宇宙学原理

宇宙学原理
宇宙学原理

论光速

序:

光速可变吗?这是个古老的话题,不管承认与否,争论就从没有休止过。不管如何争论,答案只有一个,不是理论是无可争辩的真理。

在讨论这个问题之前我们要弄明白什么是光速不变什么是光速可变。

光在两个不同的参考系中都以恒定的光速c运行,光子的运动符合洛伦兹变换,这是光速不变,并由此得出相对论,是相对论和现代天文学的基础。

光子的运动在不同的参考系中符合伽利略变换,这是光速可变。

事实上,这也是遥远的波和粒子的争辩。最初,根据同水波和声波类比得出光是以太的波动及光速不变的最初理念。之后麦克斯韦波动方程及洛伦兹变换全面提出了光速不变理论。再之后根据迈克尔逊莫雷实验得出光速不变和以太不存在的结论。最后狭义相对论对此作了全面解释,巩固了光速不变的地位,最终导致上个世纪的天文学家没有考虑过光速可变。

我最初开始思考这个问题是几年前,某天看《探索发现》的时候说道:哈勃望远镜对着太空中的某一普通黑色区域观测了一个星期,发现里面有成千上万个银河系这样的星系,而那片黑色区域在天空中只是那么一个点而已。还说道目前观测到的最遥远的星系正以二十七八万千里每秒的速度远离我们,非常接近光速。之后想象宇宙有多大的时候差点烧坏脑子,瞬间感受到地球和人类文明的渺小,然后想到既然最遥远的正以接近光速的速度远离我们,有没有可能还存在其他的星系但是同我们的相对速度超过光速所以就看不到了,而宇宙就像一个大蛋糕,我们能看到的只是其中的一部分,剩下有很大的一部分是看不到的,并且神奇的是我们还不知道这个蛋糕有多大。

带着这些疑惑我去查阅相关资料,然后就接触了光速不变理论,两个参考系里同一束光的速度恒定不变为c,想都不用想就知道会产生出各种烧脑复杂的理论和限制,且结合微波背景辐射推测出地球相对于宇宙的运行速度为几百千米每秒,同二十七八万千米来说微不足道,这样一来地球就可能成了宇宙的中心,任我再怎么自大也不敢这样想,且这理论也并不能回答我宇宙到底有多大和为什么最遥远的星系正以接近光速的速度远离我们这些问题,并且最重要的这是个理论——不是真理。百科里介绍光速不变及相对论的时候,说光速不变是一个假设。之后我查了一下光速不变理论产生的整个过程,了解之后发现光速可变也行得通,尤

其是莫雷实验,完完全全是光速可变的理论依据(下文慢慢解释)。所以我果断抛弃光速不变,开始思考光速可变的种种,结果发现它完全可以更加简单的解释天文学上的种种现象,甚至都可以说这些现象简洁的都可以是光速可变理论的证据,并打开了另一片广阔的天地,在这里微波背景辐射可以推导出来,甚至万有引力也可以解释。最最重要的是,可以通过实验验证它是不是真理。

在讨论之前要说明一点,我并没有贬低任何一位科学家的意思,尤其是爱因斯坦,他们生活的时代有属于他们时代的局限,很多现代得到的结论和现象他们不清楚,得到的结论也不一定能够完全准确。且经典容得起质疑,而且类似于光速是可变还是不可变这样的问题的答案是唯一的,真理是存在的。

应该批判的是把还没被证明是完全正确的理论当做经典和真理一样教授给大家,或因为对偶像的崇拜而容不下任何质疑的声音,这样无脑的行为才应该唾弃。

正文:

需要从两个方面讨论光速可变与否,一是物理理论,二是天文观测。

一、追本溯源

首先让我们回到遥远的波粒战争。

光是同水波声波等波一样的以太的振动,存在一个传播速度,这是波理论。杨氏双缝干涉为光的波理论开天辟地,泊松光斑和之后的麦克斯韦方程组使之完全成为一种定论。

看似完美实则处处隐藏玄机。首先是双缝干涉,有可能是光子自身构造上的特性造成的,“光的相干性”就是一个最好的证明——没有任何推理过程,完全是为了解释其他同频率的光没有观测到驻波而产生的弥补解释。

单电子或单光子通过双逢后概率分布实验简洁的解释了条纹的产生不是驻波而是粒子自身的特性。

我现在所说的“粒子”不同于以往的粒子是质点的概念。而是一个储存电势能的电场和储存磁势能的磁场相互转换体系,运动规律满足伽利略变换。有势能、动量,不过它是什么形状、

具体转换方式等还不确定,现在简单的把它看成一个粒子、运动规律满足伽利略变换,以下所说的粒子都是这个概念。

莫雷实验,实验原理是:光波是一种以太的波动,类似于船在海上航行或飞机在天空中飞,水波和声波相对于大海和空气的速度是一定且不变的,向前方发射的声波或水波反射回来后会回到原来的位置,而向两侧垂直发射的则不会。试图测一下我们地球还有光波相对于以太的绝对速度。最后光线没有偏移,得出光速不变及以太不存在的结论。

实验结果与其说否定了以太的存在,不如说是否定了光子是以太的波动说,因为用粒子和伽利略变换解释起来简单明了,在运动的飞船上打乒乓球,且不存在绝对速度和以太阻力。怎么打出去的就会怎么回来。

对,光子的运动方式满足伽利略变换是可能的。

二、伽利略变换下的天文现象

首先,存在绝对参考系。

其次,光子是电磁势能的相互转换,同时又以超高的速度传播出去。也就是说我们看到的光子是由两部分组成的,一是其自身的势能Ech,二是光子的动能Ecv。

其总能量为Ec=Ech+Ecv

既然光波是不存在的,那么多普勒效应是怎么回事?

显而易见,当光子的运动符合伽利略变换时,在不同的参考系中就有着不同的速度,也就存在不同的动能Ecv,导致其相对观测点来说自身总能量Ec的变化,表现为红移和蓝移。这是多普勒效应。

(下面说的频率是光子总能量强弱的表达方式,已经没有实际意义。且讨论的基础建立在我们观察到的光子的颜色和能量是与它的总能量有关而不是和它的势能有关的假设之上。)

再来看一下如何简洁的解释其他天文现象。以下现象都是根据伽利略变换进行的推理,有问题可以提,看不懂仔细看。

假设宇宙是在加速膨胀和无限的。

现象1,矮星:

假设恒星1是在做加速度为a的匀加速直线运动,初速度为v0,初始时恒星1向它的运动方向发出的光子1的运动速度为v0+c(c是光速)。恒星1在加速,而光子1匀速,所以恒星1会追上光子1.

假设运动时间为t,恒星1在t时间内运动的距离L1=1/2*at2+v0t,光子1在t时间内运动的距离L2=(v0+c)*t

当L1=L2时,1/2*at2+v0t=(v0+c)*t,t=2c/a,

即2c/a时间之后恒星1会追上自己发出的光子,这时光子1和恒星1的相对速度为-c,假设恒星1已经运行了足够长的时间,那么在恒星1的前进方向会一直有一个自己的假象,光谱类型可能和恒星1相同,亮度偏暗。

这是白矮星。同时恒星1也可以看到其他相邻恒星的假象,并且都在运动方向上,也就是太阳—银心方向上。完全符合白矮星的特点。

现象2,宇宙学红移和蓝移:

假设恒星1和恒星2初速度v0相同,加速度a也相同,恒星1在恒星2的运动方向上,恒星1和恒星2之间的距离为L,那么从恒星2向恒星1发出的光子2的速度为v0+c,恒星1向恒星2发出的光子1'的速度为v0-c,设运动时间为t,

当光子2第一次到达恒星1时

其相对速度C2= v0+c-(at+v0)=c-at.

运动距离s2=L+s

(v0+c)*t =L+1/2*at2+ v0*t

1/2*at2- c*t+L=0

会发生红移现象。且恒星1也会看到恒星2的假象。

当光子1'第一次到达恒星2时

C1'= v0-c-(at+v0)=-c-at

s2'= s-L

(v0-c )*t = 1/2*at2+ v0*t-L

1/2*at2+ c*t-L=0

c aL c at c C >+=--=2'12

会发生蓝移现象。并且恒星2也会看到恒星1的假象。

通过Ec=Ech+Ecv 及,随着相对距离L 的变长,光子2到达恒星1时速度会不断降低,能量也同时降低,变成红光、红外线、微波、无线电波。直到光子2永远无法到达恒星1.这样在恒星1看来恒星2就发生了宇宙学红移,且在恒星1看到的恒星2的假象也有红移现象。

通过Ec=Ech+Ecv 及aL c at c C 2'12+=--=,随着相对距离L 的变长,光子1’到达恒星2时光线观测到的速度和能量将会不断升高变成紫外线、X 射线乃至γ射线。 现象3,双星

当恒星1在某一时刻释放光子的时候,是以由无数光子组成的以光速c 扩张的“球”的形式释放的,并且这扩张的“球”还有一个向前运动的初速度v 。因为恒星是在做加速运动,之后释放的“球”的向前的运动速度v 会大于之前释放的“球”,也就意味着后来释放的“球”会追上之前

释放的“球”,且都还在扩张。追上之后两个“球”会有一个交错的边界,也就是说如果在这个点观测恒星1的话会有两个恒星1,并且这两颗星的位置会随时间变化。这是双星现象。

因为观测点存在追上和被追上两种情况,所以双星也可以观测到矮星双星。

现象4,超新星

另外由于恒星是在做加速运动,后发射的光子的速度会大于前发射的光子的速度,光子之间的距离会随光子的运动不断缩短直到后面的光子超越前面的光子。在超越之前会有一个富集的过程,如果这时有观测点恒星3从这里经过,在恒星3看来恒星1就会显得异常明亮,这是超新星现象。

然后也存在经过和被经过的问题,经过就会出现在运动方向上,被经过就会出现在运动反方向上。从侧面经过的太复杂了不想讨论。

且两大类超新星最后都会趋于稳定,最终的稳定形态取决于两恒星的诞生时间差、间距、加速度、轨道方向等因素。且由于这些因素的不同,观测到的爆发方式也不一样。

例如,如果恒星1的加速度小于恒星3、诞生间隔不那么长的话,这种在运动方向上的爆发方式就是由白矮星逐渐爆发和减弱,并最终消失掉。光子能量的变化为逐渐降低;

在运动反方向上应该也是由普通的发生红移的天体逐渐爆发后减弱,直至最后永远消失掉。同时光子能量也是逐渐降低。

如果恒星1的加速度大于恒星3、诞生间隔不那么长的话,这种在运动方向上就没有爆发,而是由白矮星逐渐变暗,光子能量逐渐增强变成紫外线、X射线、γ射线等,并这类的天体最终会聚集在恒星3前进正前方周围区域内,光子能量极高但亮度很小。

如果恒星1的加速度大于恒星3、诞生时间晚于恒星3足够长的话,那么首先会从运动反方向上突然爆发,强度增高一段时间之后开始缓慢降低,并且光子由红变蓝,并继续变成存在蓝移的普通恒星,然后从恒星3侧面经过,最后继续向前进方向移动并继续蓝移变成紫外线、X射线乃至γ射线,最终也会聚集在恒星3前进正前方的一片区域内。并且在最开始爆发的同时,恒星3前进方向上也会有超新星爆发,也是毫无征兆的爆发,然后强度逐渐降低,光子能量逐渐升高,由红变蓝,逐渐变成白矮星,并继续降低强度提高能量和集中到前进方向。

等等等等,各种奇异现象。如果恒星1的加速度稳定的话,它所发射的光子相对于自己会形成一个稳定的分布方式。运动前方固定距离有一段聚集区域,这里有大量的光子类似于子弹头的样式。从头开始到恒星之间的区域同时存在两种运动方向的光子。然后“子弹”的运动过程中会连续不断的发出以相对恒定速度c向外扩张的球。如果把这个路径和“球”放到一起立起来的看的话。这将是一个自下而上不断生长的光柱,扩张速度是不变的,伸长速度在加速。那么这根光柱看起来将会是下面粗上面窄,还在不停的生长,且上面“子弹头”部分会越来越窄。

对于不同位置和运动方式的观测点来说会产生不同的现象。

至于恒星1做变加速或变变加速的情况,应该属于后期和大大后期考虑的问题,这里不做讨论。

根据推论,所有加速度大于我们的恒星都会最终聚集到我们的运动方向上的区域范围并向我们发射的光变成伽马射线。

所有在我们诞生很久很久以前就诞生了的恒星也会聚集在那里,加速度小于我们的恒星会远离那里并最终落到我们的身后消失不见,大于我们的会一直呆在那里直至永恒。

有人想到银心了吗?

如果宇宙是从一基点开始爆发的话,那么宇宙就像一个大蛋糕,我们现在能看到的只是其中的一部分,剩下有很大的一部分是看不到的,并且最神奇的是我们目前还不知道这个蛋糕有多大。

可以检测一下光速是否可变,根据本文说的,光速可变的情况下,发生红移的原因是光子相对于我们的移动速度减慢造成的。简单粗暴的方法是直接测一下红移的星光,这个目前可能有困难,且由于不清楚光子的势能和动能的关系以及折射反射等对其速度有没有影响,可能会验证也可能不会验证。第二种方法是对比一下存在位移的两个观测站的对于同一发生红移

的天文现象的数据。因为红移是因为光子速度慢,所以两个观测站同一现象的时间差应该会大于根据普通光速算出的时间差,有可能是几毫米也有可能是几分钟几小时。

FRB就是一个很好的观测项目,07年刚发现的时候部分科学家不承认,因为他们的望远镜没有同一时间没有观测到这现象。实际情况可能是因为存在时间差,所以观测到的时间不一样,所以没有发现。我没学会用数据库,所以这验证的工作就交给你们了。

目前我暂且只能想到这两种方法,原理都一样。希望有人能够验证一下,某一条真理的答案就在我们眼皮子底下。

三、能量、场、光子的本质讨论

如果真如刚才所说,光子是一个移动的能量球的话,以下是推测猜想。

第一,根据电磁感应我们存在的这个空间有电磁感应的能力,也就是能让变换的电场转换成磁场的能力,也就是纯电势能转换成磁势能的能力。

所以运动的电势能就会转换成磁势能。所以每一束光自身都存在一个固有转换频率,只和绝对速度和自身势能大小有关,不随相对速度的改变而改变。并且,因为是电场和磁场周期消失的频率,所以可以被观测到,这就是背景辐射。

并且随着运动速度的加快光子的转换周期也加快,也就是为什么银河系一侧的辐射比另一侧要红移一些的原因。因为追上我们的光子的绝对速度比我们要大,而被追上的要比我们的小。

同理,当实验室的点刚好位于地球自转到运动方向于太阳银心方向一致时,向前发射和向后发射的同样的光束可以观测到的“背景辐射频率”会不一样,向运动方向发射的光束要高于向运动反方向发射的光束。

第二,磁场和磁场间有作用力吗?换句话说就是纯能量间有相互作用吗?

这个问题很简单,如图所示,看磁铁的性质就知道磁场总是延磁场线的方向叠加,也就是说相邻两个磁场,磁场方向相同就会吸引,相反就会排斥。注意,磁场和磁铁不一样。

重要的事情说三遍:对磁场来说磁场方向相同就会吸引,相反就会排斥!对磁场来说磁场方向相同就会吸引,相反就会排斥!对磁场来说磁场方向相同就会吸引,相反就会排斥!

既然光子的速度是可变的,那么电子的也可以喽?我们知道闭合的回路会产生磁场和电磁波,换句话说运动的电子会产生环形的磁场,根据之前所说的相邻的磁场方向相反的话会互相弹开,也就是说,电子运动产生的磁场相互弹开。电子运动越快的话,产生的磁场的势能

就越大,形成的电磁波所带的能量就越大,最后就形成了可见光,没错,LED灯就是这么来的。白炽灯是靠电子撞击加热钨丝发光,LED灯是靠高速运动的电子。所以钨丝有电阻,LED灯发光的方向电阻几乎为零。

环形的磁场会形成电子的通道,也就是说带磁性的粒子按一定规律排列或运动就会产生闪电!没错,闪电!这就可以解释为什么乌云和火山灰可以更容易形成闪电。

第三,势能越大,尺寸越小,且绝对速度相同的情况下转换频率也越快。那有没有可能质子、中子、电子等也是电磁势能的相互转换呢?如果是的话有没有可能整个地球、太阳、银河系的磁场或电场是相互平行的呢?有没有可能万有引力就是这样产生的呢?有没有可能改变物质的惯性呢?就像编写一个代码一样重新定义一个粒子的运动方式。有没有可能分解这些粒子中的势能呢?

大爆炸学说

大爆炸学说 宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。宇宙是物质世界,它处于不断的运动和发展中。《淮南子·原道训》注:“四方上下曰宇,古往今来曰宙,以喻天地。”即宇宙是天地万物的总称。千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。 大约在150亿年前,宇宙所有的物质和能量都高度密集在一点,并浓缩成很小的体积,温度极高,密度极大,因而发生了巨大的爆炸。大爆炸以后,物质开始向外大膨胀,就形成了今天我们看到的宇宙。大爆炸的整个过程是复杂的,现在只能从理论研究的基础上,描绘过去远古的宇宙发展史。在这150亿年中先后诞生了星系团、星系、我们的银河系、恒星、太阳系、行星、卫星等。现在我们看见的和看不见的一切天体和宇宙物质,形成了当今的宇宙形态,人类就是在这一宇宙演变中诞生的。 大爆炸宇宙学是现代宇宙学中最有影响的一种学说,与其它宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。这一从冷到热,从密到稀的过程如同一次规模很大的爆发。 根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。 温度进一步下降到100万度后,早期形成化学元素的过程结束。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。 从1948年伽莫夫建立热大爆炸的观念以来,通过几十年的努力,宇宙学家们根据哈勃常数也可以推算大约150亿年前,宇宙起始于一个奇点。大爆炸宇宙模型是一种广为认可的宇宙演化理论。其要点是,宇宙是从温度和密度都极高的状态中由一次“大爆炸”产生的。时间至少发生在100亿年前。这种模型基于两个假设:第一是爱因斯坦提出的,能正确描述宇宙物质的引力作用的广义相对论;第二是所谓宇宙学原理,即宇宙中的观测者所看到的事物

宇宙学标准模型

宇宙学标准模型 宇宙模型指的是对宇宙的大尺度时空结构、运动形态和物质演化的理论描述。所谓标准宇宙模型是指以弗里德曼宇宙模型为基础,伽莫夫将其运用于早期宇宙的演化而形成的一种宇宙模型。它是一种结合核物理、粒子物理、相对论、量子力学知识对宇宙起源和演化的一种解释,是目前主流的宇宙模型。 1.标准宇宙模型: 1922年,弗利德曼提出了宇宙在膨胀的假设。1927年,勒梅特利进一步指出,当时已发现的星系谱线红移现象,可能就是宇宙膨胀的表现。这些预言,被1929年发现的哈勃定律所证实。这就是著名的弗利德曼宇宙模型,它是现代宇宙学的基础。 如果宇宙在长时间内一直在膨胀着,那么物质密度就一直在逐渐变稀。往前追溯至宇宙尺度为今天的百分之一时,宇宙密度将达到今天的106倍,超过了星系的密度(约为今天宇宙平均密度的105倍),于是星系将挤在一起,实际上它们不能存在。由此可见,宇宙的结构在某一时间之前是不存在的,它只能是演化的产物。 在没有结团之前,宇宙一大片由微观粒子构成的均匀气体,在热平衡下有均匀的温度,称为宇宙温度。气体的绝热膨胀将使宇宙温度降低,反之往前追溯,越早的宇宙就有越高的温度。这样,甚早期的宇宙就应当是温度很高、密度很大的气体,它以很大的速率膨胀着。这正是宇宙热大爆炸观念的基本看法。1950年前后,伽莫夫第一个建立了热大爆炸的观念。他假设宇宙的历史可以追溯到温度1010K以上,这时粒子之间的热碰撞足以使原子核瓦解。因此,原子核作为微观性结团,也只能是宇宙演化的产物。伽莫夫等人成功地解释了氦的宇宙平均丰度高达1/4的事实。可是,他的初步理论并没能赢得当时人们的信任。直到最近20多年来,这一理论才发展得比较成熟。 可以设想,宇宙诞生的时候,物质密度为无限大。这时,空间是高度弯曲的,能量集中为引力能。随着宇宙的膨胀,引力能逐渐转化为粒子能,从而产生出各种各样的粒子来。宇宙继续膨胀,温度继续下降,就会演出一幕幕生动真切的演化画面来。这个大爆炸宇宙学由于只用了已知的物理学规律,非常简单地描述了宇宙的性质、运动和演化,并得到了观测事实的支持,现在已为大多数学者所认可,称之为宇宙学的标准模型。 2.宇宙标准模型的观测证据: 1)宇宙背景辐射: 宇宙背景辐射的发现和热谱的验证,历来被视为证实了标准宇宙的一项重要预言。标准模型认为充满宇宙的背景辐射产生于宇宙的早期,且随着宇宙的膨胀而冷却,COBE卫星的观测

宇宙探索与发现标准

写在前面的话: ●本文档选择题默认A对B错。 ●建议使用查找功能 ●实际网页测试中选项顺序可能会变,要注意 ●第一章和第二章由于没能及时存,所以内容不全 第一章 1 单选(2分) ( )较正确地反映了太阳系的实际,为以后开普勒总结出行星运动定律,伽利略、牛顿建立 经典力学体系铺平了道路,从根本上动摇了“人类中心论”的神话。 得分/总分 ? A. 托勒密的地心说 ? B. 哥白尼的日心说 正确答案 ? C. 银河的系发现 ? D. 广阔恒星世界的发现 2 单选(2分) 18-19世纪中期,()兄妹及父子,通过数遍天上星星等大量观测事实提出“银河是一个星系”的观点,第一次为人类确定了银河系的盘状旋臂结构,把人类的视野从太阳系伸展到10 万光年之遥,树立了继哥白尼以后开拓宇宙视野的第二个里程碑。 得分/总分 ? A. 伽利略 ? B. 哈雷 ?

C. 威廉·赫歇尔 正确答案 ? D. 哈勃 3 单选(2分) 1718年,()将自己的观测数据同1000多年前托勒玫(Claudius Ptolemaeus,约90-168)时代的天文观测结果相比较,发现有几颗恒星的位置已有了明显变化,首次指出所谓恒星不 动的观念是错误的。 得分/总分 ? A. 哈雷 正确答案 ? B. 哈勃 ? C. 斯特鲁维 ? D. 勒维特 第二章

? C. 100亿年 ? D. 120亿年 2 单选(2分) 根据目前的观测与对哈勃常数的计算,宇宙的年龄大约()。 得分/总分 ? A. 137亿年 正确答案 ? B. 150亿年 ? C. 180亿年 ? D. 200亿年 3 单选(2分) ()给出,宇宙物质产生后氢和氦的质量丰度比约为75/25,这一比值一直保持下来。 今天实测的氢、氦丰度和这一理论值完全相符。 得分/总分 ? A. 宇宙大爆炸理论 正确答案 ? B. 广义相对论 ? C.

浅谈宇宙大爆炸理论

浅谈宇宙大爆炸理论 机械12-1 121014122 孙静 我们从哪里来?宇宙是什么样的?这自有人类以来的永恒疑问。从西方的海龟驮大陆,到中国的天圆地方,诞生了远古的神话和宗教。十七世纪,开普勒、胡克等人继续为太阳系勾勒大概的轮廓。最终伟大的牛顿建立了完美的经典力学大厦。那时人们确信宇宙间所有的规律都已发现殆尽,所有星系的运动都可纳入牛顿力学的体系中。这一时期人们相信宇宙是无限广大和永恒的存在,也许这使人有某种安全感。但是用牛顿力学解释宇宙有个致命的疑问,如果万有引力是正确的,为什么星系不会因为万有引力聚拢到一起?无论宇宙有没有一个中心,只要时间足够长,星系总会慢慢靠拢,最后碰撞、毁灭。这给现代天文学提出了挑战,但是即使是当时最具有革命精神的人,也无法想象今后的颠覆性的发现。 大爆炸理论(Big Bang)是天体物理学关于宇宙起源的理论。根据大爆炸理论,宇宙是在大约140亿年前由一个密度极大且温度极高的状态演变而来的。本理论产生于观测到的哈勃定律下星系远离的速度,同时根据广义相对论的弗里德曼模型,宇宙空间可能膨胀。延伸到过去,这些观测结果显示宇宙是从一个起始状态膨胀而来。在这个起始状态中,宇宙的物质和能量的温度和密度极高。至于在此之前发生了什么,广义相对论认为有一个引力奇点,但物理学家对此意见并不统一。 “大爆炸宇宙论”认为:宇宙是由一个致密炽热的奇点于137亿年前一次大爆炸后膨胀形成的。[1] 1927年,比利时天主教神父勒梅特(Georges Lema?tre)首次提出了宇宙大爆炸假说。1929年,美国天文学家哈勃根据假说提出星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。 现代宇宙学中最有影响的一种学说。它的主要观点是认为宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系在不断地膨胀,使物质密度从密到稀地演化,如同一次规模巨大的爆炸。该理论的创始人之一是伽莫夫。1946年美国物理学家伽莫夫正式提出大爆炸理论,认为宇宙由大约200亿年前发生的一次大爆炸形成。 大爆炸一词在狭义上是指宇宙形成最初一段时间所经历的剧烈变化,这段时间通过计算大概在距今137亿(1.37 ×10^10)年前;但在广义上指当今流行的揭示宇宙起源和膨胀的理论。这一理论的直接推论是我们今天所处的宇宙同昨天或者明天的宇宙不同。根据这一理论,乔治·伽莫夫在1948年预测了宇宙微波背景辐射的存在。1960年代,这一辐射被探测到,有力地支持了大爆炸理论,从而否定了另一个比较流行的稳恒态宇宙理论。 大爆炸理论是通过实验观测和理论推导发展的。 1910年代,维斯特·斯里弗尔(Vesto Slipher)和卡尔·韦海姆·怀兹(Carl Wilhelm Wirtz)证实了大多数旋涡星系正在退离地球,不过他们并没有因此联想到这对宇宙学意味着什么,也不认为发现的星云其实是银河系外的其他星系。同时在理论上,爱因斯坦的广义相对论成功建立并推出没有稳定态宇宙。通过度量张量描述的宇宙不是膨胀就是收缩,爱因斯坦认为他自己解错了,并加入了一个宇宙学常数来进行改正。第一个不

天文学基础知识

天文学基础知识 1.什么是宇宙? 宇宙是天地万物,是广漠空间和其中存在的各种天体以及弥漫物质的总称。 辨证唯物主义哲学认为,世界的本质是物质的,物质可以转换不同的存在形式,但在本质上是永久存在,永久不灭的。宇宙是普遍永恒的物质世界,在空间和时间上都是无限的。从空间看宇宙是无边无际,它没有边界,没有形状,也没有中心,如果承认宇宙以外还有什么东西,就否认了世界的物质本性;从时间看宇宙无始无终,它没有起源,没有年龄,也不会终结,如果承认宇宙有起源,就会导致创世说,实际上也否认了世界的物质本性。 但具体事物的有限性也不能否认。宇宙的无限与具体事物的有限并不矛盾,因为只有无数具体的有限才能构成全部的无限。人类观察到的宇宙是动态的,随着科学技术的进步,人类所知的宇宙在不断扩大。18世纪以前人类认识宇宙的范围只限于太阳系,随后认识到太阳系以外还有千亿个恒星,它们组成了银河系。19世纪人类又发现了河外星系,发现银河系在宇宙大家庭中只不过是相当渺小的一员。20世纪50年代的光学望远镜、60年代的射电天文望远镜把人类对宇宙的探测距离猛增,人类可以永远扩大自己对物质世界的观察视野,不会停留于某一固定的边界上,这有力证明宇宙是无限的。 天文学上通常将天文观测所及的整个时空范围称为“可观测宇宙”,有

时又叫“我们的宇宙”,或简称“宇宙”。现代科学的基本观念之一,就是可观测宇宙也像其他事物一样,有它诞生发展的历史。据现代宇宙学说估算,宇宙年龄是极其漫长的,约为150亿岁;可观测的全部宇宙空间是极为庞大的,已观测到的最远的星系距离我们大约150亿光年。 宇宙既有统一性又有多样性。宇宙的统一性在于它的物质性,宇宙的多样性在于物质的表现形式千差万别,组成宇宙的物质在存在状态、质量和性质上有着极大的差异。 宇宙是由各类天体和弥漫物质组成的。宇宙中有形形色色的天体,恒星、星云、行星、卫星、彗星、流星等天体都是宇宙物质的存在形式。2.什么是恒星和星云? 宇宙中最主要的天体是恒星和星云,因为它们拥有巨大的质量。恒星是由炽热气态物质组成,能自行发热发光的球形或接近球形的天体。恒星是像太阳一样本身能发光的星球,晴夜用肉眼看到的许多闪闪发光的星星中,绝大多数是恒星。星云是由极其稀薄的气体和尘埃组成的,形状很不规则,似云雾状的天体。 3.什么是星系? 由无数恒星和星际物质构成的巨大集合体称为星系。它们的尺度可以从几千到几十万光年。星系或称恒星系,是宇宙系统中的重要一环。星系数量众多。到目前为止,人们已在宇宙中观测到了约1000亿个星系。地球就处在由1000多亿颗恒星以及银河星云组成银河系中。有的星系离银河系较近,可以清楚地观测到它们的结构。离银河系最

2020年智慧树知道网课《粒子宇宙学》课后章节测试满分答案

第一章测试 1 【多选题】(1分) 平时怎样的课后工作有助于提高对本课程的理解 A. 多讨论 B. 多做练习题 C. 写文献阅读报告 D. 阅读相关文献 2 【多选题】(1分) 推荐的文献查阅网站有哪些 A. i nspirehep B. b aidu C. a rxiv D. c nki

第二章测试 1 【多选题】(1分) 标准宇宙学认为我们宇宙的三维空间几何可能是 A. 三维双曲面 B. 三维椭球面 C. 三维平面 D. 三维球面 2 【多选题】(1分) 下列哪些项是标准宇宙学认为的宇宙经历过的时期 A. 暗能量主导时期 B.

中子星主导时期 C. 物质主导时期 D. 辐射主导时期 3 【单选题】(1分) 下列哪一项天文观测无法支持宇宙学原理的假设 A. 宇宙微波背景辐射(CMB)的观测 B. 宇宙大尺度结构的观测 C. 宇宙中射电点源的分布 D. 对日食月食的观测 4 【单选题】(1分) 哈勃参数的物理含义

A. 描述宇宙膨胀的速率 B. 描述宇宙的均匀程度 C. 描述宇宙的各向同性程度 D. 描述宇宙的大小 5 【判断题】(1分) 光度距离等于角距离 A. 对 B. 错 6 【单选题】(1分) 标准宇宙学认为描述我们宇宙整体演化的方程是 A.

牛顿万有引力方程 B. 爱因斯坦方程 C. 薛定谔方程 D. 麦克斯韦方程 7 【判断题】(1分) 哈勃定律只在低红移处近似成立 A. 错 B. 对 8 【单选题】(1分) 描述我们宇宙背景的度规是 A. 克尔度规

B. FRW度规 C. 闵可夫斯基度规 D. 史瓦西度规 9 【判断题】(1分) 宇宙学原理是说我们宇宙在小尺度上是均匀且各相同性的。 A. 错 B. 对 10 【判断题】(1分) 一个张量场如果是均匀的那么也一定是各向同性的 A. 对 B.

质量管理学复习提纲宇宙超级无敌究极进化完整版 南通大学

《质量管理学》复习提纲 一、名词解释: 1、产品质量:过程的结果所具有一组固有特性满足要求的程度。 2、产品:某一活动和过程的结果 3、质量职能:是指在质量形成全过程中,为实现质量目标所必须发挥的质量管理功能及其相应的质量活动。 4、质量螺旋:是一条螺旋式上升的曲线,该曲线把全过程中各质量职能按照逻辑顺序串联起来,用以表征产品质量形成的整个过程及其规律性,通常称之为朱兰质量螺旋。 5、全面质量管理:一个组织以质量为中心,以全员参加为基础,目的在于通过让顾客满意和本组织所有成员及社会受益而达到长期成功的管理途径。 6、质量改进:质量管理的一部分,致力于增强满足质量要求的能力。 7、缺陷:为满足与预期或规定用途有关的要求,并指出与不合格有关联关系。 8、质量:一组固有特性满足要求的程度。 9、质量认证:用合格证书或合格标志的方法证明某一产品或服务符合特定的标准或技术规范的活动。 10、控制图:是控制生产过程状态保证工序质量的主要工具。 11、6sigma管理:一项以顾客为中心、以质量经济性为原则、以追求完美无瑕为目标的管理理念。 12、第二方审核:是顾客对供方开展的审核。 13、控制图第一类错误:因虚发信号而造成的错误判断。 14、抽样检验:是按照根据数理统计原理预先设计的抽样方案,从待检总体取得一个随机样本,对样本中每一个体逐一进行检验获得质量特性值的样本统计值,并和相应的标准比较,从而对总体质量作出判断。 15、合格质量水平:是供需双方共同认为可以接收的连续交验批的过程平均不合格率的上限值。 16、质量成本:为了确保和保证满意的质量而发生的费用以及没有达到满意的质量所造成的损失。 17、质量机能展开:是将顾客需求转化为产品开发和生产中各个阶段的技术需求,并通过这些技术需求的实现和协调保证产品的最终质量,从而真正满足顾客需求的一种有效技术。18、卓越绩效评价准则:通过综合的组织绩效管理方法,是组织和个人得到进步和发展提高组织的整体绩效和能力,为顾客和其他相关方创造价值,并使组织持续获得成功。 二、解答题 1、简述统计质量控制阶段的主要进步和存在问题。 (1)主要进步:将质量管理中的“事后把关”变为事先控制、预防为主、防检结合,并开创了把数理方法应用于质量管理的新局面。 (2)存在问题:因为是运用概率统计分析方法,不可能百分百确定合格以否,存在PR(α)、CR(β)二类风险; 2、简述全面质量管理的含义及基本特点。P41 (1)全面质量管理是指一个组织以质量为中心,以全员参与为基础,目的在于通过让顾客满意和本组织所有成员及社会受益而达到长期成功的管理途径。 (2)其基本特点有:

科普宇宙天文学的基本知识

【科普】宇宙天文学的基本知识! ! 宇宙是如何形成的 1.科学家认为它起源为137亿年前之间的一次难以置信的大 爆炸。这是一次不可想像的能量大爆炸,宇宙边缘的光到达地球要花120亿年到150亿年的时间。大爆炸散发的物质在太空中漂游,由许多恒星组成的巨大的星系就是由这些物质构成的,我们的太阳就是这无数恒星中的一颗。原本人们想象宇宙会因引力而不在膨胀,但是,科学家已发现宇宙中有一种“暗能量”会产生一种斥力而加速宇宙的膨胀。 2.宇宙学说认为,我们所观察到的宇宙,在其孕育的初期,集中于一个体积极小、温度极高、密度极大的奇点。在141亿年前左右,奇点产生后发生大爆炸,从此开始了我们所在的宇宙的诞生史。 3.宇宙大爆炸后秒,宇宙的温度大约为1000亿度。物质存在的主要形式是电子、光子、中微子。以后,物质迅速扩散,温度迅速降低。大爆炸后1秒钟,下降到100亿度。大爆炸后14秒,温度约30亿度。35秒后,为3亿度,化学元素开始形成。温度不断下降,原子不断形成。宇宙间弥漫着气体云。他们在引力的作用下,形成恒星系统,恒星系统又经过漫长的演化,成为今天的宇宙。 宇宙是什么宇宙有多大宇宙年龄是多少 宇宙是万物的总称,是时间和空间的统一。从最新的观测资料看,人们已观测到的离我们最远的星系是130亿光年。也就是说,如果有一束光以每秒30万千米的速度从该星系发出,那么要经过

130亿年才能到达地球。根据大爆炸宇宙模型推算,宇宙年龄大约200亿年。 宇宙有多少个星系每个星系有多少颗恒星 在这个以130亿光年为半径的球形空间里,目前已被人们发现和观测到的星系大约有1250亿个,而每个星系又拥有像太阳这样的恒星几百亿到几万亿颗。因此只要做一道简单的数学题,你就不难了解到,在我们已经观测到的宇宙中拥有多少星星。地球在如此浩瀚的宇宙中,真如沧海一粟,渺小得微不足道。 太阳和地球的年龄 据估计太阳的年龄比地球大1000万-2000年年,而通过放射性计年,地球的年龄是45亿年,因此太阳的年龄是亿年。 银河系简介 是地球和太阳所属的星系。因其主体部分投影在天球上的亮带被我国称为银河而得名。银河系呈旋涡状,有4条螺旋状的旋臂从银河系中心均匀对称地延伸出来。银河系中心和4条旋臂都是恒星密集的地方。从远处看,银河系像一个体育锻炼用的大铁饼,大铁饼的直径有“核球”,半径约为7千光年。核球的中部叫“银核”,四周叫“银盘”。在银盘外面有一个更大的球形,那里星少,密度小,称为“银晕”,直径为7万光年。银河系是一个旋涡星系,具有旋涡结构,即有一个银心和两个旋臂,旋臂相距4500光年。其各部分的旋转速度和周期,因距银心的远近而不同。1971年英国天文学家林登·贝尔和马丁·内斯分析了银河系中心区的红外观测

宇宙大爆炸概论

学院:数学学院学号:20120510293 姓名:陈椿文 简述大爆炸宇宙学所描述的宇宙演化过程大爆炸理论(Big Bang)又称大爆炸宇宙学,是当代关于宇宙起源的理论。也是现代宇宙学中最有影响的一种学说。与其他宇宙模型理论相比,大爆炸宇宙学更能说明一些观测事实。其主要观点是,认为我们的宇宙曾经有过一段从热到冷的演化过程。宇宙并非静止的,而是在不断地膨胀,物质密度从密到稀,就如同一次巨大的爆炸一样。 1927年,比利时天文学家乔治〃勒梅特首次提出了“大爆炸”的概念,认为宇宙开始于一个极小的原始“超原子”(现称为“原始火球”)的灾变性爆炸。1948年,美籍俄裔天体物理学家乔治〃伽莫夫将广义相对论引入到宇宙理论中,提出了宇宙起源的大爆炸模型,其理论出发点是埃德温〃哈勃发现的星系退行速度与距离的关系。既然各星系目前正在彼此退离,那么它们过去必然是彼此互相靠近的。照此追溯下去,大约150亿年(近年来修正为137亿年)前的某一时刻,一个密度极大、温度为10(32次方)K、尺度为10(负36次方)的“原始火球”爆炸,这个无限小点称为“奇点”。从这里诞生了时间和空间、质量和能量,于是宇宙从“无”中诞生。而爆发之“前”,时间和空间毫无意义,因为时间和空间是从奇点开始的。在10(负34次方)秒的极短时间内,宇宙膨胀了10(100次方)倍。极大热能的一部分转化为物质和反物质,包括夸克、反夸克、电子、反电子等基本粒子。物质和反物质碰撞而湮灭并放出光。由于物质远远多于反物质,在10(负5次方)秒后,剩余的物质随着膨胀减速和温度下降,夸克凝聚成中子和质子,进而形成氢核与氦核。此后的30万年间,温度继续下降至5000~4000K,原子核捕捉到曾经无序飞散的电子,构成原子。宇宙变得不透明,进入黑暗时代,这样持续了大约9亿年。此时的宇宙大体上是均匀的,但也存在大约10万分之一的不均匀度。这导致物质凝聚,形成恒星,聚集成星系,星系集结成星系团,更进而聚合成超星系团以及介于其间的超级空洞。现在我们能够通过各种手段观测到的距离100多亿光年宇宙深处的天体,就是宇宙大爆炸后形成的原始天体。 大爆炸学说能较好地解释一些观测事实,也显示了一定的生命力,并且成为目前关于宇宙形成、演化的主流学说。因而取代了另一个比较流行的稳恒态宇宙理论。

六年级下册科学第三单元《宇宙》知识点整理复习过程

六年级下册第三单元《宇宙》知识点整理 班级姓名 1.月球是地球的卫星,月球围绕着地球运动。 2.1609年,意大利科学家伽利略用自制的望远镜观察月球。 3.1969年7月,美国的“阿波罗11号”载人飞船成功地在月球上着陆,在月 球上留下人类第一个足迹的宇航员是阿姆斯特朗。 4.2007年10月24日,我国发射了“嫦娥一号”探月卫星。2010年10月1日,发 射“嫦娥二号”。2013年12月2日,发射“嫦娥三号”,携带月球车“玉兔号”。 5.月球围绕地球朝逆时针(自西向东)方向运行。直径大约是地球的1/4,质 量大约是地球的1/80,体积大约是地球的1/49,引力大约是地球的1/6。 6.月球是一个不发光、不透明的球体,我们看到的月光是它反射太阳的光。 7.月球在圆缺变化过程中出现的各种形状叫做月相。 8.月相圆缺变化一个周期的时间大约是一个月。农历上半月的月相变化规律是 由缺变圆,左黑右亮,下半月是由圆变缺,左亮右黑。月相最圆的时间大约是农历的每月十五或十六。 9.月相变化过程:新月(朔)→蛾眉月→上弦月→凸月→满月(望)→凸月→ 下弦月→蛾眉月→新月。 10.月球地貌的最大特征,就是分布着许多大大小小的环形山。最大的环形山是 贝利环形山。 11.环形山大多是圆形的,大小不一,环形山由单个的,也有几个挤叠在一起的, 分布上没有规律。 12.关于月面环形山的形成原因,目前公认的观点是“撞击说”。还有一种观 点是“火山爆发说”。 13.当月球运动到太阳和地球的中间,如果三者正好处在一条直线上时,月球就 会挡住太阳射向地球的光,在地球上处于影子中的人,只能看到太阳的一部分或全部看不到,于是就发生了日食。日食时,月球在太阳、地球之间。 14.当月球运行到地球的影子里(即:月球绕地球运行轨道的外侧),如果三者 正好处在一条直线上时,地球就会挡住太阳射向月球的光,就发生了月食。 月食时,地球在太阳、月球之间。 15.日食总是发生在农历的初一前后,日食的种类有日全食、日偏食、日环食。 16.月食总是发生在农历的十五前后,月食的种类有月全食、月偏食。 17.太阳系里有八大行星,与太阳的平均距离从近到远分别是水星、金星、地球、 火星、木星、土星、天王星、海王星。18.以太阳为中心,包括围绕它转动的八大行星(包括围绕行星转动的卫星)、 矮行星、小天体(包括小行星、流星、彗星等)组成的天体系统叫做太阳系。 19.太阳系里唯一发光的恒星是太阳。太阳直径大约是140万千米。 20.为了便于辨认,人们把看起来相互之间距离保持不变的星星分成一群,划分 成不同的区域,根据其形态给它们命名。天空中这些被人们分成的许多区域就称为星座。 21.星座实际上是一些距离各不相同、彼此没有联系的恒星在天穹上的排列的图像。 22.在北部天空的小熊座上有著名的北极星;大熊座的明显标志是由七颗亮星组 成的北斗七星。 23.夏季天空中有三颗亮星构成了一个巨大的三角形,人们称之为“夏季大三 角”,这三颗星分别是:天津四、织女星和牛郎星。它们分别属于天鹅座、天琴座、天鹰座。 24.夏季,我们还会在南部天空发现一颗火红的亮星,它是一颗红巨星,属于天 蝎座。 25.我们观察到的天空中的星星大多数也是和太阳一样发光发热的恒星,它们有 的也会组成类似太阳系一样的天体系统。 26.天空中闪亮的银河光带,实际是由许许多多的恒星组成的一个恒星集团,被 人们称为银河系。 27.银河系大约有1000亿-2000亿颗恒星组成,直径有10万光年。 28.光的传播速度是每秒钟30万千米,光年就是光在一年中所走的距离。 29.目前人类已经发现了超过100亿个类似银河系一样庞大的恒星集团,称为河 外星系。 30.科学家发现宇宙正处于膨胀之中。 31.金星俗称“太白星”或“启明星”。 32.天文望远镜可以分为光学望远镜和射电望远镜两种。 33.距离地球最近的星球是月球。离地球最近的行星是金星。 34.太阳系八大行星中,体积最大的行星是木星,体积最小的是水星。 35.太阳系八大行星中,自转周期最长的行星是金星,自转周期最短的是木星。 36.太阳系八大行星中,公转周期最长的行星是海王星,公转周期最短的是水星。 37.中国历史上首位飞上太空的人是杨利伟,乘坐的是“神舟五号”。三次进入 太空的是景海鹏,分别乘坐的是神舟七号、九号、十一号。 38.目前,世界上最大的单孔径射电望远镜是美国的阿雷西博望远镜。

宇宙科学认识

宇宙科学认识 宇宙是万物的总称,是时间和空间的统一,是物质世界,不依赖于人的意志而客观存在,并处于不断运动和发展中。宇宙是多样又统一的:多样在于物质表现状态的多样性;统一在于其物质性。以下是为你整理的宇宙科技知识,欢迎阅读!!! 历史记载:宇宙科学认识《文子;自然》:“往古来今谓之宙,四方上下谓之宇。”《尸子》:“上下四方曰宇,往古来今曰宙。”《淮南子》:“往古来今谓之宙,四方上下谓之宇”。《庄子;庚桑楚》:“出无本,入无窍。有实而无乎处,有长而无乎本剽。有所出而无窍者有实。有实而无乎处者,宇也;有长而无本剽者,宙也。” 宇宙科学认识:从远古到现代中国古人曾提出盖天说和浑天说,在春秋战国时期民间就有嫦娥奔月的传说,汉代学者张衡也曾提出“宇之表无极,宙之端无穷”的无限宇宙概念。浑天说认为天地的形状像一个鸡蛋,天与地的关系就像蛋壳包着蛋黄。张衡认为浑天说比较符合观测的实际。 公元前7世纪,巴比伦人认为,天和地都是拱形的,大地被海洋所环绕,而其中央则是高山。古埃及人把宇宙想象成以天为盒盖、大地为盒底的大盒子,大地的中央则是尼罗河。古犹太人认为,地球是宇宙的中心,周围绕着一圈星球,再往外去,寥落地分布着其余天体。有一个静止的天球存在,在其内部,星球各居其位,转动不止。

宇宙科学认识:地球原来是近似圆形最早认识到大地是球形的是古希腊人。公元前6世纪,毕达哥拉斯从美学观念出发,认为一切立体图形中最美的是球形,主张天体和大地都是近似球形的。这一观念为后来许多古希腊学者所继承,被17世纪初麦哲伦的环球航行所证实。 地心说、日心说和万有引力定律 公元2世纪,C.托勒密提出了世界上第一个行星体系模型地心说。地球处于宇宙中心。从地球向外,依次有月球、水星、金星、太阳、火星、木星和土星,在各自的圆轨道上绕地球运转。为了说明行星运动的不均匀性,提出行星在本轮上绕其中心转动,而本轮中心则沿均轮绕地球转动。 1543年,N.哥白尼所著《天球运行论》正式提出了“日心说”观点,认为太阳是行星系统的中心,一切行星都绕太阳旋转。地球也是一颗行星,它上面像陀螺一样自转,一面又和其他行星一样围绕太阳转动。在中世纪的欧洲,托勒密的地心说由于符合神权统治理论的需要,一直占有统治地位。为了捍卫日心说,不少仁人志士与黑暗的神权统治势力进行了前仆后继的斗争,付出了血的代价。 1609年,J.开普勒的开普勒三定律揭示了地球和诸行星都在椭圆轨道上绕太阳公转,发展了日心说,为牛顿万有引力定律的提出打下了基础。 1608年利普赛发明望远镜后,伽利略立即加以改造并指向苍穹。1610年,伽利略发表了划时代的著作《星际使者》,朦胧的银河原来

新课程标准地理(选修)1-宇宙与地球第一章《宇宙》

新课程标准地理(选修)1-宇宙与地球第一章《宇宙》 新课程标准对学习本章内容的要求 1.简述“宇宙大爆炸”假说的主要观点。 2.根据图表,概括恒星演化的主要阶段及其特点。 3.举例说出人类探索宇宙的历程、意义。 4.运用天球坐标系简图,确定主要恒星的位置。 5.运用星图进行星空观察,说出星空季节变化的基本规律。 本章学习的重点和难点 重点: 1.星空随季节变化的基本规律和不同日期观测的星空特点。 2.“宇宙大爆炸”假说的主要观点。 难点: 天球坐标系的建立及利用星图观测星空。 知识清单 本章的知识梳理网络

要点精析 重难点解析 理解本章的新课程标准要求以及它们之间的联系 1.简述“宇宙大爆炸”假说的主要观点 A.“宇宙大爆炸”假说是现代宇宙学中最有影响的一种学说。宇宙学研究的对象是整个可观测时空范围的宇宙。目前,已探测到的最大距离为150亿光年,最长的时间尺度是100亿年,其间约包含有1亿个星系。因此,在“宇宙大爆炸”学说中所说的,相当于总星系,而并不是整个宇宙(因为截至目前,总星系外的“宇宙”,由于受目前的科技水平的限制,

还不能观测到)。也就是说,“宇宙大爆炸”假说的与通常所说的“宇宙”是两个不同的概念。 通常所说的“宇宙”,《中国大百科全书》中是这样定义的:“广漠空间和其存在的各种天体即弥漫物质的总称。宇宙是物质世界。它处于不断的运动和发展中,在空间上无边无界,在时间上无始无终。宇宙是多样而统一的。它的多样性在于物质的表现形态,它的统一性在于其物质性。” 《剑桥百科全书》则是这样解释宇宙的:“宇宙”是指“所有存在于世界并能通过物理力作用力作用于人类事物的总和”;但不包括“原则是不能用物理方法探测到的事物”。很显然,“宇宙大爆炸”假说的“宇宙”只是通常所说的“宇宙”中的一部分,即目前人类所能观察到的宇宙部分。 B.“宇宙大爆炸”假说的主要观点是:我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系在不断的膨胀,物质密度从密到稀的演化,有如一次大爆炸。为使同学们能较好的理解“宇宙大爆炸”假说的主要观点,有必要对大爆炸的过程作较为详细的描述。由于“宇宙大爆炸”假说关于大爆炸过程的阐述相当复杂,涉及到物理学的许多概念、理论,根据高中学生的认知水平,本《课程标准》仅要求学生对“宇宙大爆炸”有一概要的了解,因此,我们可将大爆炸过程简化为如下几个时期: 宇宙创生时期:宇宙整体由一个不存在时间和空间的量子状态(“无”状态),自发跃迁(即所谓“大爆炸”)到具有空间、时间的量子状态。在这个时期,物质场的量子涨落导致时空本身发生量子涨落并不断的膨胀,空间和时间以混沌的方式交织在一起,时空没有连续性和序列性(此时的时空为虚时空),可谓是早晚不分、上下莫辨、因果难明、不可测量。 时空形成和化学元素形成时期:时空形成,同时产生离子,那时的宇宙的温度为1032K。及至宇宙产生的最早的1秒(宇宙时间),温度降至1010K,进入了辐射时期,宇宙间只有光子、中子、电子、质子等一些基本粒子。由于整个体系在不断膨胀,温度继续迅速下降。到3分钟(宇宙时间)时,温度降至108K,氦等轻核开始形成;约又经近30分钟(宇宙时间),氦核的质量约占整个宇宙质量的1/4(氦丰度)。到宇宙形成20000年时,温度降至4000K,出现了稳定的氢、氦等轻原子,物质密度与辐射密度基本相等。 星系时代:这个阶段,宇宙内的等离子气体逐渐演化为气态物质。随着宇宙进一步膨胀和温度下降,气体逐渐凝聚成气云,形成原始星系,并进而形成星系团,然后再从中分化出星系。 恒星时代:这一时期,星系内的星云进一步凝聚成亿万颗恒星。 C.为什幺说“宇宙大爆炸”假说是现代宇宙学中最有影响的一种学说,是因为,“宇宙大爆炸”假说能较好的解释下列一些观测事实: ①大爆炸理论认为所有恒星度是在温度下降后产生的,因而任何天体的年龄都应比自

论宇宙大爆炸 (1)

论宇宙大爆炸 北大资源中学初一(4)孙巍摘要:宇宙大爆炸是一种学说,是根据天文观测后得到的一种设想,大约在150亿年前,宇宙所有的物质都高度密集在一点,有着极高的温度,因而发生了大爆炸。在这150亿年中先后诞生了星系团、星系、我们的银河系、恒星、太阳系、行星、卫星等。大爆炸之后,所有的物质开始向外大膨胀,就形成了我们今天看到的宇宙。现在我们看见的和看不见的一切天体和宇宙物质,形成了当今的宇宙形态,人类就是在这一宇宙演变中诞生的。 宇宙大爆炸模型是对宇宙产生和发展过程的一种科学假设,它描述了宇宙的发展过程,是一种理论预言。它由1984年乔治·伽莫夫和他的两位研究生一起提出,是现今被被普遍接受的宇宙模型,被称为标准宇宙模型。宇宙大爆炸模型指出:宇宙产生于空间奇点,时间由此开始,空间也由此不断膨胀。 1.宇宙大爆炸模型的含义 伽莫夫等在美国《物理评论》杂志上发表了关于宇宙大爆炸学模型的文章:提出宇宙是由甚早期温度极高且密度极大,体积极小的物质迅速膨胀形成的,这是一个由热到冷、由密到稀和不断膨胀的过程,犹如一次规模及其巨大的超级大爆炸。 宇宙大爆炸模型是现代宇宙学中最有影响力的学说,比其他宇宙模型更能说明较多观测到的事实,在这个时期,宇宙不断地膨胀,温度由热到冷,密度由密到稀,当温度为10亿左右,中字开始失去自

由存在的条件,要么发生衰变,要么与质子结合,化学元素就是从这一时期开始的。 2.宇宙大爆炸模型的特征 2.1.科学性 假说来源于科学事实,即宇宙天体红移现象和宇宙3k微波辐射背景的发现与科学理论即多普勒效应和热力学定律等,因而具有科学性。 2.2.假定性 假说推测宇宙是由甚早期温度极高且密度极大,体积极小的物质迅速膨胀形成的,这是一个由热到冷、由密到稀和不断膨胀的过程,犹如一次规模及其巨大的超级大爆炸,其推测具有假定性。 2.3.易变性 在宇宙大爆炸假说的框架上,1992年,萨莫林在前人的基础上提出了宇宙自然选择学说,即母宇宙是空间闭合的,犹如一个黑洞,该黑洞在生存了一段时间后坍缩为一个奇点,奇点又会反弹爆炸膨胀为新的下一代宇宙,这体现了假说的易变性。 3.宇宙大爆炸理论的证据 3.1.宇宙的年龄 如果星系目前正在彼此远离,那它们过去必定靠的更近,也就是说,较早时代的宇宙,物质密度会更高,继续这一推理就意味着过去必定存在一个时刻,那时宇宙中的物质处于极其高密的状态。按照哈勃定律将星系的距离除以各自的速度,就可估计出那一时刻距今

【科普】宇宙天文学必须知道的基本知识

【科普】宇宙天文学必须知道的基本知识 ! ! 2019-07-15 21:07 宇宙是如何形成的? 1.科学家认为它起源为137亿年前之间的一次难以置信的大爆炸。这是一次不可想像的能量大爆炸,宇宙边缘的光到达地球要花120亿年到150亿年的时间。大爆炸散发的物质在太空中漂游,由许多恒星组成的巨大的星系就是由这些物质构成的,我们的太阳就是这无数恒星中的一颗。原本人们想象宇宙会因引力而不在膨胀,但是,科学家已发现宇宙中有一种 “暗能量”会产生一种斥力而加速宇宙的膨胀。 2.宇宙学说认为,我们所观察到的宇宙,在其孕育的初期,集中于一个体积极小、温度极高、密度极大的奇点。在141亿年前左右,奇点产生后发生大爆炸,从此开始了我们所在的宇宙的诞生史。 3.宇宙大爆炸后0.01秒,宇宙的温度大约为1000亿度。物质存在的主要形式是电子、光子、中微子。以后,物质迅速扩散,温度迅速降低。大爆炸后1秒钟,下降到100亿度。大爆炸后14秒,温度约30亿度。35秒后,为3亿度,化学元素开始形成。温度不断下降,原子不断形成。宇宙间弥漫着气体云。他们在引力的作用下,形成恒星系统,恒星系统又经过漫长的演化,成为今天的宇宙。 宇宙是什么?宇宙有多大?宇宙年龄是多少? 宇宙是万物的总称,是时间和空间的统一。从最新的观测资料看,人们已观测到的离我们最远的星系是130亿光年。也就是说,如果有一束光以每秒30万千米的速度从该星系发出,那么要经过130亿年才能到达地球。根据大爆炸宇宙模型推算,宇宙年龄大约200亿年。

宇宙有多少个星系?每个星系有多少颗恒星? 在这个以130亿光年为半径的球形空间里,目前已被人们发现和观测到的星系大约有1250亿个,而每个星系又拥有像太阳这样的恒星几百亿到几万亿颗。因此只要做一道简单的数学题,你就不难了解到,在我们已经观测到的宇宙中拥有多少星星。地球在如此浩瀚的宇宙中,真如沧海一粟,渺小得微不足道。 太阳和地球的年龄? 据估计太阳的年龄比地球大1000万-2000年年,而通过放射性计年,地球的年龄是45亿年,因此太阳的年龄是45.1亿年。 银河系简介? 是地球和太阳所属的星系。因其主体部分投影在天球上的亮带被我国称为银河而得名。银河系呈旋涡状,有4条螺旋状的旋臂从银河系中心均匀对称地延伸出来。银河系中心和4条旋臂都是恒星密集的地方。从远处看,银河系像一个体育锻炼用的大铁饼,大铁饼的直径有10万光年,相当于946080000亿公里。中间最厚的部分约3000~12000光年。银河系整体作较差自转,太阳位于一条叫做猎户臂的旋臂上,距离银河系中心约2.5万光年。在银河系里大多数的恒星集中在一个扁球状的空间范围内,扁球的形状好像铁饼。扁球体中间突出的部分叫“核球”,半径约为7千光年。核球的中部叫“银核”,四周叫“银盘”。在银盘外面有一个更大的球形,那里星少,密度小,称为“银晕”,直径为7万光年。银河系是一个旋涡星系,具有旋涡结构,即有一个银心和两个旋臂,旋臂相距4500光年。其各部分的旋转速度和周期,因距银心的远近而不同。1971年英国天文学家林登·贝尔和马丁·内斯分析了银河系中心区的红外观测和其他性质,指出银河系中心的能源应是一个黑洞,但是由于目前对大质量的黑洞还没有结论性的证据。

物理学考选考标准word版)

物理 一、考试性质与对象 浙江省普通高中学业水平考试是在教育部指导下,由省级教育行政部门组织实施的全面衡量普通高中学生学业水平的考试。其主要功能一是引导普通高中全面贯彻党的教育方针,落实必修和选修课程教学要求;检测高中学生的学业水平,监测、评价和反馈高中教学质量;二是落实《浙江省深化高校考试招生制度综合改革试点方案》要求,学业水平考试成绩既是高中学生毕业的基本依据,又是高校招生录取的重要依据。 高中物理学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2次。考试的对象是2014年秋季入学的高中在校学生,以及相关的往届生、社会人员和外省在我省异地高考学生。 《高中物理学业水平考试暨高考选考科目考试标准》是依据《普通高中物理课程标准(实验)》和《浙江省普通高巾学科教学指导意见·物理(2014版)》的要求,按照学业水平考试和高考选考科目考试的性质和特点,结合本省高中物理教学的实际制定而成的。 二、考核要求 (一)知识考核要求 物理考试旨在考查学生学习高中物理课程后,在物理学科方面的基本科学素养。包括对高中物理课程中的物理现象、物理实验、物理概念、物理规律、物理模型和物理方法等的掌握情况。针对不同的知识内容,考核分为识记、理解、简单应用和综合应用四个等级要求。 (二)能力考核要求 物理考试注重考查与本学科相关的能力,主要包括以下几个方面: 1.记忆识别能力:能再认或表述所学物理知识,包括高中物理课程中的重要现象、重要实验、著名物理学家、重要的物理常量,常见的元器件,概念的定义、符号、单位和规律的表达式和图示等。 2.认识理解能力:能理解和掌握物理概念和规律,包括了解物理概念、规律的引入背景,明确它们的物理意义、文字表达、图象表述、数学表达式、适用范围和条件,区分相近的物理概念,并能运用概念和规律解释物理问题。 3.建立模型能力:能运用物理学的研究方法(理想化、等效、对称和近似处理等),研究实际问题,并将其转换成简明、典型的物理情景或物理模型。 4.分析综合能力:能对所遇到的问题进行具体分析、研究,弄清其中的物理状态、物理过程和物理情境,找出起重要作用的因素及有关条件;能够把一个复杂问题分解为若干较简单的问题,找出它们之间的联系;能够提出解决问题的方法,灵活地运用多个物理规律进行判断、推理,从而获得结论。

论文 - 浅谈宇宙大爆炸理论

行政管理系 浅谈宇宙大爆炸 “大爆炸”本是相当深奥的宇宙论术语,如今却已经成为大众媒体上出现频率很高的词语。遗憾的是,由于大众媒体的报道大多属于科技新闻性质,对于大爆炸,往往只告诉读者“宇宙诞生自一次大爆炸”这样一个结论,结果使得公众越发感到科学神秘莫测,甚至引发一些对科学的误解。

浅谈宇宙大爆炸 摘要:“大爆炸”本是相当深奥的宇宙论术语,如今却已经成为大众媒体上出现频率很高的词语。遗憾的是,由于大众媒体的报道大多属于科技新闻性质,对于大爆炸,往往只告诉读者“宇宙诞生自一次大爆炸”这样一个结论,结果使得公众越发感到科学神秘莫测,甚至引发一些对科学的误解。 关键词:宇宙大爆炸起源证据影响 从盘古开天辟地的传说,到亚里士多德和托勒密的地心说和哥白尼的日心说,再到今天迅速流行开来的宇宙大爆炸理论,人们对宇宙起源的探索从来就没有停止过。 常常有人这样问:“什么引起了大爆炸?”“大爆炸以前发生了什么?”“大爆炸以前宇宙是什么样的?”对热爆炸宇宙理论来说,不存在“大爆炸以前”这样一个时间观念,大爆炸是空间、时间、能量和物质等一切的开端和起源,或者说,在大爆炸之前,没有空间、没有时间,也没有能量和物质。时间是标识宇宙时间的坐标,在时空流行之前,时间不具备任何意义,不在时间中的事件,也没有任何意义,在没有时间的地方,就没有任何常识中的因果关系,时空概念不能外推到大爆炸之前。因此,事先并不存在使大爆炸得以发生的空虚的事件和原因,反过来说发生于大爆炸之前的虚拟的事件不能有后果,因为时间是从大爆炸开始的。倒推着说也可以,时间到大爆炸奇点便停滞了,科学定律失去了意义,可预见性到大爆炸出失效了。人们不能用大爆炸前存在的事件去确定那以后所要发生时间,也不能用大爆炸后发生的事件去确定这之前发生的事件。 一、宇宙的起源 我们的宇宙是如何形成的,原始状态如何?有着许多不同的学说,比较公认的是“大爆炸形成”。 所谓大爆炸理论,就是认为宇宙起源于一次“大爆炸”。这只是一种形象的说法,并不同于我们通常意义上理解的爆炸。这一理论有一个基本出发点:宇宙在不断地演化,且具有一个起点。宇宙的起点,也可以说是宇宙的零点,此时的宇宙没有时间,没有空间,没有任何目前

相关文档
最新文档