数据结构课程设计-Floyd算法求解最短路径

数据结构课程设计-Floyd算法求解最短路径
数据结构课程设计-Floyd算法求解最短路径

数据结构课程设计报告撰写要求

(一)纸与页面要求

1.采用国际标准A4型打印纸或复印纸,纵向打印。

2.封页和页面按照下面模板书写(正文为:小四宋体1.5倍行距)。

3.图表及图表标题按照模板中的表示书写。

(二)课设报告书的容应包括以下各个部分:(按照以下顺序装订)

1.封页(见课设模版)

2、学术诚信声明,所有学生必须本人签字,否则教师拒绝给予成绩。

2.任务书(学生教师均要签字,信息填写完整)

3.目录

4.正文一般应包括以下容:

(1)题目介绍和功能要求(或描述)

课程设计任务的详细描述(注意不能直接抄任务书),将容做更详细的具体的分析与描述;

(2) 系统功能模块结构图

绘制系统功能结构框图及主要模块的功能说明;

(3)使用的数据结构的描述:数据结构设计及用法说明;

(4) 涉及到的函数的描述;

(5) 主要算法描述( 程序流程图)

(6) 给出程序测试/运行的结果

设计多组数据加以描述(包括输入数据和输出结果)

(7) 课程设计的总结及体会

(8) 参考文献

格式要求:[1]作者,等. 书名.出版地:,出版年

5.附录:程序清单(应带有必要的注释)

航空航天大学

课程设计报告

课程设计名称:数据结构课程设计

课程设计题目:利用弗洛伊德(Floyd)算法求解

最短路径

院(系):计算机学院

专业:计算机科学与技术(物联网方向)

班级:34010105

学号:

姓名:

指导教师:

说明:结论(优秀、良好、中等、及格、不及格)作为相关教环节考核必要依据;格式不符合要求;数据不实,不予通过。报告和电子数据必须作为实验现象重复的关键依据。

学术诚信声明

本人声明:所呈交的报告(含电子版及数据文件)是我个人在导师指导下独立进行设计工作及取得的研究结果。尽我所知,除了文中特别加以标注或致中所罗列的容以外,报告中不包含其他人己经发表或撰写过的研究结果,也不包含其它教育机构使用过的材料。与我一同工作的同学对本研究所做的任何贡献均己在报告中做了明确的说明并表示了意。报告资料及实验数据若有不实之处,本人愿意接受本教学环节“不及格”和“重修或重做”的评分结论并承担相关一切后果。

本人签名: 日期:2015 年 1 月 5 日

航空航天大学

课程设计任务书

目录

第一章需求设计

1.1题目介绍1

1.2功能要求2

第二章程序设计3

2.1详细设计3

2.1.1 总体模块图3

2.1.2 函数描述4

2.2主要算法描述5

第三章使用说明6

3.1用法说明10

第四章程序测试13

4.1运行结果13

4.2存在的缺陷132

参考文献15

附录(关键部分程序清单)16

最短路径流程图及算法详解

:算法的设计思想 本算法采用分支定界算法实现。构造解空间树为:第一个城市为根结点,与第一个城市相邻的城市为根节点的第一层子节点,依此类推;每个父节点的子节点均是和它相邻的城市;并且从第一个根节点到当前节点的路径上不能出现重复的城市。 本算法将具有最佳路线下界的节点作为最有希望的节点来展开解空间树,用优先队列实现。算法的流程如下:从第一个城市出发,找出和它相邻的所有城市,计算它们的路线下界和费用,若路线下界或费用不满足要求,将该节点代表的子树剪去,否则将它们保存到优先队列中,并选择具有最短路线下界的节点作为最有希望的节点,并保证路径上没有回路。当找到一个可行解时,就和以前的可行解比较,选择一个较小的解作为当前的较优解,当优先队列为空时,当前的较优解就是最优解。算法中首先用Dijkstra算法算出所有点到代表乙城市的点的最短距离。算法采用的下界一个是关于路径长度的下界,它的值为从甲城市到当前城市的路线的长度与用Dijkstra算法算出的当前城市到乙城市的最短路线长度的和;另一个是总耗费要小于1500。 伪代码 算法AlgBB() 读文件m1和m2中的数据到矩阵length和cost中 Dijkstra(length) Dijkstra(cost) while true do for i←1 to 50 do //选择和node节点相邻的城市节点 if shortestlength>optimal or mincost>1500 pruning else if i=50 optimal=min(optimal,tmpopt)//选当前可行解和最优解的 较小值做最优解 else if looped //如果出现回路 pruning //剪枝 else 将城市i插入到优先队列中 end for while true do if 优先队列为空 输出结果 else 取优先队列中的最小节点 if 这个最小节点node的路径下界大于当前的较优解 continue

数据结构课程设计报告Dijkstra算法求最短路径

中南大学 《数据结构》课程设计 题目第9题 Dijkstra算法求最短路径 学生姓名 XXXX 指导教师 XXXX 学院信息科学与工程学院 专业班级 XXXXXXX 完成时间 XXXXXXX

目录 第一章问题分析与任务定义---------------------------------------------------------------------3 1.1 课程设计题目-----------------------------------------------------------------------------3 1.2 原始数据的输入格式--------------------------------------------------------------------3 1.3 实现功能-----------------------------------------------------------------------------------3 1.4 测试用例-----------------------------------------------------------------------------------3 1.5 问题分析-----------------------------------------------------------------------------------3 第二章数据结构的选择和概要设计------------------------------------------------------------4 2.1 数据结构的选择--------------------------------------------------------------------------4 2.2 概要设计-----------------------------------------------------------------------------------4 第三章详细设计与编码-----------------------------------------------------------------------------6 3.1 框架的建立---------------------------------------------------------------------------------6 3.2 点结构体的定义---------------------------------------------------------------------------7 3.3 创立带权值有向图------------------------------------------------------------------------8 3.4 邻接矩阵的显示---------------------------------------------------------------------------9 3.5 递归函数的应用---------------------------------------------------------------------------10 3.6 Dijkstra算法实现最短路径--------------------------------------------------------------10 第四章上机调试------------------------------------------------------------------------------------11 4.1 记录调试过程中错误和问题的处理---------------------------------------------------11 4.2 算法的时间课空间性能分析------------------------------------------------------------11 4.3 算法的设计、调试经验和体会---------------------------------------------------------11 第五章测试结果-----------------------------------------------------------------------------------12 第六章学习心得体会-----------------------------------------------------------------------------12 第七章参考文献-----------------------------------------------------------------------------------12 附录------------------------------------------------------------------------------------------------------12

数据结构,课程设计,校园最短路径问题

一、课程设计题目:校园最短路径问题 二、课程设计目的: 1.了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; 2.初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; 3.提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 4.训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所具备的科学工作方法和作风。 三、课程设计要求: 1.设计的题目要求达到一定的工作量(300行以上代码),并具有一定的深度和难度。 2.编写出课程设计报告书,内容不少于10页(代码不算)。 四、需求分析: 1、问题描述 图的最短路径问题是指从指定的某一点v开始,求得从该地点到图中其它各地点的最短路径,并且给出求得的最短路径的长度及途径的地点。除了完成最短路径的求解外,还能对该图进行修改,如顶点以及边的增删、边上权值的修改等。 校园最短路径问题中的数据元素有: a) 顶点数 b) 边数 c) 边的长度 2、功能需求 要求完成以下功能: a)输出顶点信息:将校园内各位置输出。 b)输出边的信息:将校园内每两个位置(若两个位置之间有直接路径)的 距离输出。 c)修改:修改两个位置(若两个位置之间有直接路径)的距离,并重新输 出每两个位置(若两个位置之间有直接路径)的距离。 d)求最短路径:输出给定两点之间的最短路径的长度及途径的地点或输出 任意一点与其它各点的最短路径。 e)删除:删除任意一条边。 f)插入:插入任意一条边。 3、实现要点 a) 对图的创建采用邻接矩阵的存储结构,而且对图的操作设计成了模板类。 为了便于处理,对于图中的每一个顶点和每一条边都设置了初值。 b) 为了便于访问,用户可以先输出所有的地点和距离。 c) 用户可以随意修改两点之间好的距离。 d) 用户可以增加及删除边。 e) 当用户操作错误时,系统会出现出错提示。 五、概要设计:

第20讲-关键路径与最短路径

数据结构第20次课

(续表)

思考.题 作业题试对下图所示的AOE网络,解答下列问题。 (1) 这个工程最早可能在什么时间结束。 (2) 求每个事件的最早开始时间Ve[i]和最迟开始时间Vl[I]。 (3) 求每个活动的最早开始时间e( )和最迟开始时间l( )。 (4) 确定哪些活动是关键活动。画出由所有关键活动构成的图,指出哪些活动加速可使整个工程提前完成。 *参考资料《数据结构辅导与提高》,徐孝凯编著,清华大学出版社 《数据结构习题解答与考试指导》,梁作娟等编著,清华大学出版社

授课内容 关键路径 对整个工程和系统,人们关心的是两个方面的问题: 一)工程能否顺利进行(对AOV网进行拓扑排序) 二)估算整个工程的完成所必须的最短时间(对AOE网求关键路径) 1. AOE-网 } 与AOV-网相对应的是AOE-网(Activity On Edge),即边表示活动的网。 AOE-网是一个带权的有向无环图,其中,顶点表示事件(Event),弧表示活 动,权表示活动持续的时间。通常,AOE-网可用来估算工程的完成时间。 例:下图是一个假想的有11项活动的AOE-网。其中有9个事件v 1 , v 2 ,…,v 9 ,每个事件表示在它之前的活动已经完成,在它之后的活动可以 开始。如v 1 表示整个工程开始,v 9 表示整个工程结束,v 5 表示a 4 和a 5 已经 完成,a 7 和a 8 可以开始。与每个活动相联系的数是执行该活动所需的时间。 比如,活动a 1 需要6天,a 2 需要4天等。 和AOV-网不同,对AOE-网有待研究的问题是: (1)完成整项工程至少需要多少时间 (2)哪些活动是影响工程进度的关键 2. 关键路径 由于在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间 是从开始点到完成点的最长路径的长度(这里所说的路径长度是指路径上 各活动持续时间之和,不是路径上弧的数目)。路径长度最长的路径叫做关 备注: 回顾

基于Floyd算法的最短路径问题的求解c++

摘要 现实生活中许多实际问题的解决依赖于最短路径的应用,其中比较常用的是floyd 算法。通过floyd算法使最短路径问题变得简单化。采用图的邻接矩阵或邻接表实现最短路径问题中图的存储。采用Visual C++6.0的控制台工程和MFC工程分别实现基于floyd算法求最短路径的应用。 关键词:最短路径;floyd算法;邻接矩阵;MFC工程

目录 1需求分析 (1) 2算法基本原理 (1) 2.1邻接矩阵 (1) 2.2弗洛伊德算法 (2) 3类设计 (2) 3.1类的概述 (2) 3.2类的接口设计 (3) 3.3类的实现 (4) 4基于控制台的应用程序 (7) 4.1主函数设计 (7) 4.2运行结果及分析 (8) 5基于MFC的应用程序 (9) 5.1图形界面设计 (9) 5.1程序代码设计 (11) 5.3运行结果及分析 (20) 结论 (21) 参考文献 (22)

1需求分析 Floyd算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。 假若要在计算机上建立一个交通咨询系统则可以采用图的结构来表示实际的交通网络。这个资讯系统可以回答游客提出的各种问题。例如,一位旅客要从A城到B城,他希望选择一条途中中转次数最少的路线。假设图中每一站都需要换车,则这个问题反映到图上就是要找一条从顶点A到B所含边的数目最少的路径。我们只需从顶点A出发对图作广度优先搜索,一旦遇到顶点B就终止。由此所得广度优先生成树上,从根顶点A到顶点B的路径就是中转次数最少的路径,路径上A与B之间的顶点就是途径中的中转站数。但是这只是一类最简单的图的最短路径的问题。有时对于旅客来说,可能更关心的是节省交通费用;对于司机来说里程和速度则是他们感兴趣的信息。为了在图上标示有关信息可对边赋以权的值,权的值表示两城市间的距离,或图中所需时间,或交通费用等等。此时路径长度的量度就不再是路径上边的数目,而是路径上边的权值之和。边赋以权值之后再结合最短路径算法来解决这些实际问题。Floyd算法是最短路径经典算法中形式较为简单,便于理解的一种。 2算法基本原理 2.1 邻接矩阵 邻接矩阵(Adjacency Matrix):是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn}。G的邻接矩阵是一个具有下列性质的n阶方阵:(1)对无向图而言,邻接矩阵一定是对称的,而且对角线一定为零(在此仅讨论无向简单图),有向图则不一定如此。 (2)在无向图中,任一顶点i的度为第i列所有元素的和,在有向图中顶点i的出度为第i行所有元素的和,而入度为第i列所有元素的和。 (3)用邻接矩阵法表示图共需要个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需

数据结构最短路径

题目描述 一个图的存储矩阵如下所示(顶点分别是0、1、2、3、4、5): 0,12,18,∞,17,∞ 12, 0,10,3,∞,5 18,10,0,∞,21,11 ∞,3,∞,0,∞,8 17,∞,21,∞,0,16 ∞,5,11,8,16,0 试用邻接矩阵存储法和Floyd算法求解任意两个顶点的最短路径。 输入: 输入数据第一行为1个正整:顶点个数n(顶点将分别按0,1,…,n-1进行编号)。后面有n+1行,前n行都有n个整数(第i行第j个数表示顶点i-1和顶点j-1之间的边长,用10000来表示两个顶点之间无边);第n+1行输入一对顶点x和y 输出: x和y顶点的最短路径长度和最短路径(路径换行输出,只输出顶点编号序列)。 问题分析 题目要求图的存储类型为邻接矩阵,这种存储结构简单易懂,但存储占用较大;求最短路径的算法有Dijkstra算法和SPFA算法,三者相比,在代码的实现上,Floyd编写简单且容易理解,缺点是时间复杂度较高,不适合计算大量的数据。 数据结构及程序 #include #define inf 10000 #define maxn 11 int N,g[maxn][maxn]={0}; int path[maxn][maxn]={0}; void floyd() { for(int k=0;k

for(int i=0;i(g[i][k]+g[k][j])) { g[i][j]=g[i][k]+g[k][j]; path[i][j]=k; } } } int main() { scanf("%d",&N); for(int i=0;i",x); while(tmp!=y) { printf("%d->",tmp); tmp=path[tmp][y]; } printf("%d\n",y); } 运行结果

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

数据结构最短路径

数据结构 设计说明书 单源点最短路径算法的实现 学生姓名王文刚 学号1418064056 班级网络1402 成绩 指导教师 数学与计算机科学学院 年月日

课程设计任务书 20 —20 学年第学期 课程设计名称:数据结构课程设计 课程设计题目:单源点最短路径算法的实现 完成期限:自年月日至年月日共 2 周设计内容: 1.任务说明 2.要求 3.参考资料 指导教师:教研室负责人: 课程设计评阅

摘要 设计了一求解最短路径的方法,该方法具有在输入的途中查找两个顶点之间的最短路径的功能。本方法采用VC++作为软件开发环境,采用Dijkstar函数来求取顶点之间的最短路径。,用户可以自己输入各个地点及其之间的距离,便于用户在不同情况下均可使用。 关键词:最短路径;Dijkstar;无向图;

目录 目录 1课题描述 (2) 2 需求分析 (3) 3概要设计 (4) 3.1 存储结构 (4) 3.2 算法描述 (5) 4详细设计 (6) 4.1 功能模块图 (6) 4.2 主函数 (6) 4.3 pd函数 (7) 4.4 CreateMGraph函数 (8) 4.5Dijkstar函数 (9) 5程序编码 (11) 6程序的调试与测试 (15) 8总结 (16) 参考文献 (17) 1.目录中可以只有一级标题 2.页码右侧对齐页边距 3.本页不需要页码 4.以上内容仅作参考,具体章节由课程设计类型确定

1课题描述 随着交通的发展,人民生活水平的提高。出门旅行变的越来越频繁,而且供暖也成为冬天不可或缺的内容。为了节约时间和金钱,所以人们都希望找到旅行目的地的最短路径和架设暖气的最短路径。那么如何找到最短路径呢?由于路径较多,手工计算比较麻烦,而且容易出错,因此人们用计算机语言代替手工计算求最短路径。而在计算机语言中迪杰斯特拉算法比较常见,简洁,故人们常借助计算机程序迪杰斯特拉算法求最短路径。这样可以广泛提高效率,容易理解。

弗洛伊德算法求解最短路径

课程设计任务书

目录 第1章概要设计 (1) 1.1题目的内容与要求 (1) 1.2总体结构 (1) 第2章详细设计 (2) 2.1主模块 (2) 2.2构建城市无向图 (3) 2.3添加城市 (4) 2.4修改城市距离 (5) 2.5求最短路径 (6) 第3章调试分析 (7) 3.1调试初期 (7) 3.2调试中期 (7) 3.3调试末期 (7) 第4章测试及运行结果 (7) 附页(程序清单) (10)

第1章概要设计 1.1题目的内容与要求 内容:给出一张无向图,图上的每个顶点表示一个城市,顶点间的边表示城市间存在路径,边上的权值表示城市间的距离。试编写程序求解从某一个城市出发到达任意其他任意城市的最短路径问题。 要求: 1)能够提供简单友好的用户操作界面,可以输入城市的基本信息,包括城市名 称,城市编号等; 2)利用矩阵保存城市间的距离; 3)利用Floyd算法求最短路径; 4)独立完成系统的设计,编码和调试; 5)系统利用C语言完成; 6)按照课程设计规范书写课程设计报告。 1.2总体结构 本程序主要分为四个模块(功能模块见图1.1):主模块对整个程序起一主导作用,开始构建一城市无向图,对其进行添加城市顶点,以及对原来的距离数据进行修改,整体构建结束可以实现求一城市到其他城市的最短路径问题。 图1.1 功能模块图

第2章详细设计 2.1主模块 用户根据屏幕上显示的操作提示输入要进行操作的模块,通过调用相对应的模块程序,达到用户所想进行操作。程序的总框架大致分为四个模块:1.建立城市无向图2.添加城市模块3.修改城市距离4.求最短路径。具体实现过程见2.2:建立城市无向图2.3:添加城市2.4:修改城市距离2.5:求最短路径。流程图中通过输入n,由n的值来选择调用相对应子函数,实现所选择的功能,调用完后可以返回调用主函数进行下一次选择,从而实现反复调用子函数而实现四个模块的功能等。 图2.1 主模块流程图

实验四-图的最短路径(弗洛伊德算法实现)

数据结构与算法课程实验报告实验四:图的相关算法应用 姓名:王连平 班级:09信科2班 学号:I09630221

实验四图的相关算法应用 一、实验内容 求有向网络中任意两点之间的最短路。 二、实验目的 掌握图和网络的定义,掌握图的邻接矩阵、邻接表和十字链表等存储表示。掌握图的深度和广度遍历算法,掌握求网络的最短路的标号法和floyd算法。 三、问题描述 对于下面一张若干个城市以及城市间距离的地图,从地图中所有可能的路径中求出任意两个城市间的最短距离及路径,给出任意两个城市间的最短距离值及途径的各个城市。 四、问题的实现 4.1数据结构的抽象数据类型定义和说明 1) typedef struct ArcCell{//储存弧信息 int Distance; ArcCell *info;//此项用来保存弧信息,,在本实验中没有相关信息要保存 }ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM]; typedef struct{//储存顶点信息 string vexs[ MAX_VERTEX_NUM];//顶点向量

AdjMatrix arcs;//邻接矩阵 int vexnum , arcnum;//图的当前顶点数和弧数 }MGraph; 顶点信息和弧信息都是用来建立一个有向网G 2) d[v][w];//G中各对顶点的带权长度 若P[v][w][u]为TRUE,则u是从v到w当前求得最短路径上的顶点 4.2主要的实现思路 首先通过一个函数(CreateDN)建立图的邻接矩阵储存方式,一次输入某条弧的起点,终点,和权值。通过调用Locate函数来找到该弧在邻接矩阵中的相应位置。 其次运用弗洛伊德算法来求各定点的最短路劲,具体思路为:如果从v到w有弧,则存在一条长度为arcs[v][w]的路径,该路径不一定是最短路径。考虑路径(v,u,w)是否存在,若存在,比较(v,w)和(v,u,w)的长度,取较短者为从v到w的中间点序号不大于0的最短路径。以此类推,每次增加一个点,从而求出任意两点间的最短路径。这样,经过n次比较后,所求得的必为从v到w的最短路径。按此方法,可以同时求得任意两点间的最短路径。 五、主要源程序代码(包含程序备注) #include #include using namespace std; #define INfinity 10000//最大值 # define MAX_VERTEX_NUM 10//最大顶点数 typedef struct ArcCell{//储存弧信息 int Distance; ArcCell *info; }ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM]; typedef struct{//储存顶点信息 string vexs[ MAX_VERTEX_NUM];//顶点向量 AdjMatrix arcs;//邻接矩阵 int vexnum , arcnum;//图的当前顶点数和弧数 }MGraph; int Locate(MGraph &G,string v) { int a=0; for (int i=0;i

《数据结构课程设计》最短路径问题实验报告

《数据结构课程设计》最短路径问题实验报告

目录 一、概述 0 二、系统分析 0 三、概要设计 (1) 四、详细设计 (5) 4.1建立图的存储结构 (5) 4.2单源最短路径 (6) 4.3任意一对顶点之间的最短路径 (7) 五、运行与测试 (8) 参考文献 (11) 附录 (12)

交通咨询系统设计(最短路径问题)一、概述 在交通网络日益发达的今天,针对人们关心的各种问题,利用计算机建立一个交通咨询系统。在系统中采用图来构造各个城市之间的联系,图中顶点表示城市,边表示各个城市之间的交通关系,所带权值为两个城市间的耗费。这个交通咨询系统可以回答旅客提出的各种问题,例如:如何选择一条路径使得从A城到B城途中中转次数最少;如何选择一条路径使得从A城到B城里程最短;如何选择一条路径使得从A城到B城花费最低等等的一系列问题。 二、系统分析 设计一个交通咨询系统,能咨询从任何一个城市顶点到另一城市顶点之间的最短路径(里程)、最低花费或是最少时间等问题。对于不同的咨询要求,可输入城市间的路程、所需时间或是所需费用等信息。 针对最短路径问题,在本系统中采用图的相关知识,以解决在实际情况中的最短路径问题,本系统中包括了建立图的存储结构、单源最短问题、对任意一对顶点间最短路径问题三个问题,这对以上几个问题采用了迪杰斯特拉算法和弗洛伊德算法。并未本系统设置一人性化的系统提示菜单,方便使用者的使用。

三、概要设计 可以将该系统大致分为三个部分: ①建立交通网络图的存储结构; ②解决单源最短路径问题; ③实现两个城市顶点之间的最短路径问题。

迪杰斯特拉算法流图:

数据结构课程设计关键路径

数据结构课程设计-关键路径 #define max 20 #include #include #include using namespace std; typedef struct ArcNode//定义表结点 {int adjvex;//该弧所指向顶点的位置 struct ArcNode *nextarc;//指向下一条弧的指针 int info;//该弧的权值 }ArcNode; typedef struct VNode//定义头结点 {int data;//顶点信息 ArcNode *firstarc;//指向第一条依附该顶点的弧的指针}VNode,AdjList[max]; typedef struct//定义ALGraph {AdjList vertices; int vexnum,arcnum;//图的当前顶点数和弧数 int kind;//图的种类标志 }ALGraph; typedef struct//定义栈 {int *base;//栈底 int *top;//栈顶

}stack; void initstack(stack &s)//建立空栈{s.base=(int*)malloc(max*sizeof(int)); s.top=s.base; } int stackempty(stack s)//判断是否为空栈{if(s.base==s.top) return 1; else return 0; } int stackfull(stack s)//判断是否为满栈{if(s.top-s.base>=max) return 1; else return 0; } int pop(stack &s)//进行出栈 {int e;//出栈先进行赋值,后移动指针if(!stackempty(s)) {e=*(s.top-1); s.top--; return e; } else return NULL; }

数据结构课程设计报告_最短路径C++

青岛理工大学琴岛学院 设计报告 课题名称:求解最优交通路径 学院:计算机工程系 专业班级:计算机科学与技术 学号:####### 学生:** 指导教师:** 青岛理工大学琴岛学院教务处 2011 年 7 月 7日

图1 B.具体功能实现及相应的弗洛伊德算法 首先,建立查询信息对话框,使用户能够录入需要查询的城市代号,并显示路径长度及最短路径沿途经过的城市。并相应地添加如下变量int m_v0;int m_v1;int m_lj;CString m_zd; 具体代码如下: #define MAXV 25 //最大顶点个数 #define INF 32767 //用32767表示∞ //以下定义邻接矩阵类型 typedef struct { int no; //顶点编号 char name[10]; //顶点名称 } VertexType; //顶点类型 typedef struct //图的定义 { int edges[MAXV][MAXV]; //邻接矩阵 int vexnum,arcnum; //顶点数,弧数 VertexType vexs[MAXV]; //存放顶点信息 } MGraph; //图的邻接矩阵类型 1.通过函数CreatUDN()存放城市路径信息,输入顶点之间的路径长度,创建带权图的邻接矩阵。 void CTDialog::CreatUDN() { MGraph *g=(MGraph*)malloc(sizeof(MGraph)); int i,j; for(i=0;iedges[i][j]=INF; if(i==j)g->edges[i][j]=0; //初始化置任意两城市之间距离为无穷大,即两城市之间没有直接通路

数据结构课程设计——关键路径

《数据结构》课程设计报告 课程题目:关键路径 学院: 班级: 学号: 姓名: 指导教师: 完成日期:

目录 一、需求分析 ............................... 错误!未定义书签。 二、概要设计 ............................... 错误!未定义书签。 三、详细设计 ............................... 错误!未定义书签。 四、调试分析 .............................. 错误!未定义书签。 五、用户使用说明 ...................... 错误!未定义书签。 六、测试结果 .............................. 错误!未定义书签。 七、附录 ..................................... 错误!未定义书签。

一、需求分析 1、问题描述 AOE网(即边表示活动的网络),在某些工程估算方面非常有用。它可以使人们了解:(1)研究某个工程至少需要多少时间(2)哪些活动是影响工程进度的关键在AOE网络中,从源点到汇点的有向路径可能不止一条,但只有各条路径上所有活动都完成了,这个工程才算完成。因此,完成整个工程所需的时间取决于从源点到汇点的最长路径长度,即在这条路径上所有活动的持续时间之和,这条路径就叫做关键路径(critical path)。 2、设计步骤 (1)、以某一工程为蓝本,采用图的结构表示实际的工程计划时间。 (2)、调查并分析和预测这个工程计划每个阶段的时间。 (3)、用调查的结果建立AOE网,并用图的形式表示。 (4 )、用CreateGraphic ()函数建立图的邻接表存储结构,能够输入图的顶点和边的信息,并存储到相应存储结构中。 (5)、用SearchMaxPath()函数求出最大路径,并打印出关键路径。 (6)、编写代码并调试、测试通过。 3、测试数据 ○v2○v5 ○v1○v4○v6 ○v3 6 v1 v2 v3 v4 v5 v6 8 v1 v2 a1 3 v1 v3 a2 2 v2 v4 a3 2 v2 v5 a4 3 v3 v4 a5 4 v3 v6 a6 3 v4 v6 a7 2 v5 v6 a8 1

数据结构 第六章 图 练习题及答案详细解析

图 1. 填空题 ⑴设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。 【解答】0,n(n-1)/2,0,n(n-1) 【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。 ⑵任何连通图的连通分量只有一个,即是()。 【解答】其自身 ⑶图的存储结构主要有两种,分别是()和()。 【解答】邻接矩阵,邻接表 【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。 ⑷已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。 【解答】O(n+e) 【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。 ⑸已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。 【解答】求第j列的所有元素之和 ⑹有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。 【解答】出度 ⑺图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。 【解答】前序,栈,层序,队列 ⑻对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。 【解答】O(n2),O(elog2e) 【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。 ⑼如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。 【解答】回路 ⑽在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。 【解答】vi, vj, vk

数据结构课程设计-Floyd算法求解最短路径

数据结构课程设计报告撰写要求 (一)纸张与页面要求 1.采用国际标准A4型打印纸或复印纸,纵向打印。 2.封页和页面按照下面模板书写(正文为:小四宋体1.5倍行距)。 3.图表及图表标题按照模板中的表示书写。 (二)课设报告书的内容应包括以下各个部分:(按照以下顺序装订) 1.封页(见课设模版) 2、学术诚信声明,所有学生必须本人签字,否则教师拒绝给予成绩。 2.任务书(学生教师均要签字,信息填写完整) 3.目录 4.正文一般应包括以下内容: (1)题目介绍和功能要求(或描述) 课程设计任务的详细描述(注意不能直接抄任务书),将内容做更详细的具体的分析与描述; (2) 系统功能模块结构图 绘制系统功能结构框图及主要模块的功能说明; (3) 使用的数据结构的描述: 数据结构设计及用法说明; (4) 涉及到的函数的描述 ; (5) 主要算法描述( 程序流程图) (6) 给出程序测试/运行的结果 设计多组数据加以描述(包括输入数据和输出结果) (7) 课程设计的总结及体会 (8) 参考文献 格式要求:[1]作者,等. 书名.出版地:出版社,出版年 5.附录:程序清单 (应带有必要的注释)

沈阳航空航天大学 课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:利用弗洛伊德(Floyd)算法求解 最短路径 院(系):计算机学院 专业:计算机科学与技术(物联网方向) 班级:34010105 学号: 姓名: 指导教师: 说明:结论(优秀、良好、中等、及格、不及格)作为相关教环节考核必要依据;格式不符合要求;数据不实,不予通过。报告和电子数据必须作为实验现象重复的关键依据。

数据结构课程设计汇本:拓扑排序和关键路径

1 ABSTRACT 1.1图和栈的结构定义 struct SqStack////栈部分 { SElemType *base;//栈底指针 SElemType *top;//栈顶指针 int stacksize;//栈的大小 int element_count;//栈中元素个素 }; /////////AOE网的存储结构 struct ArcNode //表结点 { int lastcompletetime;//活动最晚开始时间 int adjvex; //点结点位置 int info; //所对应的弧的权值 struct ArcNode *next;//指向下一个表结点指针 }; struct VNode //点结点 { VertexType data; //结点标志 int indegree; //该结点入度数 int ve; //记录结点的最早开始时间 int vl; //记录结点的最晚开始时间 struct ArcNode *first_out_arc; //存储下一个出度的表结点 struct ArcNode *first_in_arc;//存储下一个入度的表结点}; struct ALGraph { VNode *vertices; //结点数组 int vexnum; //结点数 int arcnum; //弧数 int kind; //该图的类型 };

2系统总分析 2.1关键路径概念分析 2.1.1什么是关键路径 关键路径法(Critical Path Method, CPM)最早出现于20世纪50年代,它是通过分析项目过程中哪个活动序列进度安排的总时差最少来预测项目工期的网络分析。这种方法产生的背景是,在当时出现了许多庞大而复杂的科研和工程项目,这些项目常常需要运用大量的人力、物力和财力,因此如何合理而有效地对这些项目进行组织,在有限资源下以最短的时间和最低的成本费用下完成整个项目就成为一个突出的问题,这样CPM就应运而生了。对于一个项目而言,只有项目网络中最长的或耗时最多的活动完成之后,项目才能结束,这条最长的活动路线就叫关键路径(Critical Path),组成关键路径的活动称为关键活动。 2.1.2关键路径特点 关键路径上的活动持续时间决定了项目的工期,关键路径上所有活动的持续时间总和就是项目的工期。 关键路径上的任何一个活动都是关键活动,其中任何一个活动的延迟都会导致整个项目完工时间的延迟。 关键路径上的耗时是可以完工的最短时间量,若缩短关键路径的总耗时,会缩短项目工期;反之,则会延长整个项目的总工期。但是如果缩短非关键路径上的各个活动所需要的时间,也不至于影响工程的完工时间。 关键路径上活动是总时差最小的活动,改变其中某个活动的耗时,可能使关键路径发生变化。可以存在多条关键路径,它们各自的时间总量肯定相等,即可完工的总工期。 关键路径是相对的,也可以是变化的。在采取一定的技术组织措施之后,关键路径有可能变为非关键路径,而非关键路径也有可能变为关键路径。 2.2关键路径实现过程 2.2.1结构选取 首先要选取建图的一种算法建立图,有邻接矩阵,邻接表,十字链表,邻接多重表等多种方法,要选取一种适当的方法建立图,才能提高算法效率,降低时间复杂度和空间复杂度。两个相邻顶点与它们之间的边表示活动,边上的数字表示活动延续的时间。对于给出的事件AOE网络,要求求出从起点到终点的所有路径,经分析、比较后找出长读最大的路径,从而得出求关键路径的算法,并给出计算机上机实现的源程序。完成不同路径的活动所需的时间虽然不同,但只有各

数据结构课程设计_城市最短路径求解

数据结构课程设计 —省会城市最短路径求解一、类关系图 说明:Graph类继承Form类,同时嵌入了CityInf结构体和List类。 Graph类的几个重要函数、类、结构体 private void Init()//初始化函数 private void ShowMap_Paint(object sender, PaintEventArgs e) //绘制地图 private bool GetMinDistanceFun(int entry) //采用迪杰斯特拉算法获得最短路径private void BFS(int StartPoint, int[] visited, string name) //广度优先遍历函数private void DFS(int StartPoint, int[] visited, string name)//深度优先遍历函数private void Prim()//求解最小生成树 Prim算法 private class List //广度优先遍历用到的队列类 public struct CityInf//存放城市信息:城市名称、城市坐标、状态值

二、流程图

三、主要算法的实现 1.用迪杰斯特拉算法实现省会城市间最短路径的求解 private bool GetMinDistanceFun(int entry) { int inputnodenum = CityData.citysum; int[] Mark = new int[inputnodenum]; //标志位数组标记数据在哪个集合 int mindis = 0, nextnode = 0;//最短路径,下一个城市结点 int i, j; //第一轮距离数组记录从起始点到其他所有点的边权值 for (i = 0; i < inputnodenum; i++) { Distance[i] = GetCityWeight(entry, i); //所有标志位清零 Mark[i] = 0; //如果起始结点可以抵达某个结点 if (i != entry && Distance[i] < MaxWeight) { RoutePath[i] = entry; //则把该结点首先放入路径数组 } else { RoutePath[i] = -1;//表示该路径不通 } } //初始状态下集合存放找到最短路径顶点集合的中只包含源点entry 所以把它在Mark 中标记出来 Mark[entry] = 1; //在还没有找到最短路径的结点集合中选取最短距离结点nextnode for (i = 1; i < inputnodenum; i++) { //设定每轮的初始最小距离为无穷大 mindis = MaxWeight; for (j = 0; j < inputnodenum; j++) { //保证每次循环mindis是到entry的最小值 if (Mark[j] == 0 && Distance[j] < mindis)//如果没有进入最短路径且距离小于最小距离 { nextnode = j; mindis = Distance[j];//记录本次循环的最短路径 } }

相关文档
最新文档