或-2 解:去分母并整理,得: x x m 2220 1---=<> 又原方程的增根是x =0或x =-1,把x =0或x =-1分别代入<1>式,得: m =2或m =1 故应选C 。 例3. (2001年重庆市) 若关于x 的方程 ax x +--=1 110有增根,则a 的值为__________。 解:原方程可化为:()a x -+=<>120 1 又原方程的增根是x =1,把x =1代入<1>,得: a =-1 故应填“-1”。

例4. (2001年鄂州市) 关于x 的方程x x k x -=+ -323会产生增根,求k 的值。 解:原方程可化为:()x x k =-+<>231 又原方程的增根为x =3,把x =3代入<1>,得: k=3 例5. 当k 为何值时,解关于x 的方程:()()()115 111 2 x x k x x k x x -+-+=--只有增根x =1。 解:原方程可化为: ()()()()x k x k x ++--=-<>151112 把x =1代入<1>,得k=3 所以当k=3时,解已知方程只有增根x =1。 评注:由以上几例可知,解答此类问题的基本思路是: (1)将所给方程化为整式方程; (2)由所给方程确定增根(使分母为零的未知数的值或题目给出); (3)将增根代入变形后的整式方程,求出字母系数的值。 2. 已知分式方程根的情况,求字母系数的值或取值范围 例6. (2002年荆门市) 当k 的值为_________(填出一个值即可)时,方程x x k x x x -=--122只有一个实数根。 解:原方程可化为:x x k 220 1+-=<> 要原方程只有一个实数根,有下面两种情况: (1)当方程<1>有两个相等的实数根,且不为原方程的增根,所以由 ?=+=440k 得k=-1。当k=-1时,方程<1>的根为x x 121==-,符合题意。 (2)方程<1>有两个不相等的实数根且其中有一个是原方程的增根,所以由?=+>440k ,得k>-1。又原方程的增根为x =0或x =1,把x =0或x =1分别代入<1>得k=0,或k=3,均符合题意。 综上所述:可填“-1、0、3”中的任何一个即可。 例7. (2002年孝感市) 当m 为何值时,关于x 的方程211 1 2x x m x x x ---=+-无实根? 解:原方程可化为: x x m 220 1-+-=<>

初中数学·分式知识点归纳总结

分式知识点归纳 一、分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。 二、与分式有关的条件 ①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(???≠=0 0B A ) ④分式值为正或大于0:分子分母同号(???>>00B A 或? ??<<00B A ) ⑤分式值为负或小于0:分子分母异号(?? ?<>00B A 或???><00B A ) ⑥分式值为1:分子分母值相等(A=B ) ⑦分式值为-1:分子分母值互为相反数(A+B=0) 三、分式的基本性质 (1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:C B C ??=A B A ,C B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。 (2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:B B A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意 C ≠0这个限制条件和隐含条件B ≠0。 四、分式的约分 1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。 3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约 去分子分母相同因式的最低次幂。 ②分子分母若为多项式,先对分子分母进行因式分解,再约分。 4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。 ◆约分时。分子分母公因式的确定方法: 1)系数取分子、分母系数的最大公约数作为公因式的系数. 2)取各个公因式的最低次幂作为公因式的因式. 3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式. 五、分式的通分 1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。 (依据:分式的基本性质!) 2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 ◆通分时,最简公分母的确定方法: 1.系数取各个分母系数的最小公倍数作为最简公分母的系数. 2.取各个公因式的最高次幂作为最简公分母的因式. 3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.

关于分式方程增根问题

关于分式方程增根问题 一、选择题 1.分式方程=有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和﹣2 D 、3 2.已知关于x 的方程2+11a x x x =--有增根,则a 的值是( ) A .1 B . -1 C .0 D .2 3.若分式方程a x a x =-+1无解,则a 的值是 ( ) A.-1 B. 1 C. ±1 4.若分式方程2321--=+-x x a x 有增根,则a 的值是( ) .0 C 5.分式方程()()2111+-=--x x m x x 有增根,则m 的值为( ) A 、0和1 B 、1 C 、1和-2 D 、3 6.若分式方程244x a x x =+--有增根,则a 的值为( ) A .4 B .2 C .1 D .0 7.分式方程11x x --=()()12m x x -+有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和﹣2 D 、3 8.分式方程=--11x x )2)(1(+-x x m 有增根,则m 的值为 ( ) A. 0和3 B. 1 C. 1和-2 D. 3 9.若分式方程51 56-=+--x k x x (其中k 为常数)产生增根,则增根是 ( ) =6 =5 C.x=k D.无法确定 10.解关于x 的方程113 -=--x m x x 产生增根,则常数m 的值等于 ( ) B.-1 C.1 二、填空题 11.关于x 的分式方程244 21 2+=---x k x x 有增根x =-2,那么k= . 12.已知关于x 的分式方程a 1 =1x 2-+有增根,则a= .

13.方程133m x x =+++1若有增根,则增根一定是_________. 14.若关于x 的方程 2x m 2x 22x ++=--有增根,则m 的值是 15.若关于x 的方程22 21+-=--x m x x 产生增根,那么m 的值是 . 16.若分式方程 244 x a x x =+--有增根,则a 的值为______________. 17.若解分式方程4x m 4x 1x +=+-产生增根,则m =________. 18.若关于x 的分式方程 8128-++=-x m x x 有增根,则m = . 19.若关于x 的分式方程 113-=--x m x x 产生增根,则m 的值为 . 20.若关于x 的分式方程131=---x x a x 有增根,则a = . 21.若分式方程: 有增根,则k= . 22.若解分式方程4 4+=+x x 产生增根,则=m ________; 23.用去分母的方法,解关于x 的分式方程 8x x -=2+8 m x -有增根,则m = . 24.若去分母解分式方程 x-3x -2=x-3 m 时有增根,则m 的值为 ______. 25.如果关于x 的分式方程0111=----x x x m 有增根,则m 的值为 . 三、解答题 26.已知关于x 的分式方程2 233 x m x x -=--没有解,则m 可以取什么值 27.已知关于x 的方程x a x x x x x =---+2)2(42无解,求a 的值

分式方程有增根-无解-有解教学内容

分式方程有增根-无解 -有解

收集于网络,如有侵权请联系管理员删除 【分式方程有关内容】 解方程:(1) 4321222-=+--x x x (2)x x x -=+--23221 (3)11 4 112=---+x x x 注:可化为一元一次方程的分式方程可能有一个解,也可能无解。 增根:分式方程有增根满足两个条件 ①分式方程化为整式方程后是整式方程的解②使分式方程最简公分母为0的未知数的值 例题1:关于x 的分式方程) 1(163-+=-+x x m x x x 有增根,求m 的值 解题步骤整理: 练习:关于x 的分式方程 ) 1)(1(11-+=--x x m x x 有增根,求m 的值 分式方程无解:增根不等同于无解 分式方程无解:①分式方程化为整式方程后整式方程本身无解 ②整式方程的解使最简公分母为零是增根而舍去,无解 例题2:关于x 的分式方程13 1=---x x a x 无解,求a 的值 解题步骤整理: 练习:关于x 的分式方程x x x m 2 132=--+无解,求m 的值 例题3:关于x 的分式方程x x k x x -=-+2121有解,求k 的取值范围 解题步骤整理: 练习:关于x 的分式方程3 23-= --x m m x x 有解m 的取值范围 例题4:关于x 的分式方程11 2 =-+x m 的解为正数(非负数,负数,非正数), 求m 的取值范围 解题步骤整理: 关于x 的分式方程 11 2 =++x a 的解为非正数,求a 的取值范围 能力提升: 2.若关于x 的分式方程 ) 1)(2(21221+-+=+----x x a x x x x x 的解是正数,求a 的取值范围? 3.若关于x 的方程 1 15= ++m 无解,求m 的值? 5.关于x 的分式方程 0) 1(163=-+--+x x m x x x 有解,求k 的取值范围?

初中数学分式随堂练习40

初中数学分式随堂练习40 一、选择题(共5小题;共25分) 1. 下列各式与相等的是 A. B. D. 2. 若,,,则,,大小关系是 A. B. C. D. 3. 为保证达万高速公路在年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲 队单独完成这项工程比规定时间多用天,乙队单独完成这项工程比规定时间多用天,如果甲、乙两队合作,可比规定时间提前天完成任务.若设规定的时间为天,由题意列出的方 程是 A. B. C. D. 4. 若为整数,且的值也为整数,则所有符合条件的的值有 A. 个 B. 个 C. 个 D. 个 5. 已知关于的分式方程的解是非负数,那么的取值范围是 A. B. C. 且 D. 二、填空题(共4小题;共20分) 6. 要使有意义,则实数的取值范围是. 7. 一种病毒的直径为米,用科学记数法表示为米. 8. 如果,那么的结果是. 9. 年月,全球首个火车站在上海虹桥火车站启动.虹桥火车站中网络峰值速率为 网络峰值速率的倍.在峰值速率下传输千兆数据,网络比网络快秒,求这两种网络的峰值速率.设网络的峰值速率为每秒传输千兆数据,依题意,可列方程为. 三、解答题(共4小题;共52分) 10. 阅读下列材料:

方程的解是;的解是;的解是; (即)的解是. 观察上述方程与解的特征,猜想关于的方程的解,并利用“方程的解” 的概念进行验证. 11. 求下列各分式的值: (1),其中. (2),其中,. 12. 计算:. 13. 阅读下面材料,并解答问题. 材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式. 【解析】 由分母为,可设,则 对应任意,上述等式均成立, ,, 这样,分式被拆分成了一个整式与一个分式的和. 解答: (1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式. (2)直接写出时,的最小值为.

分式方程解法知识讲解

16.3《分式方程解法》说课稿 《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为数学教学主导,在设计数学活动时要遵循以下原则:一、根据学生的年龄特征和认知特点组织教学。二、重视培养学生的应用意识和实践能力。1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。2、培养学生应用数学的意识和提高解决问题的能力。三、重视引导学生自主探索,培养学生的创新精神。1、引导学生动手实践、自主探索和合作交流。2、鼓励学生解决问题策略的多样化。 四、教师对教学目标,难点,重点把握要恰当、具体。 数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。 一、设计思想: 数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富 和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。

分式方程增根问题八年级数学

关于分式方程增根 问题 一、选择题 1.分式方程=有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和﹣2 D 、3 2.已知关于x 的方程2+11a x x x =--有增根,则a 的值是( ) A .1 B . -1 C .0 D .2 3.若分式方程a x a x =-+1无解,则a 的值是 ( ) A.-1 B. 1 C. ±1 4.若分式方程2321--=+-x x a x 有增根,则a 的值是( ) .0 C 5.分式方程()()2111+-=--x x m x x 有增根,则m 的值为( ) A 、0和1 B 、1 C 、1和-2 D 、3 6.若分式方程244x a x x =+--有增根,则a 的值为( ) A .4 B .2 C .1 D .0 7.分式方程11x x --=()()12m x x -+有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和﹣2 D 、3 8.分式方程=--11x x )2)(1(+-x x m 有增根,则m 的值为 ( ) A. 0和3 B. 1 C. 1和-2 D. 3 9.若分式方程51 56-=+--x k x x (其中k 为常数)产生增根,则增根是 ( ) =6 =5 C.x=k D.无法确定 10.解关于x 的方程113-=--x m x x 产生增根,则常数m 的值等于 ( ) B.-1 C.1 二、填空题 11.关于x 的分式方程24421 2+=---x k x x 有增根x =-2,那么k= .

12.已知关于x 的分式方程a 1=1x 2-+有增根,则a= . 13.方程133m x x =+++1若有增根,则增根一定是_________. 14.若关于x 的方程 2x m 2x 22x ++=--有增根,则m 的值是 15.若关于x 的方程22 21+-=--x m x x 产生增根,那么m 的值是 . 16.若分式方程 244 x a x x =+--有增根,则a 的值为______________. 17.若解分式方程4x m 4x 1x +=+-产生增根,则m =________. 18.若关于x 的分式方程 8128-++=-x m x x 有增根,则m = . 19.若关于x 的分式方程 113-=--x m x x 产生增根,则m 的值为 . 20.若关于x 的分式方程 131=---x x a x 有增根,则a = . 21.若分式方程: 有增根,则k= . 22.若解分式方程4 4+=+x x 产生增根,则=m ________; 23.用去分母的方法,解关于x 的分式方程 8x x -=2+8 m x -有增根,则m = . 24.若去分母解分式方程x-3x -2=x-3 m 时有增根,则m 的值为 ______. 25.如果关于x 的分式方程01 11=----x x x m 有增根,则m 的值为 . 三、解答题 26.已知关于x 的分式方程2 233 x m x x -=--没有解,则m 可以取什么值? 27.已知关于x 的方程x a x x x x x =---+2)2(42无解,求a 的值?

中考数学专项练习分式方程的增根(含解析)

中考数学专项练习分式方程的增根(含解析)【一】单项选择题 1.以下关于分式方程增根的说法正确的选项是〔〕 A.使所有的分母的值都为零的解是增 根 B.分式方程的解为零就是增根 C.使分子的值为零的解就是增 根 D.使最简公分母的值为零的解是增根 2.解关于x的方程产生增根,那么常数的值等于〔〕 A.- 1 B.- 2 C.1 D.2 3.关于x的方程﹣=0有增根,那么m的值是〔〕 A.2 B.- 2 C.1 D.-1 4.假设关于x的分式方程有增根,那么k的值是〔〕

A.- 1 B.- 2 C.2 D.1 5.假设关于x的分式方程?m=无解,那么m的值为〔〕 A.m= 3 B.m= C.m= 1 D.m=1或 6.解关于x的方程=产生增根,那么常数m的值等于〔〕 A.-1 B.-2 C.1 D.2 7.如果关于x的方程无解,那么m等于〔〕 A.3

B.4 C.- 3 D.5 8.分式方程+1=有增根,那么m的值为〔) A.0和 2 B.1 C.2 D.0 9.解关于x的分式方程时不会产生增根,那么m的取值是〔〕 A.m≠ 1 B.m≠﹣ 1 C.m≠ D.m≠±1 10.假设解分式方程产生增根,那么m的值是〔〕 A.或 B.或 2 C.1或 2 D.1或

11.假设关于x的分式方程+ =1有增根,那么m的值是〔〕 A.m=0或m= 3 B.m= 3 C.m= D.m=﹣1 12.以下说法中正确的说法有〔〕 〔1〕解分式方程一定会产生增根;〔2〕方程=0的根为x=2;〔3〕x+ =1+ 是分式方程. A.0 个 B.1 个 C.2 个 D.3个 13.假设关于x的方程有增根,求a的值〔〕 A.0 B.- 1 C.1 D.-2 【二】填空题

初中数学分式专题.

分式化简、解分式方程和应用题三个重要问题 一、分式化简 1. 在分式的运算中,有整式时,可以把整式看做分母为1的式子,然后再计算。 2. 要注意运算顺序,先乘方、再乘除、后加减,同级运算从左到右(谁在前先 算谁)依次进行。有括号的先算括号里面的 3. 如果分式的分子分母是多项式,可先分解因式,再运算。 4. 注意分式化简题不能去分母. 1.先化简,再求值:23393 x x x ++--,其中1x =-. 2.先化简,再求值 4 421642++-÷-x x x x ,其中 x = 3 . 3.先化简,再求值:22424412x x x x x x x -+÷--++-,其中x =2-2. 4.计算:2228224a a a a a a +-??+÷ ?--?? 5.化简: 35(2)482y y y y -÷+---

6.化简,: 2211()22x y x y x x y x +--++, 7.先化简,再求值:211122 x x x -??-÷ ?++??,其中2x =. 8.计算:22221(1)121 a a a a a a +-÷+---+. 二.分式方程: 解分式方程的步骤: 1、去分母,化分式方程为整式方程两边同乘 以最简公分母,分子要括起来, 2、解整式方程-------去括号、移项、合并同类项、系数化为1 3、检验-------带入最简公分母,若为零,则为増根,应舍去。 1、解分式方程: 2131 x x =--. 2、解方程223-=x x

3、解分式方程: 3131=---x x x 4、解方程: 22333x x x -+=-- 5、解方程 22111x x =--- 6、解方程: x x x -=+--23123. 7、解分式方程: 6122x x x +=-+ 8、 解方程33122x x x -+=--.

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

分式方程及其增根问题

分式方程及其增根问题 解分式方程的基本方法是通过去分母把分式方程转化为整式方程,解分式方程时,有可能产生增根(使方程中有的分母为零的根),因此解分式方程要验根(其方法是把求得的根代入最简公分母中,使分母为零的是增根,否则不是). 【例1】解方程 . 解:方程两边同乘x(x+1),得5x-4(x+1)=0. 化简,得x-4=0. 解得x=4. 检验:当x=4时,x(x+1)=4×(4+1)=20≠0, ∴x=4是原方程的解. 【例2】解方程 解:原方程可化为, 方程两边同乘(x+1)(x-1),得(x+1)2-4=(x+1)(x-1). 化简,得2x-3=-1.解得x=1. 检验:x=1时(x+1)(x-1)=0,x=1不是原分式方程的解,所以原分式方程无解. 【小结】去分母时,方程两边同乘以最简公分母,不能漏乘常数项. 【例3】解方程 . 解:原方程可变形为 .

解得x=. 检验:当x=时,(x-7)(x-5)(x-6)(x-4)≠0, 所以x=是原方程的解. 【小结】此题若直接去分母,就会出现三次式,且计算较为复杂,该类型题的简单解法为:只把方程等号两边转化为两个分式之差,且等号两边分母的差相等;再把方程等号两边的分式分别通分,会得到两个同分子的分式相等,从而得分母相等,此解法叫做“分组通分法”. 【例4】若关于x的方程有增根x=-1,求k的值. 解:原方程可化为 . 方程两边同乘x(x+1)(x-1)得 x(k-1)-(x+1)=(k-5)(x-1). 化简,得3x=6-k. 当x=-1时有3×(-1)=6-k,∴k=9. 【小结】因为增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.

分式方程中的增根问题

2.4-2 分式方程中的增根问题 【学习目标】 1.知道分式方程的增根及产生增根的原因. 2.已知增根会求待定系数的值. 【核心知识】分式方程产生增根的原因;知识核心:已知增根会求待定系数的值.学习过程 一、知识链接 1.什么是分式方程?解分式方程的关键是什么?应该注意哪些问题 2.解方程: (1) 105 2 2112 x x += --(2)2 2 1 2 2 2 + - = + + x x x 二、新课学习 探究一分式方程产生增根的原因 1.看书39页议一议,思考问题: (1)产生增根的原因是什么? (2)什么是原方程的增根?(在书上画出、小组讨论) (3)如何检验? 点拨:(1)产生增根的原因:我们在方程两边乘以一个不为零的整式,扩大了值域. (2)解分式方程去分母时,方程两边都乘以各分母的最简公分母,检验时可代入最简公分母看是否为零. 2.课本例2,(学生尝试在练习本上做,不会可参考课本上的过程) 3.练习:做课本40页的随堂练习(找学生板演,其他学生做课堂练习本上) 探究二已知增根求待定系数的值. 1.若方程 x x-3 -2= k x-3 有增根,试求k的值. (学生先独立做,讨论解题思路) 点拨:解这类题的一般步骤:(1)把分式方程化成整式方程(2)令最简公分母为0,求出求出x的值(3)把x的值代入整式方程,求出字母系数的值. 2.练习:若方程 2 2 2 2 = - + + -x m x x有增根,试求m的值。

三、课堂达标 1.若方程 的解是非正数,求a 的取值范围. 2.若方程x x -3 -2=k x -3 有增根,试求k 的值. 四、课堂小结,回顾思考 1.解分式方程的解的两种情况: 所得的根是原方程的根、②所得的根不是原方程的根 2.原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根 3.产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了一个不为零的整式,扩大了值域. 4.验根:把求得的根代入最简公分母,看它的值是否为零。使最简公分母值为零的根是增根. 5.解这类题的一般步骤:(1)把分式方程化成整式方程. (2)令公分母为0,求出求出x 的值. (3)把x 的值代入整式方程,求出字母系数的值. 课外训练 【基础达标】 1.当m 为何值时,关于x 的方程234222+=-+-x x mx x 会产生增根? 2.如果分式方程11(2)a x x x -=-有增根x=0.求a 的值. 3.若方程有 918332-=--+x x x x x 增根,求增根x.

初中数学分式化解求值解题技巧大全

化简求值常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果12x x + =,则 24 2 1 x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2x ,得 原式=. 2 2 2 2 11111121 3 1()1 x x x x == = -++ + -. 2、倒数法 例2 如果12x x + =,则 24 2 1 x x x ++的值是多少? 解:将待求分式取倒数,得 4 2 2 22 2 2 1 111()1213x x x x x x x ++=+ +=+ -=-= ∴原式=13 . 3、平方法 例3 已知12x x + =,则2 2 1x x + 的值是多少? 解:两边同时平方,得 2 2 2 2 1124,42 2.x x x x ++ =∴+ =-= 4、设参数法 例4 已知 0235 a b c ==≠,求分式 2 2 2 2323ab bc ac a b c +-+-的值. 解:设 235a b c k ===,则 2,3,5a k b k c k ===. ∴原式= 22 2 2 2 2323532566.(2)2(3)3(5) 5353 k k k k k k k k k k k ?+??-??= =- +-- 例5 已知 ,a b c b c a ==求 a b c a b c +--+的值. 解:设 a b c k b c a = ==,则 ,,.a bk b ck c ak ===

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

分式方程——增根与无解

分式方程中的增根与无解 考点1解分式方程 (1)=+1 (2)+= 考点2增根 1.若关于x的方程有增根,试求k的值. 2.若关于x的方程+=2有增根,求增根和m的值? 3.解关于x的分式方程时不会产生增根,则m的取值是( ) A.m≠1?B.m≠﹣1C.m≠0? D.m≠±1 4.已知关于x的方程﹣=0的增根是1,则字母a的取值为() A.2B.﹣2?C.1 D.﹣1

1.当a=时,关于x的方程ax=1无解;当m= 时,关于x的方程(m-1)x=5无解;当时,关于x的二元一次方程ax2+bx+c=0无解。 2.若关于x的方程=6+无解,求m的值? 3.当a为何值时,关于x的方程﹣=1无解? 考点4有解 1.当a= 时,关于x的方程ax=1有解,解为;当m=时,关于x的方程(m-1)x=5有解,解为;当时,关于x的二元一次方程ax2+bx+c=0有解,解为。 1.已知x=3是分式方程﹣=2的解,那么实数k的值为() A.﹣1 B.0 C.1?D.2 2.已知关于x的方程有正根,则实数a的取值范围是() A.a<0且a≠﹣3? B.a>0?C.a<﹣3 D.a<3且a≠﹣3 3.若关于x的分式方程+=1有非负数解,求m的取值范围.

1.如果不等式组恰有3个整数解,则a的取值范围是() A.a≤﹣1 B.a<﹣1?C.﹣2≤a<﹣1 D.﹣2<a≤﹣1 2.已知关于x的不等式组有且只有1个整数解,则a的取值范围是() A.a>0 B.0≤a<1 C.0<a≤1 D.a≤1 3.已知,关于x的分式方程有增根,且关于x的不等式组只有4个整数解,那么b的取值范围是() A.﹣10恰有两个负整数解,则b的取值范围是()

初中数学分式方程典型例题讲解

a c=ac,b a c= a p a0=1形如 A 【例1】下列代数式中:x1 x-y ,是分式的有:.π2 x-y,a+b , x+y , (1)x-4 x+4 (2) x2+2 (3) x2-1 (4)|x|-3 (5) a=“ ± . a±ac=bc±da(a≠0,c≠0); 第十六章分式知识点和典型例习题 3.分式的乘法与除法:b ? d bd a÷ c d= b d bd ? ac 【知识网络】 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m●a n=a m+n;a m÷a n=a m-n 6.积的乘方与幂的乘方:(ab)m=a m b n,(a m) n= 7.负指数幂:a-p=1 a mn 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:b c b±c(a≠0) a a 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: B(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.其中A叫做分式的分子,B 叫做分式的分母. 1 a-b x2-y2x+y , 题型二:考查分式有意义的条件:在分式中,分母的值不能是零如果分母的值是零,则分式没 有意义. 【例2】当x有何值时,下列分式有意义 3x26-x1 x-1 x 2.异分母加减法则:b d bc c=ac± da ac题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

分式方程解法与增根

分式方程(一) 1.分式方程主要是看分母是否有外未知数; 2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母. 3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数. 例题1 下列方程中,哪些是分式方程? ①5(x+1)+x=10 ②21=y ③ 3 21x x -= +π ④42213+-+y y ⑤()x x 33221 =- ⑥ 1212=+y x 例题2 解下列分式方程 (1) x x 311=-; (2) x x x 38741836---=- (3)112112++=++-x x x x ; (4) 11 4 112=---+x x x ; (5) 021211=-++-x x x x ; (6) 22 3 22=--+x x x ; (7) 1 71372 22 2 --+ =-- +x x x x x x (8) 2 1 23524245--+=--x x x x

(9) 01 1 2212 =-++--x x x x (10) 8 6871252652 22 +--=---+-+x x x x x x x x x (11) 12 752352 2+--=+--x x x x x x 例题3:解分式方程: (1) 4 1 215111+++=+++x x x x (2) 8 7 329821+++++=+++++x x x x x x x x (3) )(11b a x b b x a a ≠+=+ (4) ) 1999x )(1998x (1 .....)3x )(2x (1)2x )(1x (1)1x (x 1+++ ++++++++ 并求当x=1时,该代数式的值 (5)若关于x 的分式方程9 13 23322 2---=+-x x x a 的解是x=4,则a 的值是多少?

初中数学分式专题

1 分式化简、解分式方程和应用题三个重要问题 一、分式化简 1. 在分式的运算中,有整式时,可以把整式看做分母为1的式子,然后再计 算。 2. 要注意运算顺序,先乘方、再乘除、后加减,同级运算从左到右(谁在前先 算谁)依次进行。有括号的先算括号里面的 3. 如果分式的分子分母是多项式,可先分解因式,再运算。 4. 注意分式化简题不能去分母. 1.先化简,再求值:23393 x x x ++--,其中1x =-. 2.先化简,再求值 4 421642++-÷-x x x x ,其中 x = 3 . 3.先化简,再求值:22424412x x x x x x x -+÷--++-,其中x =2-2. 4.计算:2228224a a a a a a +-??+÷ ?--?? 5.化简: 35(2)482y y y y -÷+---

2 6.化简,: 2211()22x y x y x x y x +--++, 7.先化简,再求值:211122 x x x -??-÷ ?++??,其中2x =. 8.计算:22221(1)121 a a a a a a +-÷+---+. 二.分式方程: 解分式方程的步骤: 1、去分母,化分式方程为整式方程两边同乘 以最简公分母,分子要括起来, 2、解整式方程-------去括号、移项、合并同类项、系数化为1 3、检验-------带入最简公分母,若为零,则为増根,应舍去。 1、解分式方程: 2131 x x =--. 2、解方程223-=x x

3 3、解分式方程:313 1=---x x x 4、解方程:22 333x x x -+=-- 5、解方程22 1 11x x =--- 6、解方程:x x x -=+--23 123. 7、解分式方程:6 122x x x +=-+

相关文档
最新文档