信号的统计检测与估计理论

第1章随机信号概论特征函数随机过程统计特性

1.4 随机变量的特征函数 引言:分布函数:反映随机变量的统计规律性。 数字特征:反映、掌握分布函数的某些特征。矩是最主要的特征,但随着矩的阶数的 增高,计算机较麻烦,寻求一种有效的方法来计算。 特征函数:一种计算各阶矩的有效工具。特别是计算、处理多个随机变量,特征函数 显示其优越性一。 1.4.1 特征函数的定义 (1) 设X 是定义在概率空间),,(P F S 上的随机变量,它的分布函数为)(x F ,称juX e 的 数学期望)(juX e E 为X 的特征函数,记为)(u C X 。 当X 为离散型随机变量时,其特征函数为: ∑∞ ====1 )()()(i i jux juX X x X P e e E u C i 当X 为连续型随机变量时,其特征函数为: ?+∞ ∞ -==dx x p e e E u C jux juX X )()()( (2) 利用特征函数求概率密度函数 ? +∞ ∞ --= du u C e x p X jux )(21 )(π 证明:利用傅里叶变换与反变换关系可证明。 举例: 例1:求标准正态分布)1,0(N 的特征函数。 2 2 2221)()(u jux x juX X e dx e e e E u C - ∞ +∞ -- ===? π 1.4.2 特征函数的性质 (1) 1)(≤u C X 1)0(=X C (2) 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积,即: 若∑== n k k X Y 1 ,式中n X X X Λ,,21为n 个两两相互独立的随机变量,则 ∏==n k X Y u C u C k 1 )()(

信号检测与估计理论简答

信号检测与估计理论简答题 1.维纳滤波器与卡尔曼滤波器的区别 维纳滤波器: 1)只用于平稳随机过程。 2)该系统常称为最佳线性滤波器。它根据全部过去和当前的观测信号来估计信号的波形,它的解是以均方误差最小条件所得到的系统的传递函数H(Z)的形式给出的。 3)信号和噪声是用相关函数表示的。 卡尔曼滤波器: 1)平稳随机过程和不平稳随机过程均适用。 2)该系统常称为线性最优滤波器。它不需要全部过去的观测数据,可根据前一个的估计值和最近的观察数据来估计信号的当前值,它是用状态方程和递推方法进行估计的,其解是以估计的形式给出的。 3)信号和噪声是用状态方程和测量方程表示的。 2.解释白噪声情况下正交函数集的任意性 设)0)(()()(T t t n t s t x ≤≤+=中,噪声n(t)是零均值、功率谱密度为2/)(0N w P n =的白噪声,其自相关函数)(2)(0 u t N u t r n -= -δ。于是,任意取正交函数集)()},({t x t f k 的展 开系数 j x 和 k x (k=1,2,…)的协方差为 )])([(k k j j s x s x E --] )()()()([00??=T k j T du u f u n dt t f t n E ????????=T T k j dt du u f u n t n E t f 00)()]()([)(? ???????-=T T k j dt du u f u t t f N 0 00)()()(2 δjk k T j N dt t f t f N δ2 )()(2 = =? 当k j ≠时,协方差0 )])([(=--k k j j s x s x E ,这说明,在n(t)是白噪声的条件下,取任 意正交函数集)}({t f k 对平稳随机过程k x (k=1,2,…)之间都是互不相关的。这就是白噪声条件下正交函数集的任意性。 3.请说明非随机参量的任意无偏估计量的克拉美-罗不等式去等号成立的条件和用途 克拉美-罗不等式] )),(ln [(1 ])?[(2 2θ θθ θ??≥-x p E E 或 )] ),(ln [(1 ])?[(22 2θθθ θ??-≥-x p E E 当且仅当对 所有的x 和θ 都满足 k x p )?(),(ln θ θθθ-=??时,不等式去等号成立。其中k 是任意非零常 数。 用途:当不等式去等号的条件成立时,均方误差取克拉美-罗界,估计量θ? 是无偏有效的。以此,随机参量下的克拉美-罗不等式和取等号的条件可用来检验随机参量θ的任意无偏估计量θ? 是否有效。若估计量无偏有效,则其均方误差可由计算克拉美-罗界求得。 4.简述最小的均方误差估计与线性最小均方误差估计的关系。 在贝叶斯估计中讨论的随机矢量θ的最小均方误差估计,估计矢量mse θ可以是观测矢

统计信号分析与处理报告

XCXDFSEWRV 中国地质大学(武汉) 统计信号分析处理报告 小组成员: 魏彦斌马全林陈飞 班号: 075132 _ 院系:__机电学院 专业:_通信工程 指导教师:_侯强老师

一实验内容 实验一、地震时间间隔的密度估计; 实验二、地震震级与频度回归分析; 实验三、地震空间分布聚类分析; 实验四、地震优势深度聚类分析; 二.实验要求及结果。 实验一、地震时间间隔的密度估计; 读入数据后,把时间列(第一二列)转换成数据格式,然后分:3级以下,3到4级,4到5级,5到6级,6级以上等6个部分分别计算地震之间的时间差t,这个t就是地震时间间隔,而且是一个随机变量,对t这个随机变量进行密度估计。

代码:%%

clear all;close all; clc; filename = '中国地震台网(CSN)地震目录(1970-01-01至2015-09-31).xls'; sheet = 1; xRange = 'A5:A8462'; % xRange = 'A3:A8462'; x2Range = 'B5:B8462'; % x2Range = 'B3:B8462'; yRange = 'H3:H8462'; % [~,x]= xlsread(filename, sheet, xRange); % [~,x2] = xlsread(filename, sheet, x2Range); [~,x]= xlsread(filename, sheet, xRange); [ttt,x2] = xlsread(filename, sheet, x2Range); ml= xlsread(filename, sheet, yRange); %读取数据 %% X = x(~isnan(ml)); X2 = x2(~isnan(ml)); n = length(X2); %去掉无数据的日期和时间 for i = 1:n %将日期时间转化为数值形式 Xyy(i) = str2double(X{i}(1:4)); %年 Xmm(i) = str2double(X{i}(6:7)); %月 Xdd(i) = str2double(X{i}(9:10)); %日 XHH(i) = str2double(X2{i}(1:2)); %时 XMM(i) = str2double(X2{i}(4:5)); %分 XSS(i) = str2double(X2{i}(7:8)); %秒 end xx = datenum(Xyy,Xmm,Xdd,XHH,XMM,XSS); %将时间转化为数值形式ML = ml(~isnan(ml) ); %去掉无数据项 a=1; b=1;c=1;d=1; e=1; for i=1:n if ML(i)<=3.0 t_3(a)=xx(i); a=a+1; elseif ML(i)>3.0&&ML(i)<=4.0 t_34(b)=xx(i);

《信号检测与估计》总复习

《信号检测与估计》总复习 2005.4 第一章 绪 论 本章提要 本章简要介绍了信号检测与估计理论的地位作用、研究对象和发展历程,以及本课程的性能和主要内容等。 第二章 随机信号及其统计描述 本章提要 本章简要阐述了随机过程的基本概念、统计描述方法,介绍了高斯噪声和白噪声及其统计特性。 本章小结 (1)概率分布函数是描述随机过程统计特性的一个重要参数,既适用于离散随机过程,也适用于连续随机过程。一维概率分布函数具有如下性质 1),(0≤≤t x F X []0)(),(=-∞<=-∞t X P t F X ; []1)(),(=+∞<=+∞t X P t F X ; ),(),())((1221t x F t x F x t X x P X X -=<≤; 若 21x x <,则),(),(12t x F t x F X X ≥ 概率密度函数可以直接给出随机变量取各个可能值的概率大小,仅适用于连续随机变量。一维概率密度具有如下性质: 0),(≥t x f X ; 1 ),(=? +∞ ∞ -dx t x f X ; x d t x f t x F x X X ' '=? ∞ -),(),(; []?=-=<≤2 1 ),(),(),()(1221x x X X X dx t x f t x F t x F x t X x P (2)随机过程的数字特征主要包括数学期望、方差、自相关函数、协方差函数和功率谱密度。分别描述了随机过程样本函数围绕的中心,偏离中心的程度、样本波形两个不同时刻的相关程度、样本波形起伏量在两个不同时刻的相关程度和平均功率在不同频率上的分布情况。定义公式分别为: []dx t x xf t X E t m X X ?+∞ ∞ -==),()()( []{} []dx t x f t m x t m t X E t X X X X ? +∞ ∞ --=-=),()()()()(2 22 σ []2 12121212121),,,()()(),(dx dx t t x x f x x t X t X E t t R X X ? ? +∞∞-+∞ ∞ -== [][]{} [][]2 121212211 221121),,,()()()()()()(),(dx dx t t x x f t m x t m x t m t X t m t X E t t C X X X X X X ? ?∞+∞-∞+∞ ---=--=

统计信号处理实验四东南大学

统计信号处理 实验四 《统计信号处理》实验四 目的: 掌握自适应滤波的原理; 内容一: 假设一个接收到的信号为:x(t)=s(t)+n(t), 其中s(t)=A*cos(wt+a), 已知信号的频率w=1KHz,而信号的幅度和相位未知,n(t)是一个服从N(0,1)分布的白噪声。为了利用计算机对信号进行处理,将信号按10KHz的频率进行采样。 1) 通过对x(t)进行自适应信号处理,从接收信号中滤出有用信号s(t); 2)观察自适应信号处理的权系数; 3)观察的滤波结果在不同的收敛因子u下的结果,并进行分析; 4)观察不同的抽头数N对滤波结果的影响,并进行分析; 内容二: 在实验一的基础上,假设信号的频率也未知,重复实验一; 内容三: 假设s(t)是任意一个峰峰值不超过1的信号(取幅度为的方波),n(t)是一个加在信号

中的幅度和相位未知的,频率已知的50Hz单频干扰信号(假设幅度为1)。信号取样频率1KHz,试通过自适应信号处理从接收信号中滤出有用信号s(t)。 要求: 1)给出自适应滤波器结构图; 2)设计仿真计算的Matlab程序,给出软件清单; 3)完成实验报告,对实验过程进行描述,并给出试验结果,对实验数据进行分析。实验过程: 1、假设一个接收到的信号为:d(t)=s(t)+n(t), 其中s(t)=A*cos(wt+a), 已知信号的频率w=1KHz,而信号的幅度和相位未知,n(t)是一个服从N(0,1)分布的白噪声。为了利用计算机对信号进行处理,将信号按10KHz的频率进行采样。 1)参考信号d(k)=s(k)+n(k),s(k)=A*cos(wk+a),产生一个与载波信号具有相同频率的正弦信号作为输入信号() x k,即x(k)=cos(wk)。经过自适应处理后,就可以在输出信号() y k端得到正确的载波信号(包含相位和幅度)。 框图如下: 2)改变收敛因子 μ,观察滤波结果。 3)改变滤波器抽头数N,观察滤波结果。 2、在实验一的基础上,假设信号的频率也未知,重复实验一。 参考信号d(k)=s(k)+n(k),s(k)=A*cos(wk+a),将参考信号延时一段时间后得到的信号作为输入信号() x k,即x(k)=d(k-m)。经过自适应处理后,就可以在误差输出端y(k)得到正确的载波信号(包含频率、相位和幅度)。 3、假设s(t)是任意一个峰峰值不超过1的信号(取幅度为的方波),n(t)是一个加在信号中的幅度和相位未知的,频率已知的50Hz单频干扰信号(可以假设幅度为1)。信号取样频率1KHz,试通过自适应信号处理从接收信号中滤出有用信号s(t)。 我们可以使用陷波滤波器对噪声进行滤除,但普通滤波器一旦做成,其陷波频率难以调整。如果使用自适应陷波滤波器,不仅可以消除单频干扰,而且可以跟踪干扰的频率变化,持续消噪。 自适应陷波滤波器的原理框图如下图所示: 假如输入信号是一个纯余弦信号 () cos C t ω? + ,则可将其分为两路,将其中一路进行

随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法; 2、实现随机序列的数字特征估计。 二、实验原理 1. 随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: N y x N ky Mod y y n n n n /))((110===-, (1.1) 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: (1) 7101057k 10?≈==,周期,N ; (2) (IBM 随机数发生器)8163110532k 2?≈+==,周期,N ; (3) (ran0)95311027k 12?≈=-=,周期,N ; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有

)(1R F X x -= (1.2) 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。 2. MATLAB 中产生随机序列的函数 (1) (0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生m ×n 的均匀分布随机数矩阵。 (2) 正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m ×n 的标准正态分布随机数矩阵。 如果要产生服从2N(,)μσ分布的随机序列,则可以由标准正态随机序列产生。 (3) 其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。 MATLAB 中产生随机数的一些函数 表1.1 MATLAB 中产生随机数的一些函数 3、随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X (n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。那么,X (n)的均值、方差和自相关函数的估计为

信号检测与估计模拟试卷

XXX 大学(学院)试卷 《信号检测与估计》试卷 第 1 页 共 2 页 《信号检测与估计》模拟试卷 一、(10分)名词解释(每小题2分) 1.匹配滤波器 2.多重信号 3.序列检测 4.非参量检测 5.最佳线性滤波 二、(10分)简述二元确知信号检测应用贝叶斯、最大后验概率、极大极小、纽曼-皮尔逊及最大似然准则的条件及确定门限的方法。 三、(10分)简述信号参量估计的贝叶斯估计、最大后验估计、最大似然估计、线性最小均方误差估计及最小二乘估计的最佳准则及应用条件。 四、(10分)概述高斯白噪声情况下的信号检测和高斯色噪声情况下信号检测所采用方法的特点。 五、(10分)设线性滤波器的输入为)()()(t n t s t x +=,其中)(t n 是功率谱密度为2/0N 的白噪声,信号为 ???><≤≤=0 0,000)(ττt t t t t s 对输入)(t x 的观测时间为),0(T ,且0τ>T 。(1)试求匹配滤波器的冲激响应及对应于)(t s 的输出信号。(2)求匹配滤波器输出的信噪比。 六、(10分)一个三元通信系统的接收机观测到的样本为n s x i +=,3,2,1=i 。其中,i s 是发射信号,n 是均值为0、方差为的2σ高斯白噪声。i s 取值分别为5、6和7,分别对应假设1H 、2H 和3H ,并且所有假设的先验概率相等。根据一次观测样本进行检测判决,(1)确定检测判决式和判决区域;(2)求最小平均错误概率。 七、(10分)在T t ≤≤0时间范围内,二元通信系统发送的二元信号为0)(0=t s ,)()(1t As t s =,其中,)(t s 是能量归一化确知信号;A 是正的确知常量,并假定发送两种信号的先验概率相等。信号在信道传输中叠加了均值为0、功率谱密度为2/0N 的高斯白噪声)(t n 。(1)试确定信号最佳检测的判决式。(2)画出最佳检测系统的结构。 八、(15分)设观测方程为k k n b a x +=,M k ,,2,1 =,其中a 和b 是非随机参量,k n 是均值为0、方差为1的高斯随机变量,且观测样本M x x x ,,,21 之间互不相关。(1)试求参量a 和b 的最大似然估计ML ?a 和ML ?b ;(2)分析最大似然估计ML ?a 和ML ?b 的有效性。 九、(15分)设目标以匀速度v 从原点开始做直线运动,速度v 受到时变噪声k w 扰动。现以等时间间隙T 对目标的距离r 进行直接测量,并且距离r 测量受到测距的观测噪声k n 的影响。假设在0=t 时刻开始,目标位于原点,观测时间间隔s 2=T 。目标在原点时,距离0r 的均值km 0][0=r E ,方差为220)km (2=r σ;速度0v 的均值km/s 3.0][0=v E ,方差为 220)km/s (2.0=v σ。速度扰动噪声k w 是均值为0、方差为22)km/s (2.0=w σ的白噪声随机序列。观测噪声k n 是均值为0、方差为22)km (8.0=n σ的白噪声随机序列,且与速度扰动噪声k w 不相 关。速度扰动噪声k w 、观测噪声k n 与目标初始状态),(00v r 彼此互不相关。如果运动目标距离的

信号检测与估计理论第一章习题讲解

1-9 已知随机变量X 的分布函数为 2 0, 0(),01 1,1 X x F x kx x x ? 求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。 解: 第①问 利用()X F x 右连续的性质 k =1 第②问 {} {}{}()()0.30.70.30 .70.70 .3 0.7P X P X F P X F =<< =<≤-=- 第③问 201()()0 X X x x d F x f x else dx ≤

1-10已知随机变量X 的概率密度为()()x X f x ke x -=-∞<<+∞(拉 普拉斯分布),求: ①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()1 1 2 f x d x k ∞ -∞==? 第②问 { }()( )()2 1 1 221x x P x X x F x F x f x d x <≤ =-=? 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。 {}{}()() 1 0101011 12 P X P X f x dx e -<<=<≤==-? 第③问 ()102 10 2 x x e x f x e x -?≤??=? ?>?? ()00()1100 2 2 111010 2 22 x x x x x x x x F x f x dx e dx x e x e dx e dx x e x -∞ -∞---∞=??≤≤??? ?==????+>->????? ???

随机信号统计特性分析

实验一、随机信号统计特性分析 学生姓名刘冰 学院名称精密仪器与光电子工程 专业生物医学工程 学号3010202286

一、实验目的 随机信号是生物医学信号处理软件调试所必须的信号。通过本实验,了解一种伪随机信号产生的方法,及伪随机信号的数字特征。 二、实验要求 1.用同余法编制产生伪随机信号的程序。 2.检验所产生的伪随机信号是高斯分布的。 3.检验伪随机信号的自相关函数。 三、实验方法 1.伪随机信号的产生 用下式产生一组在[-0.5,0.5]内均匀分布的伪随机信号: ()()() k i C k i M =?-1% (1) ()()n i k i M =-/.05 (2) 其中(1)表示k(i)为(())/C k i M ?-1的余数,n(i)为一组在[-0.5,0.5]区间的均值为0的伪随机信号。令C =+239,M =212,i=0,1,2,…499。通过任意给定k(0),用上式可以产生一组伪随机信号。 2.用中心极限定理产生一组服从正态分布的伪随机信号 中心极限定理:设被研究的随机变量可以表示为大量独立随机变量的和,其中每个随机变量对总和只起微小作用,则这个随机变量是服从正态分布的。 产生一个长度为500的伪随机信号,其中每一项为L 个伪随机变量和。检验落在 []σσ+-,内概率68%,[]-+22σσ,内概率95.4%,[]-+33σσ,内概率99.7%。 () σ2 20 1 1= =-∑N n i i N 3.用自相关函数检验上述信号 对于产生的伪随机信号,其自相关函数是δ函数,k=0时函数值取得最大。 ()()() R k N n i n i k n i N k = *+=-∑1 四.实验流程框图 按照实验方法用matlab 实现

信号检测与估计试题——答案(不完整版)

一、概念: 1. 匹配滤波器。 概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。 应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。 2. 卡尔曼滤波工作原理及其基本公式(百度百科) 首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述: X(k)=A X(k-1)+B U(k)+W(k) 再加上系统的测量值: Z(k)=H X(k)+V(k) 上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。 对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。 首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态: X(k|k-1)=A X(k-1|k-1)+B U(k) (1) 式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。 到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance: P(k|k-1)=A P(k-1|k-1) A’+Q (2) 式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。 现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k): X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3) 其中Kg为卡尔曼增益(Kalman Gain): Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)

信号检测与估计课后习题

三、(15分)在二元信号的检测中,若两个假设下的观测信号分别为: 012 2 112 ::H x r H x r r ==+ 其中,1r 和2r 是独立同分布的高斯随机变量,均值为零,方差为1。若似然比检测门限为η,求贝叶斯判决表示式。 解 假设0H 下,观测信号x 的概率密度函数为 1/2 201(|)exp 22x p x H π???? =- ? ????? 假设1H 下,22 12x r r =+, 而12 (0,1),(0,1)r N r N ,且相互统计独立。大家知道, 若(0,1)k r N ,且(1,2, ,)k r k N =之间相互统计独立,则 2 1N k k x x ==∑ 是具有N 个自由度的2 χ分布。现在2N =,所以假设1H 下,观测信号x 的概率密度函数 为 22/21 12/22 1(|)exp() 2(2/2)2 1exp(),022 x p x H x x x -=-Γ=-≥ 当0x <时,1(|)0p x H =。 于是,似然比函数为 1/2210exp ,0 (|)()222(|)0, 0x x x p x H x p x H x πλ??? ??-≥? ? ?==?????? ???-≥? ? ? ??-?? ?

四、(15分)已知被估计参量θ的后验概率密度函数为 2(|)()exp[()],0p x x x θλθλθθ=+-+≥ (1)求θ的最小均方误差估计量^ mse θ 。 (2)求θ 的最大后验估计量^ map θ 。 解 (1)参量θ的最小均方误差估计量^ mse θ是θ的条件均值,即 ^ 0220 221 (|)()[()]1()()2 ,mse p x d x exp x d x x x x θθθθ λθλθθ λλλλ ∞ ∞ +==+-+=++= ≥-+?? ^ 0,mse x θλ=<- (2)由最大后验方程 ^ln (|) |0map p x θθθθ =?=? 得 ^2[ln()ln ()]1 ()|0 map x x x θθλθλθθ λθ =? ++-+?=-+= 解得 ^ ^ 1 ,0, map map x x x θλλθλ = ≥-+=<- 七、(15分)若对未知参量θ进行了六次测量,测量方程和结果如下: 182222202384404384n θ???????????????? =+????????????????????

2016年信号检测与估计考试试卷

信号检测与估计试题答案 三、(15分)现有两个假设 00,11,:,1,2,,:,1,2,,j j j j j j H y u z j K H y u z j K =+==+= 其中观测样本j y 为复信号,0,1,,j j u u 是复信号样本,j z 是均值为零、方差为 2*z j j E z z σ??=??的复高斯白噪声,代价因子为001101100,1c c c c ====,先验概率 010.5ππ== (1)试写出两假设下的似然函数()0p y 和()1p y ,其中12[,,,]T K y y y y = ;(4分) (2)采用贝叶斯准则进行检测,给出信号检测的判决规则表达式;(6分) (3)在上题基础上,计算虚警概率。(5分) 解: (1)观测样本j y 在假设0H 下的概率密度函数为 ()2 0,022 1exp 1,2,,j j j z z y u p y j K πσσ?? -??=-=? ???? ? ……..(2分) 由于样本间互相独立,则K 个观测样本的联合概率密度函数为 ()()()()() 20010200,2211 1exp K K j j K j z z p y p y p y p y y u σπσ=??== --?? ??∑ …….(1分) 同理可得,在假设1H 下的似然函数为 ()()()()() 21111211,2211 1exp K K j j K j z z p y p y p y p y y u σπσ=??== --?? ??∑ …….(1分) (2)首先计算似然比:

()()(){}{}1** 011,0,22221 102222exp Re Re K K j j j j j j z z z z p y L y y u y u p y εεσσσσ==??==--+????∑∑ 其中∑==K j j u 12 ,00||21ε,∑==K j j u 1 2,11||21ε。 ……..(2分) 然后,计算贝叶斯准则似然比门限为 () ()010******** B C C C C πτπ-= =- ………(2分) 因此,根据 {}{}1 **011,0,222 21 10 2222exp Re Re 1K K j j j j j j z z z z D y u y u D εεσσσσ==≥??--+??

第三章 随机信号分析 总结

第三章 总结 对随机的东西只能作统计描述。 1).统计特性( 概率密度与概率分布); 2).数字特征( 均值、方差、相关函数等)。 节1 随机过程概念 一、随机过程定义 二、随机过程统计特性的描述 1.随机过程的概率分布函数 2.随机过程的概率密度函数 三、随机过程数字特征的描述 1、数学期望: 性质:① E[k] = k ② E[ξ(t) + k] = E[ξ(t)] + k ③ E[ kξ(t)] = k E[ξ(t)] ④ E[ξ 1(t) + …+ξ n (t)] = E[ξ 1 (t)] + …+E[ ξ n (t)] ⑤ ξ 1(t)与ξ 2 (t)统计独立时,E[ξ 1 (t)ξ 2 (t)] = E[ξ 1 (t)] E[ξ 2 (t)] 2、方差: 性质:① D[k] = 0 ② D[ξ(t) + k] = D[ξ(t)] ③ D[kξ(t)] = K2 D[ξ(t)] ④ξ 1(t)ξ 2 (t)统计独立时, D[ξ 1 (t)+ξ 2 (t)] = D[ξ 1 (t)] + D[ξ 2 (t)] 3、相关函数和协方差函数 节2 平稳随机过程概念 一、定义:狭义平稳、广义平稳 广义平稳条件:

① 数学期望与方差是与时间无关的常数; ② 相关函数仅与时间间隔有关。 二、性能讨论 1、各态历经性(遍历性):其价值在于可从一次试验所获得的样本函数 x(t) 取时间平均来得到它的数字特征(统计特性) 2、相关函数R(τ)性质 ① 对偶性(偶函数) R(τ)=E[ξ(t)ξ(t+τ)]=E[ξ(t 1-τ)ξ(t 1 )]= R(-τ) ② 递减性 E{[ξ(t) ±ξ(t+τ)]2} = E[ξ2(t)±2 ξ(t) ξ(t+τ) + ξ2(t+τ) ] = R(0)±2R(τ) + R(0) ≥ 0 ∴R(0)≥±R(τ) R(0)≥|R(τ)| 即τ=0 处相关性最大 ③ R(0)为 ξ ( t ) 的总平均功率。 ④ R(∞)=E2{ξ(t)}为直流功率。 ⑤ R(0) - R(∞)= E[ξ 2(t)]- E2[ξ(t)]=σ2为交流功率 3、功率谱密度Pξ(ω) 节3 几种常用的随机过程 一、高斯过程 定义: 任意n维分布服从正态分布的随机过程ξ(t)称为高斯过程(或正态随机过程)。 ① 高斯过程统计特性是由一、二维数字特征[a k, δ k 2, b jk ]决定的 ②若高斯过程满足广义平稳条件,也将满足狭义平稳条件。 ③若随机变量两两间互不相关,则各随机变量统计独立。二、零均值窄带高斯过程 定义、零均值平稳高斯窄带过程 同相随机分量 ξ c (t), 正交随机分量 ξ s (t) 结论:零均值窄带高斯平稳过程 ξ( t ) ,其同相分量 ξ c ( t ) 和正交分量 ξ s ( t )

统计信号报告---典型时间序列模型分析matlab

机电学院通信工程系 实验报告 课程名称:统计信号分析与处理实验名称:典型时间序列模型分析实验地点: 指导老师: 实验时间: 提交时间: 班级: 姓名: 一、实验目的和要求 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 二、实验环境、内容和方法 1、熟悉实验原理,将实验原理上的程序应用matlab 工具实现; ◆AR 模型分析 设有AR(2)模型:X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 ◆ARMA 模型分析 设有ARMA(2,2)模型:X(n)+0.3X(n-1)-0.2X(n-2)=W(n)+0.5W(n-1)-0.2W(n-2) W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 2、MA(2)模型分析 设有MA(2)模型,x(n) =W(n)-0.3W(n-1)+0.2W(n-2) W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱

信号检测与估值

1.信号检测与估计理论是现代信息理论的一个分支,研究的对象是信息传输系统中信号的 接收部分。 2.系统信息传输可靠性降低的主要原因:(1)信号经过传输以后,由于通信系统不理想,信 号可能出现畸变或幅值的衰减.通过正确地设计通信系统,可以尽可能地减少信号的畸变,获得满意的接收效果.(2)经过信道传输后,信号不可避免地受到信道噪声的污染,使得接收到的是信号与噪声的混合波形. 3.通信系统的性能要求 系统的有效性:要求系统能高效率地传输信息; 系统的可靠性(抗干扰性):要求系统能可靠地传输信息 4.本课程要学习的主要内容 接收机的任务是要加工处理所接收到的混合波形,尽量减少判决错误.由于信道噪声是个随机过程,同时信号本身也可能带有不确定的参量,因此只能采用数理统计的方法,根据信号和噪声提供的的统计特性,依据某些判决的准则,对信号进行检测,判断,估计它的某些参量,或者复原信号的波形等等.这就是. 5.信号检测与估计的基本任务 研究如何在干扰和噪声的影响下最有效地辨认出有用信号的存在与否,以及估计出未知的信号参量或信号波形本身。它实质上是有意识地利用信号与噪声的统计特性的不同,来尽可能地抑制噪声,从而最有效地提取有用信号的信息。 6.信号的统计处理方法 对随机信号,应用统计学的理论和方法进行处理,称为统计信号处理,这主要体现在如下三个方面: 信号统计特性的统计描述:如信号的概率密度函数(PDF),各阶矩,自相关函数,协方差函数,功率谱密度(PSD)等。 统计意义上的最佳处理:如最佳准则,最佳判决,最佳估计,最佳滤波等,均是在统计意义上的最佳处理。 性能评价用相应的统计平均量:如判决概率,平均代价,平均错误概率,均值,均方误差等。 7.检测:指在接收端检测信号是否存在 估值: 指在接收端估计信号的某些参量: 如幅度的大小,频率的偏移等.(又称为信号的参量估计) 统称为信号的检测和估值 8.信号检测与估值中的三大任务 信号的检测::根据有限观测,最佳区分一个物理系统不同状态; 信号参量的估计:根据有限观测,最佳区分一个物理系统不同参数; 波形估计 9.信号检测与估计研究步骤

信号检测与估计—原理及其应用

信号检测与估计考试题库 考试内容: 1.随机信号分析 平稳随机信号与非平稳随机信号,随机信号的数字特征,平稳随机过程,复随机过程,随机信号通过线性系统。 2.信号检测 信号检测的基本概念,确知信号的检测(包括匹配滤波原理、高斯白噪声中已知信号检测、简单二元检测) 3.信号估计 信号参数(包括贝叶斯估计、最大似然估计、线性均方估计和最小二乘估计),信号波形估计(主要指卡尔曼滤波)。 一、填空(1x15=15) 1.可以逐一列举的随机变量称为(离散型随机变量)随机变量;可能的取值占满一个连续区间的随机变量称为(连续型随机变量)随机变量。(P3) 2.服从正态分布的调幅噪声经过包络检波之后服从(瑞丽分布)分布。(P5) 3.(方差)就是描述随机变量的在其均值周围发散程度的度量。(P6) 4.全体观测结果构成的函数族称为(随机过程)。(P9) 5.一维分布函数只能反映随机过程在某一时刻的统计规律,随机过程在不同时刻的相互联系需要用(多位分布函数)来描述。 6.有一类随机过程的统计特征(不随时间变化),称为平稳随机过程。(P12) 7.线性时不变(LTI)系统的特性在时域用冲击响应(h(t))来描述,在频域用频率响应函数(H(W))来描述。(P15) 8.高斯分布的随机过程通过LTI系统后是(高斯过程)过程。(P16) 9.高斯过程是随机过程的概率密度函数为__________,白噪声是指具有均匀(功率谱密度恒为常数)的随机信号。(P17) 10.在信号传输和处理过程中,经常会受到各种干扰,使信号产生失真或受到污染,这些干扰信号通常称为(噪声)。(P18) 11.白噪声的均值为(零)。(P18) 12.功率谱密度恒为常数的随机信号称为(白噪声)。(P18) 13.限带白噪声的相关函数比理想白噪声的相关函数宽,(既噪声的相关时间加长)。(P20) 14.在雷达系统中要根据观测(回波信号)来判断目标是否存在。(P49) 15.为了寻找未知先验概率情况下的最佳判决准则,首先研究(风险)与先验概率之间的关系。(P58) 16.高斯白噪声是指功率谱密度为(功率谱密度为常数),服从正态分布的噪声。(P74) 17.非白噪声背景匹配滤波器的关键是(白化滤波器)的设计。(P90) 18.所谓均匀代价函数是指当误差超过某一门限值时,代价是(相同),而当误差小于该门限时,代价(为零)。(P106) 19.估计量的性质有(无偏性)、(有效性)_和(一致性)(P109) 20.加权最小二乘法利用了观测噪声的统计特性,并且主要是针对(非平稳噪声)。(P132) 二、选择(2x15=30) 1.标准正态分布的期望和方差分别为(A)(P4) A.0,1 B.1,0 C.1,1 D.0,0

LMS adaptive filtering_北京理工大学 统计信号处理

统计信号处理(全英文) 结课报告 题目:Least-Mean-Square Adaptive Filters and i t’s Application 姓名:-------- 任课教师:

Contents 1 Introduction (2) 2 Overview and Structure of Operation of LMS Algorithm (4) 2.1 Structure of Operation of LMS Algorithm (4) 2.2 Operation Procedures (5) 3 Derivation of LMS Algorithm (6) 3.1 The Idea of the Steepest-Descent Algorithm (6) 3.2 Least-Mean-Square Adaptation Algorithm (9) 3.3 Summary of the LMS Algorithm (11) 4 The application of the LMS Algorithm (12) 4.1 Instantaneous Frequency Measurement (12) 4.2 Adaptive Deconvolution for Processing of Time-Varying (14) References (17)

1Introduction Along with the rapid development of the mobile communications industry, the scope of application of adaptive filtering techniques is also growing. Early in the 1940s, it was established on the stationary random signal Wiener filtering theory. According to the statistical properties of the useful signal and interference noise (the autocorrelation function or power spectrum), the optimum filter with a linear minimum mean square error estimation criterion design, called Wiener filter. This filter can maximize filter out interference noise and extract useful signal. However, when the statistical characteristics of the input signal deviates from the design condition, it is not the best, which is limited in practical applications. By the early 1960s, due to the development of space technology, the emergence of Kalman filtering theory, namely the use of state-variable model of non-stationary random sequence of multi-input multi-output for optimal estimation. Now, the Kalman filter has been successfully applied to many areas, it both on the stationary and non-stationary random signal as a linear optimal filtering, but also for non-linear filtering. In essence, the Wiener filter is a special case of the Kalman filter. In the design of the Kalman filter, you must know the state equation and measurement equation produces the input process of the system, which requires the prior knowledge of the statistical characteristics of the signal and noise, but in practice it is often difficult to predict the statistical properties, thus can’t achieving a good optimum filtering. Widrow B Hoff and adaptive filter theory proposed in 1967, allows the parameters of the adaptive filter system automatically adjust to achieve the best condition, but also in the design, requiring little or no any information about the priori statistical knowledge of signal and noise. Implement such a filter is almost as simple as the Wiener filter, and the performance of the filter is almost as good as the Kalman filter. Thus, in recent decades, adaptive filtering theory and method has been developing rapidly. Let’s talk about adaptive, In process and analysis, we according t o the characteristics of data to automatic adjust the method of processing data, processing

相关文档
最新文档