支持向量机(SVM)原理及应用概述分析

支持向量机(SVM)原理及应用概述分析
支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用

一、SVM 的产生与发展

自1995年Vapnik

(瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理

SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。

支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

入空间的样本映射到高维属性空间使其变为线性情况,从而使得在高维属性空间采用线性算法对样本的非线性进行分析成为可能,并在该特征空间中寻找最优分类超平面。其次,它通过使用结构风险最小化原理在属性空间构建最优分类超平面,使得分类器得到全局最优,并在整个样本空间的期望风险以某个概率满足一定上界。

其突出的优点表现在:(1)基于统计学习理论中结构风险最小化原则(注:所谓的结构风险最小化就是在保证分类精度(经验风险)的同时,降低学习机器的VC 维,可以使学习机器在整个样本集上的期望风险得到控制。)和VC维理论(注:VC维(Vapnik-Chervonenkis Dimension)的概念是为了研究学习过程一致收敛的速度和推广性,由统计学理论定义的有关函数集学习性能的一个重要指标。),具有良好的泛化能力,即由有限的训练样本得到的小的误差能够保证使独立的测试集仍保持小的误差。(2)支持向量机的求解问题对应的是一个凸优化问题,因此局部最优解一定是全局最优解。(3)核函数的成功应用,将非线性问题转化为线性问题求解。(4)分类间隔的最大化,使得支持向量机算法具有较好的鲁棒性。由于SVM自身的突出优势,因此被越来越多的研究人员作为强有力的学习工具,以解决模式识别、回归估计等领域的难题。

1.最优分类面和广义最优分类面

SVM是从线性可分情况下的最优分类面发展而来的,基本思想可用图1来说明。对于一维空间中的点,二维空间中的直线,三维空间中的平面,以及高维空间中的超平面,图中实心

点和空心点代表两类样本,H为它们之间的分类超平面,H

1,H

2

分别为过各类中离分类面最近

的样本且平行于分类面的超平面,它们之间的距离△叫做分类间隔(margin)。

图1 最优分类面示意图

W

所谓最优分类面要求分类面不但能将两类正确分开,而且使分类间隔最大。将两类正确分开是为了保证训练错误率为0,也就是经验风险最小(为O)。使分类空隙最大实际上就是使推广性的界中的置信范围最小?,从而使真实风险最小。推广到高维空间,最优分类线就成为最优分类面。

设线性可分样本集为}1,1{,,,...,1),,(x _-+∈∈=y R x n i y d i i 是类别符号。d 维空间中线性判别函数的一般形式为是类别符号。d 维空间中线性判别函数的一般形式为b x w x g +?=)((主:w 代表Hilbert 空间中权向量;b 代表阈值。),分类线方程为0=+?b x w ?。将判别函数进行归一化,使两类所有样本都满足1|)(|=x g ,也就是使离分类面最近的样本的1|)(|=x g ,此时分类间隔等于||||/2w ?,因此使间隔最大等价于使||||w (或2||||w )最小。要求分类线对所有样本正确分类,就是要求它满足

n i b x w y i ,...,2,1,01])[(=≥-+? (1-1)

满足上述条件(1-1),并且使2||||w 最小的分类面就叫做最优分类面,过两类样本中离分类面最近的点且平行于最优分类面的超平面H 1,H 2上的训练样本点就称作支持向量(support

vector),因为它们“支持”了最优分类面。

利用Lagrange (拉格朗日)优化方法可以把上述最优分类面问题转化为如下这种较简单的对偶问题,即:在约束条件,

01=∑=i n i i

y α (1-2a )

n i i ,...,2,1,0=≥α (1-2b)

下面对i α(主:对偶变量即拉格朗日乘子)求解下列函数的最大值:

∑∑==-

=n

j i j i j i j i n

i x x y y 1

,1i )(21Q αααα)( ?

(1-3) 若*α为最优解,则∑==n

i i y w 1

**αα

(1-4) 即最优分类面的权系数向量是训练样本向量的线性组合。

注释(1-3)式由来:利用Lagrange 函数计算如下,

实例计算:

图略,可参见PPT

x1 =(0, 0), y1 = +1

x2 =(1, 0), y2 = +1

x3 =(2, 0), y3 = -1

x4 =(0, 2), y4 = -1 21

21

(,,)((())1)

l

i i i i L w b w y x w b αα==-??+-∑(,,)0(,,)0

L w b L w b b w αα?

?

==??11

0l l

i i i i i i i a y w y x α====

∑∑1

21,1

1

1

()()

0,1,...,,0

()sgn(())

l l i i j i j i j i i j l

i i i i l

i i i i W y y x x i l and y f x y x x b ααααααα=====-?≥===??+∑∑∑∑

可调用Matlab 中的二次规划程序,求得α1, α2, α3, α4的值,进而求得w 和b 的值。

这是一个不等式约束下的二次函数极值问题,存在唯一解。根据k ühn-Tucker 条件,解中将只有一部分(通常是很少一部分)i α不为零,这些不为0解所对应的样本就是支持向量。求解上述问题后得到的最优分类函数是:

})(sgn{})sgn{()(1***

*∑=+?=+?=n

i i i i b x x y b x w x f α (1-5) 根据前面的分析,非支持向量对应的i α均为0,因此上式中的求和实际上只对支持向量进行。*b 是分类阈值,可以由任意一个支持向量通过式(1-1)求得(只有支持向量才满足其中的等号条件),或通过两类中任意一对支持向量取中值求得。

从前面的分析可以看出,最优分类面是在线性可分的前提下讨论的,在线性不可分的情况下,就是某些训练样本不能满足式(1-1)的条件,因此可以在条件中增加一个松弛项参数0i ≥ε,变成:

n i b x w y i i i ,...,2,1,01])[(=≥+-+?ε (1-6)

对于足够小的s>0,只要使

∑==n

i i F 1)(σσεε (1-7) 最小就可以使错分样本数最小。对应线性可分情况下的使分类间隔最大,在线性不可分

2221234223341()()(444)2Q αααααααααα=+++--++123412013/4

1/41120312002144231113,02224

()3220

w b g x x x αααα=??=??=??=???-????????=--=????????????????-????????=---=????????=--=

情况下可引入约束:

k c ≤2||w || (1-8)

在约束条件(1-6)幂1(1-8)下对式(1-7)求极小,就得到了线性不可分情况下的最优分类面,称作广义最优分类面。为方便计算,取s=1。

为使计算进一步简化,广义最优分类面问题可以迸一步演化成在条件(1-6)的约束条件下求下列函数的极小值:

)(),(21,1

∑=+=n i i C w w w εεφ)( (1-9) 其中C 为某个指定的常数,它实际上起控制对锩分样本惩罚的程度的作用,实现在错分样本的比例与算法复杂度之间的折衷。

求解这一优化问题的方法与求解最优分类面时的方法相同,都是转化为一个二次函数极值问题,其结果与可分情况下得到的(1-2)到(1-5)几乎完全相同,但是条件(1-2b)变为:

n i C ,...,1,0i =≤≤α (1-10)

2.SVM 的非线性映射

对于非线性问题,可以通过非线性交换转化为某个高维空间中的线性问题,在变换空间求最优分类超平面。这种变换可能比较复杂,因此这种思路在一般情况下不易实现。但是我们可以看到,在上面对偶问题中,不论是寻优目标函数(1-3)还是分类函数(1-5)都只涉及训练样本之间的内积运算)

(i x x ?。设有非线性映射H R d →Φ:将输入空间的样本映射到高维(可能是无穷维)的特征空间H 中,当在特征空间H 中构造最优超平面时,训练算法仅使用空间中的点积,即)()(j i x x φφ?,而没有单独的)(i x φ出现。因此,如果能够找到一个函数K 使得

)()()(j i j i x x x x K φφ?=? (1-11)

这样在高维空间实际上只需进行内积运算,而这种内积运算是可以用原空间中的函数实现的,我们甚至没有必要知道变换中的形式。根据泛函的有关理论,只要一种核函数)(j i x x K ?满足Mercer 条件,它就对应某一变换空间中的内积。因此,在最优超平面中采用适当的内积函数)(j i x x K ?就可以实现某一非线性变换后的线性分类,而计算复杂度却没有增加。此时目标函数(1-3)变为:

∑∑==?-=n

j i j i j i j i n

i i x x K y y Q 11,1

)(21)(αααα (1-12) 而相应的分类函数也变为

})(sgn{)(1**∑=+?=n i j i i i b x x K y x f α (1-13)

算法的其他条件不变,这就是SVM 。

概括地说SVM 就是通过某种事先选择的非线性映射将输入向量映射到一个高维特征空间,在这个特征空间中构造最优分类超平面。在形式上SVM 分类函数类似于一个神经网络,输出是中间节点的线性组合,每个中间节点对应于一个支持向量,如图2所示

图2 SVM 示意图

其中,输出(决策规则):})(sgn{1∑=+?=n

i i i i b x x K y y α,权值i i i y w α=,)(i x x K ?为基于s

个支持向量s x x x ,...,,21的非线性变换(内积),),...,,(21d x x x x =为输入向量。

3.核函数

选择满足Mercer 条件的不同内积核丞数,就构造了不同的SVM ,这样也就形成了不同的算法。目前研究最多的核函数主要有三类:

(1)多顼式核函数

q i i x x x x K ]1)[(),(+?= (1-14) 其中q 是多项式的阶次,所得到的是q 阶多项式分类器。

(2)径向基函数(RBF)

}||exp{),(22

σi i x x x x K --= (1-15)

所得的SVM 是一种径向基分类器,它与传统径向基函数方法的基本区别是,这里每一个基函数的中心对应于一个支持向量,它们以及输出权值都是由算法自动确定的。径向基形式的内积函数类似人的视觉特性,在实际应用中经常用到,但是需要注意的是,选择不同的S 参数值,相应的分类面会有很大差别。

(3)S 形核函数

])(tanh[),(c x x v x x K i i +?= (1-16)

这时的SVM 算法中包含了一个隐层的多层感知器网络,不但网络的权值、而且网络的隐层结点数也是由算法自动确定的,而不像传统的感知器网络那样由人凭借经验确定。此外,该算法不存在困扰神经网络的局部极小点的问题。

在上述几种常用的核函数中,最为常用的是多项式核函数和径向基核函数。除了上面提到的三种核函数外,还有指数径向基核函数、小波核函数等其它一些核函数,应用相对较少。事实上,需要进行训练的样本集有各式各样,核函数也各有优劣。B.Bacsens 和S.Viaene 等人曾利用LS-SVM 分类器,采用UCI 数据库,对线性核函数、多项式核函数和径向基核函数进行了实验比较,从实验结果来看,对不同的数据库,不同的核函数各有优劣,而径向基核函数在多数数据库上得到略为优良的性能。

三、支持向量机的应用研究现状

SVM 方法在理论上具有突出的优势,贝尔实验室率先对美国邮政手写数字库识别研究方面应用了SVM 方法,取得了较大的成功。在随后的近几年内,有关SVM 的应用研究得到了很多领域的学者的重视,在人脸检测、验证和识别、说话人/语音识别、文字/手写体识别、图像处理、及其他应用研究等方面取得了大量的研究成果,从最初的简单模式输入的直接的SVM 方法研究,进入到多种方法取长补短的联合应用研究,对SVM 方法也有了很多改进。

(一)人脸检测、验证和识别

Osuna 最早将SVM 应用于人脸检测.并取得了较好的效果。其方法是汽接训练非线性SVM 分类器完成人脸与非人脸的分类。由于SVM 的训练需要大量的存储空间,并且非线性SVM 分类器需要较多的支持向量,速度很慢。为此,马勇等提出了一种层次型结构的SVM 分类器,它由一个线性SVM 组合和一个非线性SVM 组成。检测时,由前者快速排除掉图像中绝大部分背景窗

口,而后者只需对少量的候选区域做出确认;训练时,在线性SVM组台的限定下,与“自举(bootstrapping)”方法相结合可收集到训练非线性SVM的更有效的非人脸样本,简化SVM训练的难度,大量实验结果表明这种方法不仅具有较高的检测率和较低的误检率,而且具有较快的速度。

人脸检测研究中更复杂的情况是姿态的变化。叶航军等提出了利用支持向量机方法进行人脸姿态的判定,将人脸姿态划分成6个类别,从一个多姿态人脸库中手工标定训练样本集和测试样本集,训练基于支持向量机姿态分类器,分类错误率降低到1.67%。明显优于在传统方法中效果最好的人工神经元网络方法。

在人脸识别中,面部特征的提取和识别可看作是对3D物体的2D投影图像进行匹配的问题。由于许多不确定性因素的影响,特征的选取与识别就成为一个难点。凌旭峰等及张燕昆等分别提出基于PCA与SVM相结合的人脸识别算法,充分利用了PCA在特征提取方面的有效性以及SVM在处理小样本问题和泛化能力强等方面的优势,通过SVM与最近邻距离分类器相结合,使得所提出的算法具有比传统最近邻分类器和BP网络分类器更高的识别率。王宏漫等在PCA基础上进一步做ICA,提取更加有利于分类的面部特征的主要独立成分;然后采用分阶段淘汰的支持向量机分类机制进行识别。对两组人脸图像库的测试结果表明,基于SVM的方法在识别率和识别时间等方面都取得了较好的效果。

(二)说话人/语音识别

说话人识别属于连续输入信号的分类问题,SVM是一个很好的分类器,但不适合处理连续输入样本。为此,忻栋等引入隐式马尔可夫模型HMM,建立了SVM和HMM的混合模型。HMM适合处理连续信号,而SVM适台于分类问题;HMM的结果反映了同类样本的相似度,而SVM的输出结果则体现了异类样本间的差异。为了方便与HMM组成混合模型,首先将SVM的输出形式改为概率输出。实验中使用YOHO数据库,特征提取采用12阶的线性预测系数分析及其微分,组成24维的特征向量。实验表明HMM和SVM的结合达到了很好的效果。

(三)文字/手写体识别

贝尔实验室对美国邮政手写数字库进行的实验,人工识别平均错误率是2.5%,专门针对该特定问题设计的5层神经网络错误率为5.1%(其中利用了大量先验知识),而用3种SVM方法(采用3种核函数)得到的错误率分别为4.0%、4.1%和4.2%,且是直接采用16×16的字符点阵作为输入,表明了SVM的优越性能。

手写体数字O~9的特征可以分为结构特征、统计特征等。柳回春等在UK心理测试自动分析系统中组合SVM和其他方法成功地进行了手写数字的识别实验。另外,在手写汉字识别方面,高学等提出了一种基于SVM的手写汉字的识别方法,表明了SVM对手写汉字识别的有效性。

(四)图像处理

(1)图像过滤。一般的互联网色情网图像过滤软件主要采用网址库的形式来封锁色情网址或采用入工智能方法对接收到的中、英文信息进行分析甄别。段立娟等提出一种多层次特定类型图像过滤法,即以综合肤色模型检验,支持向量机分类和最近邻方法校验的多层次图像处理框架,达到85%以上的准确率。

(2)视频字幕提取。揽频字幕蕴含了丰富语义,可用于对相应视频流进行高级语义标注。庄越挺等提出并实践了基于SVM的视频字幕自动定位和提取的方法。该方法首先将原始图像帧分割为N*N的子块,提取每个子块的灰度特征;然后使用预先训练好的SVM分类机进行字幕子块和非字幕子块的分类;最后结合金字塔模型和后期处理过程,实现视频图像字幕区域的自动定位提取。实验表明该方法取得了良好的效果。

(3)图像分类和检索。由于计算机自动抽取的图像特征和人所理解的语义间存在巨大的差距,图像检索结果难以令人满意。近年来出现了相关反馈方法,张磊等以SVM为分类器,在每次反馈中对用户标记的正例和反例样本进行学习,并根据学习所得的模型进行检索,使用由9918幅图像组成的图像库进行实验,结果表明,在有限训练样本情况下具有良好的泛化能力。

目前3D虚拟物体图像应用越来越广泛,肖俊等提出了一种基于SVM对相似3D物体识别与检索的算法。该算法首先使用细节层次模型对3D物体进行三角面片数量的约减,然后提取3D物体的特征,由于所提取的特征维数很大,因此先用独立成分分析进行特征约减,然后使用SVM 进行识别与检索。将该算法用于3D丘陵与山地的地形识别中,取得了良好效果。

(五)其他应用研究

(1)由于SVM的优越性,其应用研究目前开展已经相当广泛。陈光英等设计并实现了一种基于SVM分类机的网络入侵检测系统。它收集并计算除服务器端口之外TCP/IP的流量特征.使用SVM算法进行分类,从而识别出该连接的服务类型,通过与该连接服务器端口所表明服务类型的比较,检测出异常的TCP连接。实验结果表明,系统能够有效地检测出异常TCP连接。

(2)口令认证简便易实现,但容易被盗用。刘学军等提出利用SVM进行键入特性的验真,

并通过实验将其与BP、RBF、PNN和LVQ 4种神经网络模型进行对比。证实了采用SVM进行键入特性验真的有效性。

(3)李晓黎等提出了一种将SVM与无监督聚类相结合的新分类算法,并应用于网页分类问题。该算法首先利用无监督聚类分别对训练集中正例和反例聚类.然后挑选一些例子训练SVM 并获得SVM分类器。任何网页可以通过比较其与聚类中心的距离决定采用无监督聚类方法或SVM分类器进行分类。该算法充分利用了SVM准确率高与无监督聚类速度快的优点。实验表明它不仅具有较高的训练效率,而且有很高的精确度。

(4)刘江华等提出并实现一个用于人机交互的静态手势识别系统。基于皮肤颜色模型进行手势分割,并用傅立叶描述子描述轮廓,采用最小二乘支持向量机(LS-SVM)作为分类器。提出了LS-SVM的增量训练方式,避免了费时的矩阵求逆操作。为实现多类手势识别,利用DAG(Directcd Acyclic Graph)将多个两类LS-SVM结合起来。对26个字母手势进行识别。与多层感知器、径向基函数网络等方法比较,LS-SVM的识别率最高,达到93.62%。

另外的研究还有应用SVM进行文本分类、应用SVM构造自底向上二叉树结构进行空间数据聚类分析等。近年来,SVM在工程实践、化学化工等方面也取得了很多有益的应用研究成果,其应用领域日趋广泛。

四、结论和讨论

以统计学习理论作为坚实的理论依据,SVM有很多优点,如基于结构风险最小化,克服了传统方法的过学习(Overfitting)和陷入局部最小的问题,具有很强的泛化能力;采用核函数方法,向高维空间映射时并不增加计算的复杂性,又有效地克服了维数灾难(Curse of Dimensionality)问题。但同时也要看到目前SVM研究的一些局限性:

(1) SVM的性能很大程度上依赖于核函数的选择,但没有很好的方法指导针对具体问题的核函数选择;

(2) 训练测试SVM的速度和规模是另一个问题,尤其是对实时控制问题,速度是一个对SVM应用的很大限制因素;针对这个问题。Platt和Keerthi等分别提出了

SMO(Sequential Minimization Optimization)和改进的SMO方法,但还值得进一

步研究;

(3) 现有SVM理论仅讨论具有固定惩罚系数C的情况,而实际上正负样本的两种误判往往造成损失是不同的。

显然,SVM实际应用中表现出的性能决定于特征提取的质量和SVM两方面:特征提取是获得好的分类的基础,对于分类性能,还可以结合其他方法进一步提高。就目前的应用研究状

况而言,尽管支持向最机的应用研究已经很广泛,但应用尚不及人工神经网络方法,所以有理由相信SVM的应用研究还有很大潜力可挖。

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 姓名: 学号: 专业: 任课教师: 研究生导师: 内容摘要

支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。 一、支持向量机原理概述

在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1 图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV 中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是,实验平台为Visual

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

支持向量机

支持向量机 支持向量机模型选择研究 摘要:统计学习理论为系统地研究有限样本情况下的机器学习问题提供了一套 比较完整的理论体系。支持向量机 (suPportvectorMachine,SVM)是在该理论体系下产生的一种新的机器学习方法,它能较好地解决小样本、非线性、维数灾难和局部极小等问题,具有很强的泛化能力。支持向量机目前已经广泛地应用于模式识别、回归估计、概率密度估计等各个领域。不仅如此,支持向量机的出现推动了基于核的学习方法(Kernel-based Learning Methods) 的迅速发展,该方法使得研究人员能够高效地分析非线性关系,而这种高效率原先只有线性算法才能得到。目前,以支持向量机为主要代表的核方法是机器学习领域研究的焦点课题之一。 众所周知,支持向量机的性能主要取决于两个因素:(1)核函数的选择;(2)惩罚 系数(正则化参数)C的选择。对于具体的问题,如何确定SVM中的核函数与惩罚系 数就是所谓的模型选择问题。模型选择,尤其是核函数的选择是支持向量机研究的中心内容之一。本文针对模型选择问题,特别是核函数的选择问题进行了较为深入的研究。其中主要的内容如下: 1.系统地归纳总结了统计学习理论、核函数特征空间和支持向量机的有关理论与算法。 2.研究了SVM参数的基本语义,指出数据集中的不同特征和不同样本对分类结 果的影响可以分别由核参数和惩罚系数来刻画,从而样木重要性和特征重要性的考察可以归结到SVM的模型选择问题来研究。在

对样本加权SVM模型(例如模糊SVM)分析的基础上,运用了特征加权SVM模型,即FWSVM,本质上就是SVM与特征加权的结合。 3,在系统归纳总结SVM模型选择。尤其是核函数参数选择的常用方法(例如交叉验证技术、最小化LOO误差及其上界、优化核评估标准)。关键词:机器学习;模式分类;支持向量机;模型选择;核函数;核函数评估 支持向量机基础 引言 机器学习的科学基础之一是统计学。传统统计学所研究的是渐近理论,即当样本数目趋于无穷大时的极限特性。基于传统统计学的机器学习,也称为统计模式识别,由Duda等人提出。Duda的贡献主要是以经典统计理论为工具刻画了模式识别与机器学习的各类任务,同时暗示了对所建模型的评价方法。然而,在实际应用中,学习样本的数目往往是有限的,特别当问题处于高维空问时尤其如此。统计学习理论研究的是有限样本情况下的机器学习问题,它基于PAC(Probably Approximately Correct)框架给出关于学习算法泛化性能的界,从而可以得出误差精度和样木数目之间的关系。这样,样木集合成为泛化指标的随机变量,由此建立了结构风险理论。 Minsky和PaPert在20世纪60年代明确指出线性学习机计算能力有限。总体上,现实世界复杂的应用需要比线性函数更富有表达能力的假设空间"多层感知器可以作为这个问题的一个解,由此导向了 多层神经网络的反向传播算法。核函数表示方式提供了另一条解决途径,即将数据映射到高维空间来增强线性学习机的计算能力。核函数的引入最终使得在适当的特征空间中使用人们熟知的线性算法高效地检测非线性关系成为一可能。SVM是建立在统计学习理论(包括核函数的表示理论)基础上的第一个学习算法,目前主要应用于求解监督学习问题,即分类和回归问题。SVM以泛化能力为目标,其目的不是

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

支持向量机算法学习总结

题目:支持向量机的算法学习 姓名: 学号: 专业: 指导教师:、 日期:2012年6月20日

支持向量机的算法学习 1.理论背景 基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。迄今为止,关于机器学习还没有一种被共同接受的理论框架,关于其实现方法大致可以分为三种: 第一种是经典的(参数)统计估计方法。包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。参数方法正是基于传统统计学的,在这种方法中,参数的相关形式是已知的,训练样本用来估计参数的值。这种方法有很大的局限性,首先,它需要已知样本分布形式,这需要花费很大代价,还有,传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 第二种方法是经验非线性方法,如人工神经网络(ANN)。这种方法利用已知样本建立非线性模型,克服了传统参数估计方法的困难。但是,这种方法缺乏一种统一的数学理论。 与传统统计学相比,统计学习理论(Statistical Learning Theory或SLT)是一种专门研究小样本情况下机器学习规律的理论。该理论针对小样本统计问题建立了一套新的理论体系,在这种体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在现有有限信息的条件下得到最优结果。V. Vapnik 等人从六、七十年代开始致力于此方面研究[1],到九十年代中期,随着其理论的不断发展和成熟,也由于神经网络等学习方法在理论上缺乏实质性进展,统计学习理论开始受到越来越广泛的重视。 统计学习理论的一个核心概念就是 VC 维(VC Dimension)概念,它是描述函数集或学习机器的复杂性或者说是学习能力(Capacity of the machine)的一个重要指标,在此概念基础上发展出了一系列关于统计学习的一致性(Consistency)、收敛速度、推广性能(GeneralizationPerformance)等的重要结论。 支持向量机方法是建立在统计学习理论的 VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以

支持向量机理论与应用研究综述_张博洋

第19期2015年10月No.19October,2015 无线互联科技 Wireless Internet Technology 支持向量机(Support Vector Machine,SVM)是通过分析统计理论基础上形成的模式分类方法。上述方式在实际实施的时候,依据最小化风险的基本原则有效增加系统的泛化作用,也是一种为了得到最小误差实施的决策有限训练样中的独立测试集,能够适当分析和解决学习问题、选择模型问题、维数灾难问题等。研究SVM主要就是分析支持向量机自身性质,此外还分析提高应用支持向量机的广度和深度,在文本分类、模式分类、分析回归、基因分类、识别手写字符、处理图像等方面得到应用。1 支持向量机的原理分析1.1 结构风险最小化 依据能够应用的有限信息样本,不能合理计算分析期望风险,所以,传统方式应用主要是经验风险最小化(ERM)标准, 利用样本对风险进行定义: 基于统计学理论分析函数集以及实际经验风险的关系,也就是推广性的界。总结分析上述问题,能够得到实际风险 和经验风险之间概率1-符合以下条件关系: 其中l是训练集样本数,h为函数集VC维,体现高低复杂 性,从上述理论基础可以发现,通过两部分构成学习机实际风险:一是置信范围;二是经验风险也就是训练误差。机器学习的时候不仅需要经验风险,还要尽可能缩小VC维符合置信范围,保证能够获得实际比较小的风险,实际上就是结构风险最小化SRM (Structure Risk Minimization)原则[1]。1.2 支持向量机 支持向量机实际上从最优化线性分析分类超平面形成技术,分析情况的时候,最基本理念就是2类线性。支持向量机学习的主要目的就是能够发现最优超平面,不仅需要正确分开2类样本,还能够具备最大的分类间隔。分类间隔就是说距离超平面最近的2类分类样本,并且可以与2类分类平面间距平行。分析线性分类问题,假设T是训练集: {(x 1,y 2),...,(x l ,y l )}∈(X×Y)l ,其中x i ∈x=R n ,yi ∈y={-1,1},i=1,2,...,l。假设(ωx)+b=0是超平面,超平面和训练集之间的集合间距就是1/ω。可以通过以下方式找到最大间隔超平面问题中的原始优化问题: b w min )(ωτ=1/2ω2 , S.t. y i ((ωx i )+b)≥1,i=1,...,l 利用Wolfe对偶定理,能够等价原始最优化问题得到相 关对偶问题: α≥0,i=1,...,l, 此时能够得到最优解就是引入松弛变量以后能够得到等价对偶问 题: 其中,C (C>0)是惩罚因子。1.3 核函数 很多不可分线性问题,在某个高位特征空间中合理筛选符合分类样本情况的非线性变换映射,确保能够得到高维空间目标样本线性可分。依据上述方式进行计算的时候,仅仅只是计算训练样本内积,需要依据原空间来实现函数,不需要分析变换形式,依据泛函基本理论,一种核函数K (x,x /)需要充分符合Mercer ,与某空间变化内积对应。 假设对应变化核函数是K (x,x /),K (x,x /)=(φ(x),φ(x /)),依据之前分析的原始对偶问题,得到相应的决策函数就是: f (x)=sgn *) ),(*(1 b i x x i K y i l i +∑=α,有3种常见的核函数,一是径向有机函数(RBF) : 二是多项式核函数: 作者简介:张博洋(1990-),男,天津,硕士研究生;研究方向:数据挖掘。 支持向量机理论与应用研究综述 张博洋 (北京交通大学 计算机与信息技术学院,北京 100044) 摘 要:文章研究支持向量机技术,分析支持向量机的运行基本原理,研究支持向量机技术中的多类问题和选择核函数,并 且从人脸检测、文本分类、处理图像、识别手写字符等方面合理分析支持向量机,为进一步应用和发展支持向量机技术提供依据和保证。关键词:支持向量机;理论;应用;综述

支持向量机及支持向量回归简介

3.支持向量机(回归) 3.1.1 支持向量机 支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。它将输入样本集合变换到高维空间使得其分离性状况得到改善。它的结构酷似三层感知器,是构造分类规则的通用方法。SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。 所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代 替在特征空间中内积(),())x y φφ(的计算。因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。由于内积运算量相当大,核技巧就是为了降低计算量而生的。 特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间 n R 上的二元函数,设H 中的规范正交基为12(),(),...,(), ...n x x x φφφ。如果 2 2 1 (,)((),()), {}k k k k k K x y a x y a l φφ∞ == ∈∑ , 那么取1 ()() k k k x a x φφ∞ ==∑ 即为所求的非线性嵌入映射。由于核函数(,)K x y 的定义 域是原来的输入空间,而不是高维的特征空间。因此,巧妙地避开了计算高维内 积 (),())x y φφ(所需付出的计算代价。实际计算中,我们只要选定一个(,)K x y ,

支持向量机(SVM)原理及应用概述

支持向量机(SVM)原理及应用 一、SVM得产生与发展 自1995年Vapnik(瓦普尼克)在统计学习理论得基础上提出SVM作为模式识别得新方法之后,SVM一直倍受关注。同年,Vapnik与Cortes提出软间隔(soft margin)SVM,通过引进松弛变量度量数据得误分类(分类出现错误时大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM得寻优过程即就是大得分隔间距与小得误差补偿之间得平衡过程;1996年,Vapnik等人又提出支持向量回归 (Support Vector Regression,SVR)得方法用于解决拟合问题。SVR同SVM得出发点都就是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR得目得不就是找到两种数据得分割平面,而就是找到能准确预测数据分布得平面,两者最终都转换为最优化问题得求解;1998年,Weston等人根据SVM原理提出了用于解决多类分类得SVM方法(MultiClass Support Vector Machines,MultiSVM),通过将多类分类转化成二类分类,将SVM应用于多分类问题得判断:此外,在SVM算法得基本框架下,研究者针对不同得方面提出了很多相关得改进算法。例如,Suykens 提出得最小二乘支持向量机(Least Square Support Vector Machine,LS—SVM)算法,Joachims等人提出得SVM1ight,张学工提出得中心支持向量机 (Central Support Vector Machine,CSVM),Scholkoph与Smola基于二次规划提出得vSVM等。此后,台湾大学林智仁(Lin ChihJen)教授等对SVM得典型应用进行总结,并设计开发出较为完善得SVM工具包,也就就是LIBSVM(A Library for Support Vector Machines)。LIBSVM就是一个通用得SVM软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM方法就是20世纪90年代初Vapnik等人根据统计学习理论提出得一种新得机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中得判别函数, 使学习机器得实际风险达到最小,保证了通过有限训练样本得到得小误差分类器,对独立测试集得测试误差仍然较小。 支持向量机得基本思想:首先,在线性可分情况下,在原空间寻找两类样本得最优分类超平面。在线性不可分得情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输入空

支持向量机(SVM)原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号: 09601513 阅卷人: 刘晓志 考试日期: 2012年11月07日 姓名:赵亚楠 学号: 1001236 注意事项 1.考前研究生将上述项目填写清楚.

2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交 研究生院培养办公室,专业课成绩单与试卷交各学院,各学院把成 绩单交研究生院培养办公室. 东北大学研究生院培养办公室 支持向量机(SVM)原理及应用 目录 一、SVM的产生与发展 (3) 二、支持向量机相关理论 (4) (一)统计学习理论基础 (4) (二)SVM原理 (4) 1.最优分类面和广义最优分类面 (5) 2.SVM的非线性映射 (7)

3.核函数 (8) 三、支持向量机的应用研究现状 (9) (一)人脸检测、验证和识别 (10) (二)说话人/语音识别 (10) (三)文字/手写体识别 (11) (四)图像处理 (11) (五)其他应用研究 (12) 四、结论和讨论 (12) 支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目 标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即

支持向量机(SVM)原理及

支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方 法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机

支持向量机 支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。 简介 支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折中,以期获得最好的推广能力。 我们通常希望分类的过程是一个机器学习的过程。这些数据点是n维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 支持原因 支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。建立方向合适的分隔超平面使两个与之平行的超平面间的距离最大化。其假定为,平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.CBurges的《模式识别支持向量机指南》。 支持向量概述 所谓支持向量是指那些在间隔区边缘的训练样本点。这里的“机(machine,机器)”实际上是一个算法。在机器学习领域,常把一些算法看做是一个机器。 支持向量机(Supportvectormachines,SVM)与神经网络类似,都是学习型的机制,但与神经网络不同的是SVM使用的是数学方法和优化技术。 相关技术支持 支持向量机是由Vapnik领导的AT&TBell实验室研究小组在1963年提出的一种新的非常有潜力的分类技术,SVM是一种基于统计学习理论的模式识别方法,主要应用于模式识别领域。由于当时这些研究尚不十分完善,在解决模式识别问题中往往趋于保守,且数学上比较艰涩,这些研究一直没有得到充分的重视。直到90年代,统计学习理论(StatisticalLearningTheory,SLT)的实现和由于神经网络等较新兴的机器学习方法的研究遇到一些重要的困难,比如如何确定网络结构的问题、过学习与欠学习问题、局部极小点问题等,使得SVM迅速发展和完善,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。从此迅速的发展起来,现在已经在许多领域(生物信息学,文本和手写识别等)

20.ENVI4.3 支持向量机分类原理、操作及实例分析

ENVI4.3 支持向量机分类原理、操作及实例分析 一、支持向量机算法介绍 1.支持向量机算法的理论背景 支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。 与传统统计学相比,统计学习理论(SLT)是一种专门研究小样本情况下及其学习规律的理论。该理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将许多现有方法纳入其中,有望帮助解决许多原来难以解决的问题,如神经网络结构选择问题、局部极小点问题等;同时,在这一理论基础上发展了一种新的通用学习方法——支持向量机(SVM),已初步表现出很多优于已有方法的性能。一些学者认为,SLT和SVM正在成为继神经网络研究之后新的研究热点,并将推动机器学习理论和技术的重大发展。 支持向量机方法是建立在统计学习理论的VC维(VC Dimension)理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 支持向量机的几个主要优点有: (1)它是专门针对有限样本情况的,其目标是得到现有信息下的最优解而不仅仅是样本数趋于无穷大时的最优值; (2)算法最终将转化成为一个二次型寻优问题,从理论上说,得到的将是全局最优点,解决了在神经网络方法中无法避免的局部极值问题; (3)算法将实际问题通过非线性变换转换到高维的特征空间(Feature Space),在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,特殊性质能保证机器有较 好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关; 2.支持向量机算法简介 通过学习算法,SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。 最优分类面(超平面)和支持向量

支持向量机理论及工程应用实例

《支持向量机理论及工程应用实例》 支持向量机理论及工程应用实例 求助编辑百科名片 《支持向量机理论及工程应用实例》共分为8章,从机器学习的基本问题开始,循序渐进地介绍了相关的内容,包括线性分类器、核函数特征空间、推广性理论和优化理论,从而引出了支持向量机的算法,进而将支持向量机应用到实际的工程实例中。《支持向量机理论及工程应用实例》适合高等院校高年级本科生、研究生、教师和相关科研人员及相关领域的工作者使用。《支持向量机理论及工程应用实例》既可作为研究生教材,也可作为神经网络、机器学习、数据挖掘等课程的参考教材。 书名: 支持向量机理论及工程应用实例 作者: 白鹏 张斌 ISBN : 9787560620510 定价: 16.00 元 出版社: 西安电子科技大学出版社 出版时间: 2008 开本: 16 LIBSVM 的简单介绍 2006-09-20 15:59:48 大 中 小 1. LIBSVM 软件包简介 LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC 、n - SVC )、回归问题(包括e - SVR 、n - SVR )以及分布估计 (one-class-SVM )等问题,提供了线性、多项式、径向基和S 形函数四种常

用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。LIBSVM 是一个开源的软件包,需要者都可以免费的从作者的个人主页 处获得。他不仅提供了LIBSVM的C++语言的算法源代码,还提供了Python、Java、R、MATLAB、Perl、Ruby、LabVIEW以及C#.net 等各种语言的接口,可以方便的在Windows 或UNIX 平台下使用。另外还提供了WINDOWS 平台下的可视化操作工具SVM-toy,并且在进行模型参数选择时可以绘制出交叉验证精度的等高线图。 2. LIBSVM 使用方法简介 LibSVM是以源代码和可执行文件两种方式给出的。如果是Windows系列操作系统,可以直接使用软件包提供的程序,也可以进行修改编译;如果是Unix类系统,必须自己编译。 LIBSVM 在给出源代码的同时还提供了Windows操作系统下的可执行文件,包括:进行支持向量机训练的svmtrain.exe;根据已获得的支持向量机模型对数据集进行预测的svmpredict.exe;以及对训练数据与测试数据进行简单缩放操作的svmscale.exe。它们都可以直接在DOS 环境中使用。如果下载的包中只有C++的源代码,则也可以自己在VC等软件上编译生成可执行文件。 3. LIBSVM 使用的一般步骤是: 1)按照LIBSVM软件包所要求的格式准备数据集; 2)对数据进行简单的缩放操作; 3)考虑选用RBF 核函数; 4)采用交叉验证选择最佳参数C与g ; 5)采用最佳参数C与g 对整个训练集进行训练获取支持向量机模型; 6)利用获取的模型进行测试与预测。 4. LIBSVM使用的数据格式 1)训练数据和检验数据文件格式如下:

随机森林与支持向量机分类性能比较

随机森林与支持向量机分类性能比较 黄衍,查伟雄 (华东交通大学交通运输与经济研究所,南昌 330013) 摘要:随机森林是一种性能优越的分类器。为了使国内学者更深入地了解其性能,通过将其与已在国内得到广泛应用的支持向量机进行数据实验比较,客观地展示其分类性能。实验选取了20个UCI数据集,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行,得到的结论可为研究者选择和使用分类器提供有价值的参考。 关键词:随机森林;支持向量机;分类 中图分类号:O235 文献标识码: A Comparison on Classification Performance between Random Forests and Support Vector Machine HUANG Yan, ZHA Weixiong (Institute of Transportation and Economics, East China Jiaotong University, Nanchang 330013, China)【Abstract】Random Forests is an excellent classifier. In order to make Chinese scholars fully understand its performance, this paper compared it with Support Vector Machine widely used in China by means of data experiments to objectively show its classification performance. The experiments, using 20 UCI data sets, were carried out from three main aspects: generalization, noise robustness and imbalanced data classification. Experimental results can provide references for classifiers’ choice and use. 【Key words】Random Forests; Support Vector Machine; classification 0 引言 分类是数据挖掘领域研究的主要问题之一,分类器作为解决问题的工具一直是研究的热点。常用的分类器有决策树、逻辑回归、贝叶斯、神经网络等,这些分类器都有各自的性能特点。本文研究的随机森林[1](Random Forests,RF)是由Breiman提出的一种基于CART 决策树的组合分类器。其优越的性能使其在国外的生物、医学、经济、管理等众多领域到了广泛的应用,而国内对其的研究和应用还比较少[2]。为了使国内学者对该方法有一个更深入的了解,本文将其与分类性能优越的支持向量机[3](Support Vector Machine,SVM)进行数据实验比较,客观地展示其分类性能。本文选取了UCI机器学习数据库[4]的20个数据集作为实验数据,通过大量的数据实验,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行比较,为研究者选择和使用分类器提供有价值的参考。 1 分类器介绍 1.1 随机森林 随机森林作为一种组合分类器,其算法由以下三步实现: 1. 采用bootstrap抽样技术从原始数据集中抽取n tree个训练集,每个训练集的大小约为原始数据集的三分之二。 2. 为每一个bootstrap训练集分别建立分类回归树(Classification and Regression Tree,CART),共产生n tree棵决策树构成一片“森林”,这些决策树均不进行剪枝(unpruned)。在作者简介:黄衍(1986-),男,硕士研究生,主要研究方向:数据挖掘与统计分析。 通信联系人:查伟雄,男,博士,教授,主要研究方向:交通运输与经济统计分析。 E-mail: huangyan189@https://www.360docs.net/doc/9a11368549.html,.

SVM分类器的原理及应用

SVM分类器的原理及应用 姓名:苏刚学号:1515063004学院:数学与计算机学院 一、SVM分类器的原理 SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具 有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以 最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边 界样本的类别来决定最后的分类结果。支持向量机算法的目的在于寻找一个超平面H(d),该 超平面可以将训练集中的数据分开,且与类域边界的沿垂直于该超平面方向的距离最大,故SVM法亦被称为最大边缘(maximum margin)算法。待分样本集中的大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响,SVM法对小样本情况下的自动分类有着较好的 分类结果. SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性 可分的问题。简单地说,就是升维和线性化。升维,就是把样本向高维空间做映射,一般情 况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以 通过一个线性超平面实现线性划分(或回归)。一般的升维都会带来计算的复杂化,SVM方 法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复 杂性,而且在某种程度上避免了“维数灾难”。这一切要归功于核函数的展开和计算理论。 选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种: ⑴线性核函数K(x,y)=x·y; ⑵多项式核函数K(x,y)=[(x·y)+1]^d; ⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2); ⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b);

支持向量机原理及matlab实现

1. Introduction Statistics for numeric domains: 2. Algorithm Description 考虑到数据的可分性,对年龄的预测是一个回归问题,所以采用支持向量机对数据进行回归分析。 一、支持向量机的基本原理 支持向量机(SVM)是Corinna和Vapnik于二十世纪末首先提出的。支持向量机方法Vapnik-Chervonenkis理论与构造风险最小理论为根底,使离超立体最接近的元素到超平面的间隔最大。通常超平面不止一个,也就是说支持向量机的目标就是最大化超平面之间的间隔,也就是建立最好的分类超平面,从而来提高学习分类机器的的泛化处理能力。该方法在解决高维小样本数据、数据的非线性以及解的局部极小点等多个问题中均展示出了很多独有的优点,并进而将其推行使用到了其余相联系的机器学习问题中。支持向量机方法早已被广泛的应用到了肿瘤数据分类等领域的问题研究中。

支持向量机的具体求解过程如下: (1) 设已知样本训练集: ()(){}() 11,, ,n n n T x y x y X Y =∈? 其中,{}(),1,11,2,,n i i x X R y Y i n ∈=∈=-+=,i x 为特征向量。 (2) 选择适当核函数(,)i j K x x 以及参数C ,解决优化问题: ()111 1,2min n n n i i j j i j j i j j y y K x x αααα===-∑∑∑ 1.. 0,0,1, ,n i i i i s t y C i n αα==≤≤=∑ 得最优解:()*** 1,...,T n ααα=。 (3) 选取α* 的正分量,计算样本分类阈值:* *1 (,)l i i i i j i b y y K x x α==-∑。 (4) 构造最优判别函数: 1()sgn (,)n i i i j i f x y a K x x b **=?? =+???? ∑。 支持向量机内积核核函数K 的主要种类有: ① 线性内核函数 (,)(,)i j i j K x x x x = ② 多项式核函数 (,)[(,)1q i j i j K x x x x =+ ③ 高斯径向基核函数 (RBF) 2 2 (,)e x p {} i j i j x x K x x σ-=- ④ 双曲正切核函数 (Sigmoid 核函数) (,)t a n h (()i j i j K x x v x x c =?+ 一般地,用SVM 做分类预测时必须调整相关参数(特别是惩罚参数c 和核函数参数g ),这样才可以获得比较满意的预测分类精度,采用Cross Validation 的思想可以获取最优的参数,并且有效防止过学习和欠学习状态的产生,从而能够对于测试集合的预测得到较佳的精度。 根据输入数据的线性可分性(线性可分或近似线性可分和线性不可分),可以将支持向量机分为两大类:非线性支持向量机、线性支持向量机。 (1)线性支持向量机 若要介绍线性支持向量机,首先需要介绍下一个定义:线性分类器。A 、B 是两个不同的类别,需要在其中间加一个分类函数,这样就能够将A 、B 样本区分开,那么则说这个数据集是线性可分,其所对应的分类器便是线性分类器。对于二维空间,显然,分类函数可以看成是一条直线。同理,三维空间里分类函数就是一个平面,忽略空间的维数,分类函数就可以统称为超平面。 (2)非线性支持向量机

相关文档
最新文档