国内外1000MW大型超超临界火电机组.doc

国内外1000MW大型超超临界火电机组.doc
国内外1000MW大型超超临界火电机组.doc

国内外 1000MW 大型超 (超)临界火电机组制造及投运概述内容

一.国外 1000MW 大型超临界火电机组制造或装机情况 (2)

二.中国大型超临界火电机组“十五”期间或至2010年发展战略..3

三.中国 1000MW 大型超临界火电机组制造或装机情况 (4)

四.华电邹县电厂主设备参数 (4)

五.华能玉环电厂2#号机考核数据(由哪个公司提供的设备?) (6)

六.我国首台1000MW 汽机主要技术参数 (6)

七. 2x1000MW 机组新建工程主要参考工程量及参考造价指标............................. 8 问题与反思:

我们的技术和国外先进技术的差距体现在哪里?一.国外1000MW 大型超临界火电机组制造或装机情况

1)xx

最大超临界双轴机组的容量为 1390MW,最大的超临界单轴机组为 893MW. 第一台超 (超)临界火电机组单机最大容量为 1300MW(双轴 ,西屋公司制造 ,1972 年投产 ). GE公司生产 850MW 及以上容量火电机组共约 10 台,全部是超临界机组,最大的超临界双轴机组为 1050MW,最大的超临界单轴机组为 884MW。

2)前 xx

单机容量最大的1200MW(单轴) 3000r/min 机组是在 1980 年投入运行的。

3)xx

日本主要是引进消化 GE和 Westhouse 的技术。主要制造商为日立,东芝和

三菱。单机容量 1000MW 及以上火电机组有 46 台,全部采用超临界及以上。

日本国内主要1000MW 电厂机电厂名组袖浦

xx#4

#1MW

1000

1000

1000

1000

1000

1050kg/cm2

246

246

246

246

250

255℃/ ℃期 r/min

容量压力温度投运日转速型号

(英寸)

末叶

1979.08CC4F

1990.06CC4F

1991.03CC4F

1997.07CC4F

1998.06CC4F

2000.12CC4F 东扇岛 #2

松浦

三隅

橘湾 #2

#1

#2

4)德国

德国是研究、制造超临界机组最早的国家,西门子公司已有10 余台

3000r/min(27kV)百万千瓦级发电机投入运行或正在安装,其中由西门子公司制造的上海外高桥 900MW 超临界单轴机组(共 2 台, #2 发电机定子由上海汽轮发电机有限公司分包)已于

2003、及 2004 年投运

5)法国

ALSTOM由原

ABB、原 ALSTOM公司合并而成,已生产投运的 1000MW 以上容量的超临界机组有 11 台:

1300MW(24.2MPa/538/538℃、)双轴 8 台

1300MW(25.4MPa/538/538℃、)双轴 1 台

930MW(26.0MPa/550/580℃、3000 r/min )单轴 2 台

二.中国大型超临界火电机组“十五”期间或至 2010 年发展战略 1)选

择 600MW 机组为起步容量 (机组参数为 600MW,压力

24.2MPQ、温度 538/566℃),当时选取这个起步容量的原因主要是国内

已有二台600MW 进口机组投入运行,有运行及维护经验可借鉴,可靠性较高。

另一方面与亚临界600MW 机组的容量类同,在主机制造上较为有利;并可采用

现有的辅机配套,有利于减少其成套设备的研制。

2)900MW 和 1200MW 大型超临界机组作为中、长期即 2005 年后发展的目标。

机组预设参数为( 25~28MPa、600℃ /600℃)。在 600MW 大型超临界机组取得成功经验,并批量生产、形成主力机组后再予以发展,避免低水平的重

复。要尽早进行技术准备工作,重点研究900MW 机组采用单轴、单炉膛的问题,并对 1200MW 机组采用双轴技术方案作综合分析,以便与单轴的900MW 机组作比较。预计2005 年前攻克主要关键技术、国产大型超临界机组试制完成

投入运行,并使其具有商品化生产能力.

三.中国 1000MW 大型超临界火电机组制造或装机情况

我国通过与 GE,东芝、三菱、日立、阿尔斯通、西门子进行技术合作,已经培育出东电、上汽,哈汽等制造商。 1000MW 机组技术国产化,达到 90%。截止2007 年底,国内制造厂家已有 50 多台 100 万千瓦超超临界机组的定货合同。

已经投入运行的项目有玉环( 4 台)和邹县( 2 台)电厂。在建的有泰州、

北仑,天津国投、平顶山二电、浙江苍南、浙江宁海、舟山六横,广东海门、

外高桥、玉环二期、费县国电、上海石洞口二期,华能营口二期等。完成初步

设计的有安徽芜湖电厂、马鞍山电厂,安徽铜陵。规划中的有彭城,南京金陵 ,大唐潮州、河南平顶山姚孟、华润古城电厂,宁夏灵武电厂(世界首台 1000MW 空

冷机组),珠海发电厂、沙角 A 电厂、平圩、洛河、滁州、国电博兴电厂、天津北疆电厂、宁波北仑三期、上海漕泾电厂、华能南通电厂、华电宿州电厂、彭城、绥中。

四.华电邹县电厂主设备参数

2007 年华电邹县电厂 2*1000MW 的发电机组投产,它是我国单机容量最大

的发电机组。整个机组的国产化水平达到 90%以上。

1)主设备简况

A)锅炉

锅炉为超超临界参数变压直流炉、一次再热、平衡通风、运转层以上露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉,型号为:

DG3000-26.15-III。

锅炉铭牌参数

过热蒸汽:

最大连续蒸发量 (BMCR)

出口蒸汽压力

出口蒸汽温度

再热蒸汽:

蒸汽流量℃

302.4℃

≥93.8%

3033t/h

26.25MPa(a)

605℃

进/ 出口蒸汽压力

进/ 出口蒸汽温度

给水温度

( BMCR):锅炉热

5 / 13

B)汽轮机

采用东方汽轮机厂生产的,型号为 TC4F-43的超超临界、一次中间再热、四缸四排汽、单轴、双背压、凝汽式、八级回热抽汽汽轮机。

铭牌功率工况:

(TRL工况)

额定功率: 1000.0MW

25.0MPa(a)

600℃

2888.533t/h

4.45MPa(a)

600℃

2347.073t/h

0.0118MPa(a)

主汽门前蒸汽压力:

主汽门前蒸汽温度:

主汽门前蒸汽流量:

中联门前蒸汽压力:

中联门前蒸汽温度:

中联门前蒸汽流量:

排汽压力:

凝汽器循环冷却水进水温度:

凝汽量(包括小汽机):

热耗:

C)发电机 36℃

1774.322t/h

7354 kJ/kW.h

采用东方电机股份有限公司产品,型号为: TFLQQ-KD型,三相同步汽轮发电机,主要参数如下:额定容量:

额定功率:

最大连续容量:

额定电压:

额定功率因数:

额定频率:

额定转速:

效率 1120MVA

1000MW

1064MW

27kV

0.9(滞后)

50Hz

3000r/min

99%

水氢氢

自并励静态励磁

冷却方式:

励磁系统:

五.华能玉环电厂2#号机考核数据 (美国西屋 DCS)

汽轮机热耗率: 7314.9KJ/kWh,达到设计保证值 .

汽轮机最大连续出力:1000.52MW,达到设计保证值

汽轮机夏季工况出力:1000.52MW,达到设计保证值

锅炉效率: 93.76%,达到设计保证值

机组在额定负荷下的发电煤耗率:271.6g/kwh

发电厂用电率 4.33%

供电煤耗率: 283.9 g/kwh;

烟气中氮氧化物排放浓度:288mg/m3,达到设计保证值,优于国家标准烟气中二氧化硫排放浓度:18.1mg/m3,达到设计保证值,优于国家标准烟尘排放浓度: 34 mg/m3,达到设计保证值,优于国家标准

六.我国首台1000MW 汽机主要技术参数

中国首台 1000MW 汽轮机引进的是德国西门子技术,由上海电气(集团 )总

公司下属上海汽轮机有限公司成套供货。单台机组的额定功率 1000MW,最大出力1049.8MW。1)汽轮机型式:

超超临界、一次中间再热、单轴、四缸四排汽、双背压、凝汽式、八级回

热抽汽。

2)夏季工况下参数:

功率 :1000MW

主汽门前压力 :26.25 MPa

主汽门前温度 :600℃

再热汽阀前温度 :600℃

背压 :

3)铭牌工况 (最大连续出力工况 (TMCR)下参数 )

功率 :1000 MW

主汽门前压力 :26.25 MPa

主汽门前温度 :600℃

再热汽阀前温度 :600℃

平均背压 :

4)阀门(包括补汽调节阀)全开(VWO)功率下参数

功率 :1049.85MW

主汽门前压力 :26.25 MPa(a)

主汽门前温度 :600℃

再热汽阀前温度 :600℃

平均背压 :

七. 2x1000MW 机组新建工程主要参考工程量及参考造价指标来自中国电力工程顾问集团公司 <火电工程限额设计参考造价指标 >(2006 年水平,并应该根据具体情况调整。 )

新建工程主要参考工程量

一、主厂房体积:

1、汽机房体积:

2、除氧间体积:

3、煤仓间体积;

4、炉前封闭体积:

5、集控楼体积:

二、热力系统管道:

高压管道:

主蒸汽管道:

再热蒸汽管道(热段):

再热蒸汽管道(冷段):

主给水管道:

中低压管道;

三、烟风煤管道:

四、热力系统保温油漆(含炉墙保温);

五、全厂电缆;

电力电缆:

控制电缆: 649365m3

306506m3

104440 m3

180990 m3

17564m3

39865 m3

5270t

2870 t;

712t

938t

341t

879t

2400 t

5880 t

24530 m3

2820km

420km

2400 km3

六、电缆桥架(含支架):2300 t

七、建筑三材量

1、钢筋: 25586 t

2、型钢: 26633 t

3、木材: 6587 m3

4、水泥: 116647 t

八、厂区占地面积; 49hm2

九、施工租地: 27 hm2

2x1000MW 机组参考造价指标

一、 2x1000MW 超超临界机组

1、新建: 3604 元/KW;

2、扩建: 3328 元/KW。

二、各类费用占指标的比例:

1、建筑工程费用: 19.23%

2、设备购置费用: 52.54%

3、安装工程费用: 16.35%

4、其它费用: 11.88%

三、新建工程其它费用汇总:

万元

1、建设场地占用及清理费:15845

2、项目建设管理费: 5487

3、项目建设技术服务费:15698, I2

四、生产准备费: 10750

五、其它:

1、施工安全补助费: 300

2、工程质量监督检测费:148

3、预算定额编制管理费、劳动定额测定费:237

4、文明施工措施费: 200

5、水土保持补偿费:

6、大件运输措施费: 80 700

超超临界火电机组燃烧控制系统设计

, 毕业论文(设计)题目:超超临界火电机组燃烧控制系统设计 姓名林逸君 学号201100170220 学院控制科学与工程学院 专业测控技术与仪器 年级 2011级 指导教师刘红波 2015年 5 月 10 日

目录 摘要 (3) ABSTRACT (4) 第一章绪论 (5) 1.1课题背景及意义 (5) 1.2 超超临界火电机组控制技术应用现状 (5) 1.3 毕业设计主要内容 (5) 第二章超超临界火电机组燃烧控制系统概述 (6) 2.1 机组工艺流程简述 (6) 2.2 机组燃烧过程控制系统任务 (7) 2.3 机组燃烧过程控制系统组成与特点 (8) 第三章超超临界火电机组燃烧控制方案设计 (9) 3.1常规控制方案 (9) 3.2改进控制方案 (10) 第四章控制方案仿真验证 (10) 4.1 MATLAB简介 (11) 4.2 控制方案的Simulink仿真验证............................... 错误!未定义书签。结论. (15) 致谢 (16) 参考文献 (17) 附录 附录1 Controller design for a 1000 MWultra super critical once-through boiler power plant 附录2 文献翻译

摘要 随着科学技术的进步,传统电厂的工作方式正在发生着革新,超超临界电厂得到了越来越广泛的应用。相比于传统电厂,超超临界电厂主要区别在于提高了锅炉内的工质,一般为水的压力,来提高电厂的发电效率。本文通过对电厂燃烧过程控制系统的改进来减少电厂控制变量之间的相互干扰,从而进一步提高电厂的发电效率。首先,根据电厂的工作原理分析出电厂各控制变量与各被控量之间的相互关系,建立电厂的简化数学模型。之后,根据各变量之间的相互作用关系采取PID增益控制、解耦等方式提出改进的控制方案。然后,根据从网上搜集到的超超临界电厂在实际工况下所采集到的数据完成数学模型的数据输入工作。最后,通过MATLAB下的Simulink工具箱对数学模型进行仿真实验,得出电厂输出量的波形图,通过对比研究改进后的控制方案的实际运行成果。 关键词:超超临界电厂, 燃烧过程控制系统, 数学模型, MATLAB, Simulink仿真

超临界600MW火电机组热力系统的火用分析

第30卷第32期中国电机工程学报V ol.30 No.32 Nov.15, 2010 8 2010年11月15日Proceedings of the CSEE ?2010 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2010) 32-0008-05 中图分类号:TK 212 文献标志码:A 学科分类号:470?20 超临界600 MW火电机组热力系统的火用分析 刘强,段远源 (清华大学热科学与动力工程教育部重点实验室,北京市海淀区 100084) Exergy Analysis for Thermal Power System of A 600 MW Supercritical Power Unit LIU Qiang, DUAN Yuanyuan (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Haidian district, Beijing 100084, China) ABSTRACT: The matrix equation for exergy balance of regenerative system was derived, and the mathematical model for exergy analysis of thermal power system was presented. Exergy losses and exergy efficiencies of the main components of a domestic N600-24.2/566/566 power unit were calculated by this model. The results indicate that the exergy efficiencies of low pressure heaters are lower than those of high pressure heaters, the exergy destructions in low pressure heaters are also lower. The exergy efficiency of the steam turbine is higher than relative internal efficiency, the exergy efficiencies of the high pressure turbine, intermediate pressure turbine and low pressure turbine are 93.20%, 96.18% and 89.61%, but the work of the low pressure turbine is the largest, so there is energy conservation potential for the low pressure turbine. The coefficient of exergy loss is found to be maximum in the boiler (49.47%) while much lower in condenser (1.232%). In addition, the calculated thermal efficiency of this power plant is 44.54% while the exergy efficiency of the power cycle is 43.52%. KEY WORDS: power unit; thermal power system; exergy analysis; energy conservation 摘要:提出了火电机组回热系统的火用平衡矩阵方程式,并构建了热力系统火用分析的数学模型。应用该模型,分析了国产某超临界N600–24.2/566/566机组热力系统主要部件的火用损失和火用效率。结果表明:高压加热器的火用效率高于低压加热器,但是低压加热器的火用损系数较小;除氧器的火用损系数最大;汽轮机的火用效率高于其相对内效率;高压缸、中压缸和低压缸的火用效率分别为93.20%,96.18%和89.61%,但是低压缸承担做功量最大,因此低压缸仍有一定的节能潜力;锅炉的火用损系数高达49.47%,而凝汽器的火用损系数只有1.232%,所以锅炉是节能的重点对象。此外该机组的全厂热效率为44.54%,而火用效率为43.52%。 关键词:火电机组;热力系统;火用分析;节能 0 引言 火力发电机组承担着我国约80%的发电量,是耗能和排放大户,因此准确而有效的节能理论将有助于火电机组的节能减排工作。火电机组热经济性的评价方法一般分为两类:基于热力学第一定律的热量法,如热平衡法、等效焓降法、矩阵法、循环函数法等,一般用于定量分析;基于热力学第二定律的火用分析法、熵分析法、热经济学法等,一般用于定性分析。目前,我国火电机组的热经济性分析普遍采用热量法,但节能不仅要重视量,还应注意节能潜力的挖掘以及能级匹配的改善,所以对火电机组进行火用分析可以有效评价能量利用的合理程度,科学地指导电厂节能工作。火用分析和热经济学的理论研究在我国从20世纪80年代开始发展[1-4],并得到了一定的应用[5-15],但是国内对超临界火电机组热力系统进行火用分析的工作仍较少,而目前超(超)临界600 MW及以上机组正相继投入运行,所以本文拟构建火电机组火用分析数学模型,并对某台超临界600 MW机组进行火用分析,为大型火电机组的节能提供理论依据。 1 火电机组热力系统的火用分析数学模型 1.1 火用损失和火用效率 火用损失的大小可以表明实际过程的不可逆程度,故其大小可以衡量热力过程的完善程度。但火用损失是一绝对量,无法比较不同工况火用的利用程度,因此常采用火用效率来评价热力过程或设备的热 基金项目:国家重点基础研究发展计划项目(973项目) (2009CB219805)。 Project Supported by National Basic Research Program of China (973 Program) (2009CB219805).

超临界锅炉运行技术

超临界锅炉运行技术 4. 超临界机组协调控制模式 (1)CCBF,机炉自动,机调负荷,炉调压力; 能充分利用锅炉蓄热,负荷响应快;主汽压力控制存在较大延迟,降低了主汽压稳定性。 (2)CCTF,机炉自动,炉调负荷,机调压力; 主汽压稳定性好,负荷响应慢。 (3)机炉协调; 机炉同时接受负荷和主汽压力指令,同步响应负荷和主汽压力的变化。 其中:(1)应用最广,(3)的调节器若匹配不当,机炉间容易引起震荡。 3.2.3 600MW超临界机组协调控制策略 1. 被控参数 (1)给水流量/蒸汽流量 因为给水系统和蒸汽系统是直接连通的,且由于超临界锅炉直流蓄热能力较小,给水流量和蒸汽流量比率的偏差过大将导致较大的汽压波动。 (2)煤水比 稳定运行工况时,煤水比必须维持不变,以保证过热器出口汽温为设计值。而在变动工况下,煤水比必须按一定规律改变,以便既充分利用锅炉蓄热能力,又按要求增减燃料,把锅炉热负荷调到与机组

新的负荷相适应的水平. (3)喷水流量/给水流量 超临界锅炉喷水仅能瞬时快速改变汽温.但不能始终维持汽温,因为过热受热面的长度和热焓都是不定的。为了保持通过改变喷水流量来校正汽温的能力,控制系统必须不断地把喷水流量和总给水流量之比恢复到设计值。 (4)送风量/给煤量(风煤比) 为了抑制NOx的产生,以及锅炉的经济、安全运行,需对各燃烧器的进风量进行控制,具体是通过各层燃烧器的二次风门和燃尽风门控制风量,每层风量根据负荷对应的风煤比来控制。 2 协调控制回路 超临界机组蓄热能力相对较小.锅炉跟随系统的局限性较大,对于锅炉和汽机的控制指令既考虑稳态偏差又要考虑动态偏差。为了在机组负荷变化时机炉同时响应,机组负荷指令作为前馈信号分别送到锅炉和汽机的主控系统,以便将过程控制变量维持在可接受的限度内。 汽轮机调节汽门直接控制功率,锅炉控制主汽压力(CCBF),给水流量由锅炉给水泵改变。功率指令直接发送到汽轮机调节汽门,使得功率响应较快。由于锅炉惯性大,负荷应变较慢.为防止汽机调门动作过大锅炉燃烧跟不上,设计了压力偏差拉回逻辑,当压力偏差过大时限制调门进一步动作,直到燃烧满足负荷需求。 在协调控制模式下,主汽压力偏差一直作为限制主汽调门响应负荷需

我国百万千瓦火电机组一览

我国百万千瓦火电机组一览 截至2011年底,我国已建成投产的百万千瓦级超超临界火电机组达到38台。平均供电煤耗为290克/千瓦时。 目前已建成投产的百万千瓦级超超临界火电机组见下表: 序号企业数量 1 华能玉环电厂 4 2 华能汕头海门电厂 2 3 华能金陵电厂 1 4 华能沁北电厂 2 5 国电泰州电厂 2 6 国电北仑电厂 2 7 国电谏壁电厂 2 8 国华绥中电厂 2 9 国华粤电台山电厂 1 10 国华宁海电厂 2 11 华电国际邹县发电厂 2 12 华电宁夏灵武电厂 2 13 中电投漕泾电厂 2 14 中电投平顶山发电分公司 2 15 华润徐州彭城发电厂 2 16 申能外高桥发电公司 2 17 国投天津北疆电厂 2 18 浙能嘉兴电厂 1 1 19 皖能铜陵电厂 20 广东惠州平海发电厂 2 合计38 目前中国在建的百万千瓦火电机组为66台,具体如下: ·大唐广东三百门电厂 位于广东省潮州市饶平县东南部的柘林镇大埕湾畔,规划装机容量为2×60万千瓦、 6×100万千瓦燃煤发电机组。整个项目投产后,年发电量将达到72亿千瓦时。 ·大唐克什克腾电厂(空冷) 位于内蒙古自治区赤峰市克什克腾旗三义乡和浩来呼热乡境内,总装机容量200万千瓦。其所发电力直接送入京津唐电网,未来将形成煤、电、路一体化发展格局。 ·大唐山西定襄电厂(空冷) 位于山西省忻州市定襄县东王村,建设规模为200万千瓦。电厂所发电力电量拟全部送入京津唐电网。 ·大唐山东东营电厂 位于山东省东营市河口区临港工业园之内,建设规模为4×100万千瓦,一期工程建设2

台机组。 ·大唐浙江乌沙山电厂 位于浙江省宁波市象山县西周镇东北约2.5公里的乌沙山西侧的山前平原上。该项目为二期工程,建设2台100万千瓦机组,同步配套日产10万吨海水淡化项目。 ·大唐江西抚州电厂 位于江西省抚州市临川区,规划建设4×100万千瓦燃煤发电机组。该项目为一期工程,建设2台100万千瓦机组。 ·国电安徽铜陵电厂 位于安徽省铜陵市东北铜陵县东联乡境内,一期工程2×60万千瓦,已投产发电,二期工程2×100万千瓦。该电厂是中国国电集团公司在安徽投资兴建的首个电源点。 ·国电山东博兴电厂 位于山东省滨州市博兴县境内,建设2×100万千瓦发电机组。近期规划4×100万千瓦发电机组,远景规划8×100万千瓦发电机组。该项目是滨州市第一个大型公用发电厂,靠近山东省中部负荷中心,将成为山东电网500千伏北通道的重要电源支撑点。 ·国电湖北汉川电厂 位于湖北省武汉市西面,一、二期总装机容量4× 30万千瓦火电机组,三期工程2×100万千瓦。处于湖北电网鄂东负荷中心,是湖北省境内重要的电源支撑点。 ·国电广西钦州电厂 位于广西壮族自治区钦州市南部的钦州港经济开发区鹰岭作业区钦州电厂的二期工程场地内,建设2×100万千瓦燃煤发电机组。将成为广西乃至西南地区最大的火电基地之一,可为南方电网“西电东送”主网架提供电源支撑。 ·华电宁夏灵武电厂(空冷) 位于宁夏回族自治区银川市灵武境内的宁东能源化工基地,煤炭资源丰富,是典型的坑口电厂。该项目是灵武电厂三期工程,建设2台100万千瓦空冷火电机组,建成后将是世界上首个100万千瓦空冷机组,同时也是国内最大的、装机规模520万千瓦的空冷发电厂,是宁夏区域“西电东送”的重要电源支撑点。 ·华电宁夏灵武电厂 是灵武电厂二期工程,建设2台100万千瓦火电机组。 ·华电安徽芜湖电厂 位于长江南岸长三角经济带边缘、安徽省东南部的芜湖市境内。规划装机容量332万千瓦,一期工程建设2×66万千瓦机组,二期建设2×100万千瓦机组,建成后将成为华东地区特大型骨干电厂。 ·华电江苏句容电厂 位于江苏省镇江市境内句容市下蜀镇桥头农场,规划容量4×100万千瓦机组,一期建设2台100万千瓦机组。该电厂为苏南区域性电厂,电力将主要送苏锡地区。 ·华能江苏金陵电厂 位于江苏省南京市栖霞经济开发区,一期2×39万千瓦燃气——蒸汽联合循环发电机组已建成投产,二期工程建设2×100万千瓦燃煤发电机组。 ·华能河南沁北电厂 位于河南省济源市五龙口镇境内,规划装机容量440万千瓦。一、二期工程4×60万千瓦机组已投运,三期工程2×100万千瓦。该电厂紧靠晋东南和晋南煤炭基地,位于华中、华北、西北电网的交汇处。 ·华能广东海门电厂 位于广东省汕头市潮阳区海门镇洪洞村,规划建设6×100万千瓦燃煤机组,首期建设4

大型超临界机组关键技术

大型超临界机组关键技术 一、技术概述 大型超临界火电机组已成为世界发达国家电力设备的主导产品,机组容量指600MW 及以上,超临界压力指蒸汽压力从亚临界参数过渡到超临界参数,即主蒸汽压力从17Mpa 提高到24~25Mpa;主蒸汽温度从530℃提高到540℃,由一级中间再热改进为两级中间再热,使温度再提高到566℃及以上;供电煤耗小于300克/千瓦时,机组效率比同容量亚临界机组提高2~2.4%。以60万千瓦机组为例,超临界机组比亚临界机组,每年可节省约2.5万吨标准煤。 大型超临界机组的研制需解决一批重大的关键技术,包括设计技术、生产工艺、材料技术、自动化技术、运行技术。 二、现状及国内外发展趋势 纵观国内外火电设备技术发展态势,其最主要的特点和要求是:不断提高供电效率和可靠性、降低能耗、减少环境污染;发电设备的技术结构从最初的小容量中压机机组,逐步发展到中等容量的高压机组和超高压机组,乃至近代水平的大型容量亚临界机组,及现代超临界机组和多种联合循环机组,供电效率从初期水平25%提高到现代水平40%以上。 从全世界电力工业的构成分析、火电仍是主要构成部分,只有少数国家如法国和北欧几个国家的核电、水电已成为该国电力工业的主体。近三十年来,世界发电机组的发展上已达到了很高水平,而且在制造、运行和可靠性上与亚临界火电机组相当或更佳,积累了丰富的经验。在欧洲一些国家和日本已开始研制超临界参数火电机组。 我国火电技术与当今世界火电技术的发展趋势是基本一致的。我国已引进并掌握了亚临界300MW,600MW机组技术。进口的超临界火电机组已投入运行。当前应抓紧落实超临界机组的依托工程项目,采取引进技术,技贸结合等方式,攻克超临界机组的关键技术,加

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况 一、超超临界的定义 水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。 超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。 结论:其实没有统一的定义,本质上超临界与超超临界无区别。 二、国外超超临界技术发展趋势 (一)超超临界机组的发展历史 超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo 电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。 世界上超超临界发电技术的发展过程一般划分为三个阶段: 第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968 年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。 结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。 第二阶段(上世纪80年代) 以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。 第三阶段(上世纪90年代开始) 迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。 三、各国超超临界发电技术情况

超临界火电机组

火力发电革命性变革 ——超临界(超超临界)机组运用 超临界(超超临界)是一个热力学概念。对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。同时这一状态下对应的饱和温度为374.15℃。超临界机组即指蒸汽压力达到超临界状态的发电机组。蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。 超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。现在全世界各国都非常重视超临界(超超临界)机组技术的发展。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。 超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。 超临界(超超临界)机组具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。

超临界大型火电机组安全控制技术示范文本

超临界大型火电机组安全控制技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

超临界大型火电机组安全控制技术示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 目前,国内装机容量已突破4亿千瓦,引进和建设低 煤耗、大容量的超临界大型火电机组可以提高我国发电厂 的经济性,同时也能满足节能、环保的要求,国内已投产 600 MW、800 MW、900 MW级超临界燃煤机组多台, 邹县电厂2×1000 MW超超临界燃煤机组立项在建。随着 超临界燃煤机组占国内装机容量的比重越来越大,其运行 情况将对电网安全产生很大影响。所以根据超临界大型火 电机组的特点,实施科学合理的安全控制监测,将对确保 电力安全生产发挥积极的作用。 1 超临界机组安全生产的特点 超临界大型火电机组蒸汽参数高(压力≥22.12 MPa、

温度≥540 ℃),和亚临界机组相比在运行过程中存在的问题有所不同。其主要问题有:①过热器进出口的部分管子过度磨损和水冷壁管、再热器管的泄漏,这些问题大多与燃料的含灰量和烟气流速有关;②汽机高压缸第一级叶片根部腐蚀,此种现象在机组投运6~8年后渐渐严重,蒸汽品质是主要的原因;③高压阀门的泄漏问题。 超临界大型火电机组的不可用率(包括强迫停炉、维修与计划停运)的影响因素是多方面的,超临界压力锅炉的不可用率约为汽轮机、发电机和电站辅机的3倍。水冷壁管泄漏是锅炉方面的主要问题,大部分是由于过热所致。管壁结垢和水冷壁中质量流量过低、管内紊流程度不够,使锅炉在高热负荷区发生核态沸腾所引起。造成上述问题的原因大多是锅炉水冷壁无法得到足够的冷却和缺少凝结水除盐设备或除盐设备不完善。水的品质对于超临界机组的可靠运行极为重要。

600MW超临界机组控制技术.

超临界机组的自动发电(AGC)控制 江苏省电力试验研究院有限公司 2007 年 7 月

1. 超临界机组的特性 1.1 临界火电机组的技术特点 超临界火电机组的参数、容量及效率 超临界机组是指过热器出口主蒸汽压力超过22.129MPa。目前运行的超临界机组运行压力均为24MPa~25MPa,理论上认为,在水的状态参数达到临界点时(压力22.129MPa、温度374.℃),水的汽化会在一瞬间完成,即在临界点时饱和水和饱和蒸汽之间不再有汽、水共存的二相区存在,二者的参数不再有区别。由于在临界参数下汽水密度相等,因此在超临界压力下无法维持自然循环,即不再能采用汽包锅炉,直流锅炉成为唯一型式。 提高蒸汽参数并与发展大容量机组相结合是提高常规火电厂效率及降低单位容量造价最有效的途径。与同容量亚临界火电机组的热效率相比,采用超临界参数可在理论上提高效率2%~2.5%,采用超超临界参数可提高4%~5%。目前,世界上先进的超临界机组效率已达到47%~49%。 1.2 超临界机组的启动特点 超临界锅炉与亚临界自然循环锅炉的结构和工作原理不同,启动方法也有较大的差异,超临界锅炉与自然循环锅炉相比,有以下的启动特点: 1.2.1 设置专门的启动旁路系统 直流锅炉的启动特点是在锅炉点火前就必须不间断的向锅炉进水,建立足够的启动流量,以保证给水连续不断的强制流经受热面,使其得到冷却。 一般高参数大容量的直流锅炉都采用单元制系统,在单元制系统启动中,汽轮机要求暖机、冲转的蒸汽在相应的进汽压力下具有50℃以上的过热度,其目的是防止低温蒸汽送入汽轮机后凝结,造成汽轮机的水冲击,因此直流炉需要设置专门的启动旁路系统来排除这些不合格的工质。 1.2.2 配置汽水分离器和疏水回收系统 超临界机组运行在正常范围内,锅炉给水靠给水泵压头直接流过省煤器、水冷壁和过热器,直流运行状态的负荷从锅炉满负荷到直流最小负荷。直流最小负荷一般为25%~45%。 低于该直流最小负荷,给水流量要保持恒定。例如在20%负荷时,最小流量为30%意味着在水冷壁出口有20%的饱和蒸汽和10%的饱和水,这种汽水混合物必须在水冷

超超临界锅炉制造技术的研究

超超临界锅炉制造技术的研究 摘要:超超临界锅炉的材料以及结构有其自身的制造特点,要想能够使得超临 界锅炉的制造技术能够实现进一步的发展,就需要在有效掌握超临界锅炉制造工 艺特点的基础上,采取有效的方式来对超超临界锅炉制造技术进行改进,选取合 理的制造技术应用到超超临界锅炉的研制当中,从而使得超超临界锅炉的未来应 用范围更加的宽广。本文将对超超临界锅炉制造技术进行研究。 关键词:超超临界锅炉,螺旋管圈水冷壁,细晶粒不锈钢,集箱管座机械焊超超临界机组因其煤耗低,节约能源,我国已经把大幅度提高发电效率、加 速发展洁净煤技术的超超临界机组作为我国可持续发展、节约能源、保护环境的 重要措施。 1超超临界锅炉用钢 超超临界机组蒸汽压力和温度的提高对关键部件材料带来更高的要求,尤其 是材料的高温强度性能、抗高温腐蚀和氧化性能以及高温疲劳蠕变性能。超超临 界机组广泛采用各种低合金高强钢、耐热钢。如水冷壁采用具有优异的焊接性能 的T23和T24,联箱和蒸汽管道主要采用P91、P92、P122等马氏体高强钢,过热器、再热器主要采用P91马氏体高强钢及uper304H和TP347HFG奥氏体耐热钢。 2超超临界直流锅炉制造工艺方案 2.1 集箱制造工艺 超超临界锅炉集箱本体的材料与超临界、亚临界锅炉略有不同,主要体现在 过热器和再热器集箱选用了性能更好的 T P347H、P92 作为集箱本体材料。集箱管径较大、管壁较厚,特别是超长集箱给集箱制造、翻转、吊运及运输等均带来一 定的难度,另外,尤为关键的是所有管座与集箱连接的角焊缝均要求全焊透。根 据以上特点,我们采取了如下措施: (1)针对 TP347H、P92、P91 等钢的焊接难点,避免焊接返修,保证一次合格率,我们新研制了1 台集箱环缝对接的窄间隙自动焊机。此设备能实现不点固焊 装配、全自动氩弧焊打底及细丝窄间隙埋弧焊一次性焊妥,此技术在国内外尚无 先例,系自主创新成果。 (2)对于管径大于 108mm 的管座角焊缝,我们采用机械焊,用先进的工艺装 备保证产品质量。 (3)对于全焊透结构的小管座角焊缝,我们尽量采用自动内孔氩弧焊封底+ 手 工电弧焊焊妥工艺。对有些无法采用内孔氩弧焊设备的长管接头角焊缝,在选用 合理的焊接坡口的同时,我们采用独创的外壁自动氩弧焊打底设备焊接,保证根 部全焊透,然后用手工电弧焊焊妥。 (4)对于超长集箱的翻转、吊运及运输,除了添置必需的工艺装备之外,我们 还制定了一系列的吊运、运输工艺守则及注意事项,防止集箱碰伤、碰坏。 (5)针对 TP347H 不锈钢集箱的制造难点,我们设计制作了焊缝背面气体保护 防氧化工装,选用合理的焊接规范,控制层间温度,减少在敏化温度区域内的停 留时间,并通过焊后稳定化处理解决受焊接热循环影响出现的“贫铬区”间隙。 2.2 “三器”制造工艺 对于蛇形管的制造工艺,无论是超(超)临界机组还是亚临界机组均无明显区别,只是按锅炉容量的大小在管径、壁厚和外形尺寸上有所不同。超超临界锅炉的“三器”管排均为超长、超宽管排,且末级过热器和再热器采用 Super304H、TP347HFG 等细晶粒不锈钢,针对制造中的难点,我们采取如下措施:

锅炉本体说明书

华能长兴电厂2X660MW超超临界燃煤机组锅炉HG-1968/29.3-YM5锅炉 超超临界直流锅炉本体说明书 编号:F0310BT001B161 编写: 校对: 审核: 审定: 锅炉厂有限责任公司 二○一四年三月

目录 1.锅炉技术规 (1) 2.设计条件 (2) 2.1煤种 (2) 2.2点火助燃用油 (3) 2.3自然条件 (3) 2.4锅炉给水及蒸汽品质要求 (5) 2.5锅炉运行条件 (6) 3.锅炉特点 (6) 3.1技术特点 (8) 3.2结构特点 (9) 4.锅炉整体布置 (9) 4.1 炉膛及水冷壁 (10) 4.2 启动系统 (13) 4.3过热器系统 (17) 4.4 再热器 (18) 4.5 省煤器 (18) 4.6 蒸汽冷却间隔管和蒸汽冷却夹管 (19) 4.7 杂项管道 (19) 4.8 燃烧设备 (20) 4.9 空气预热器 (21) 4.10 吹灰系统和烟温探针 (21) 4.11 安全阀 (22) 4.12 热膨胀系统 (23) 4.13 炉顶密封和包覆框架 (24) 4.14 锅炉钢结构(冷结构) (25) 4.15 刚性梁 (28) 5.主蒸汽和再热蒸汽温度控制 (30) 5.1主蒸汽温度控制 (30) 5.2再热蒸汽温度控制 (32) 6.锅炉运行、维护、检修注意事项 (32)

6.1安装注意事项 (32) 6.2运行注意事项 (35) 6.3循环泵运行注意事项 (36) 附图01-01:锅炉总体布置图(纵剖视) (37) 附图01-02:锅炉总体布置图(前视图) (38) 附图01-03:锅炉总图布置图(顶视图) (39) 附图01-04:锅炉总图布置图(水平图) (40) 附图01-05:水冷壁流程图 (41) 附图01-06:过热器和分离器流程图 (42) 附图01-07:再热器流程图 (43) 附图01-08:启动系统流程图 (44) 附图01-09:热膨胀系统图一 (45) 附图01-10:热膨胀系统图二 (46) 附图01-11:调温挡板 (47) 附图01-12:流体冷却夹管 (48) 附图01-13:蒸汽冷却间隔管 (49) 附图01-14:立面框架的典型结构图(1) (50) 附图01-15:立面框架的典型结构图(2) (51) 附图10-16:柱接头典型结构图 (52) 附图10-17:柱、梁和垂直支撑及水平支撑的连接节点详图 (53) 附图01-18:EL13700平面图 (54) 附图01-19:EL86800平面图(锅炉受压部件支撑平面) (55) 附图01-20:导向装置 (56) 附图01-21:刚性梁导向装置 (57) 附图01-22:顶板布置图 (58) 附图01-23:极热态启动曲线 (59) 附图01-24:热态启动曲线 (60) 附图01-25:温态启动曲线 (61) 附图01-26:冷态启动曲线 (62)

亚临界,超临界,超超临界火电机组技术

亚临界、超临界、超超临界火电机组技术区别 一、定义 所谓的"临界"是指锅炉工作情况下承受的一定温度和压力的蒸汽状态。可以查出水的临界压力为22.115MPa ,由此知,此压力对应下的状态叫临界状态; (1)水在加热过程中存在一个状态点——临界点 (2)低于临界点压力,从低温下的水加热到过热蒸汽的过程中要经过汽化过程,即经过水和水蒸汽共存的状态; (3)而如果压力在临界压力或临界压力以上时,水在加热的过程中就没有汽水共存状态而直接从水转变为蒸汽。 T-S图 临界点 T 饱和水线饱和汽线 S 水的临界点 1.1 压力低于25MPa(对应的蒸汽温度低于538摄氏度)时的状态为亚临界状态;亚 临界自然循环汽包锅炉的燃烧室蒸发受热面与汽包构成循环回路。受热面上升管吸热量越大,则上升管内的含汽率增大,与下降管比重差增大,因此推动更大的循环量。其特性是带有“自补偿”性质的。而直流锅炉燃烧室内的平行上升管组吸热量越大则工质比容增大,体

积流速变大,阻力增大。对带有联箱的平行管组,吸热多的管子质量流量必然降低,其特点是“直流”性质的。 1.2 压力在25MPa 时的状态(对应的蒸汽温度高于538摄氏度)为超临界状态;超临界是物质的一种特殊状态,当环境温度、压力达到物质的临界点时,气液两相的相界面消失,成为均相体系。当温度压力进一步提高,即超过临界点时,物质就处于超临界状态,成为超临界流体。超临界水是一种重要超临界流体,在超临界状态下,水具有类似于气体的良好流动性,又具有远高于气体的密度。超临界水是一种很好的反应介质,具有独特的理化性质,例如扩散系数高、传质速率高、粘度低、混合性好、介电常数低、与有机物、气体组分完全互溶;对无机物溶解度低,利于固体分离,反应性高、分解力高;超临界水本身可参与自由基和离子反应等等。 1.3 压力在25-31MPa 之间(温度在600度以上)则称为超超临界状态。 二、 参数 水的临界状态参数为压力22.115MPa 、温度374.15℃ 2.1 亚临界火电机组蒸汽参数: P=16~19MPa ,T= 538℃/ 538℃或T= 540℃/ 540 ℃。超临界压力下朗肯循环过程的T —S 图

超超临界机组的金属材料介绍

超超临界机组的金属材料介绍 1.1概述 以亚临界火电机组的电厂净效率为基值,蒸汽参数为25MPa/540℃/560℃的超临界火电机组电厂净效率比亚临界火电机组的电厂净效率高 1.6%;27MPa/580℃/600℃超临界火电机组电厂净效率比25MPa/540℃/560℃的电厂净效率高 1.3%;30MPa/620℃/640℃超临界火电机组电厂净效率比27MPa/580℃/600℃超临界火电机组电厂净效率高1.3%;30MPa/700℃/720℃超临界火电机组电厂净效率比30MPa/620℃/640℃超临界火电机组电厂净效率高1.6%。这符合热力学所指出的:热机的初参数越高,效率就越好。因此,随着科技进步,人们不断地在开发更高参数的超临界火电机组。 然而,机组参数的提高,受制于耐高温材料的开发与制造,随着蒸汽参数的提高就要应用更能耐高温的材料。早在50年代末,美国就投运了参数为31MPa/621℃/566℃/566℃的Philo6号和参数为34.5MPa/ 649℃/566℃/566℃的Eddystonel号超超临界机组。这二台机组采用的参数由于超越了当时的材料制造水平,投运后多次出现爆管事故和严重的高温腐蚀等材料问题,不得不降参数运行。原苏联首台超临界机组参数为23.5MPa/580℃/565℃,运行后也多次出现材料方面的问题,不得不把参数降到23.5MPa,540℃/540℃运行。日本发展超临界机组,很注重材料的研究与开发,机组参数稳步推进,超临界、超超临界机组得以顺利发展。上世纪80年代以来,欧洲、美国、日本在超超临界发展计划中,首先实施材料开发的计划。由此可见材料是发展超超临界机组的关键。 20世纪50年代初,日本从欧美引进锅炉用碳钢、钼钢、铬铝钢、18-8型不锈钢和转子用CrMoV钢,从1981年开始分两个阶段实施超超临界发电计划。第一阶段把蒸汽温度从566℃提高到593℃,第二阶段目标是650℃。在材料的开发上,主要是利用过去对9~12%Cr系钢和奥氏体系钢的开发研究成果,进一步开发高强度9~12%Cr系钢代替部分奥氏体钢,开发比原来奥氏体高温强度更高、耐蚀性更好的新奥氏体钢,以及兼顾高温强度和耐蚀性的渗铬管、喷焊管和双层管。全面回顾和进一步研究合金元素Cr、Mo、W、V、Nb、Cu、Co、Cr、Si、C、N、B、Re单独添加和V-Nb、C-N、Mo-W等复合添加的影响,开发了TB9,TB12,NF616,HCM12A,NF12, TP347HFG,Super304H,HR3C,NF709,SAVE25等锅炉用钢;TR1100,TRl50,TR1200,HR1200,TAF65等转子、叶片、螺栓用钢。日本对耐热钢的开发研制是花大力气的,并取得了举世目瞩目的成功。根据近期的研究成果,含钴的铁素体耐热钢(NF12,SAVE12,HRI200,TF650)最高使用温度有望达到650℃.但还需进一步试验。我国发展不同参数的超超临界机组的候选材料示于下表6-1中。 超超临界机组由于蒸汽温度的提高,对材料的耐腐蚀性要求可能会超过对蠕

1000MW超超临界机组技术发展的探讨

1000MW超超临界机组技术发展的探讨 摘要:根据我国对超超临界机组的技术认证,推荐超超临界汽轮机进口参数为25MPa、600/600℃,相应锅炉的设计参数为26.25MPa、605/603℃,锅炉蒸发量的选取一般与汽轮机的VWO工况相匹配。目前我国超超临界机组已步入世界先进行列,1000MW超超临界机组采用单轴技术,蒸汽参数为25~27MPa、600/600℃,已达到世界顶级水平。三大主要设备锅炉、汽机、发电机的生产厂家努力发展超超临界技术,促进1000MW超超临界机组技术的国产化,为我国大火电建设提供了有力的支持。 关键词:1000MW超超临界;机组技术;发展探讨 引言 我国燃煤火电机组技术发展已进入超超临界参数的时代,从长远发展趋势分析,一是常规火电机组将继续提高蒸汽参数,压力超过30 MPa ,温度超过700 ℃,机组的效率有望超过50% ;二是采用煤气化-联合循环发电方式,机组效率可以达到60%,这 2 种技术目前都处在发展之中。现将我国1000MW 超超汽轮机技术概况分述如下。 1汽轮机本体概况 本文以某电厂二期工程#4机组为例,该机组由东方汽轮机有限公司提供,本期工程为2×1000MW国产超超临界抽凝供热机组。汽轮机布置在15.5m运转层,为超超临界、一次中间再热、四缸、四排汽、单轴、单抽、抽凝式汽轮机,型号:C1000/908-26.25/600/600。汽轮机组包括两台低压缸和高、中压缸各一台。高压缸由一个单列调节级和八个压力级构成;中压缸双分流,各由六个压力级构成;低压缸四分流,各由六个压力级构成。总热力级21级,结构级45级。采用自密封系统(SSR),高、中压汽封漏汽供低压缸轴封封汽用,多余蒸汽溢流至八号低加,封汽用蒸汽不足时由新蒸汽补充。调节方式为复合调节(可实现部分进汽或全周进汽),控制系统采用高压抗燃油数字电液调节系统(DEH)。 2汽轮机本体安装工艺 2.1灰浆垫块施工 本机组安装采用地脚螺栓及锚固板预埋工艺,在预埋过程中必须检查、监督土建预埋质量,务必核对各设备纵横中心线应准确无误,地脚螺栓和锚固板定位尺寸、标高及垂直度均符合设计要求。各预留孔洞的形、位尺寸均能满足设计要求,各预埋件位置正确、数量齐全、浇灌完毕。根据厂家灰浆垫块布置图和水泥支墩的尺寸大小,划出需要凿毛的位置和凿毛平面尺寸线。去掉混凝土表层浮浆,沿划好的线进行凿毛,凿毛深度要求露出混凝土层,表面铲毛工作应按图样所标尺寸进行,并保证不得使基础钢筋露出。结束后,沿铲毛表面切除地脚螺栓套筒

超超临界机组发电详解

超超临界火电机组 所谓超临界机组是指主蒸汽压力大于水的临界压力22.12兆帕的机组,而亚临界机组通常指出口压力在15.7~19.6兆帕的机组。习惯上,又将超临界机组分为两个层次:一是常规超临界参数机组,其主蒸汽压力一般为24兆帕左右,主蒸汽和再热蒸汽温度为540~560℃;二是超超临界机组,其主蒸汽压力为25~35兆帕及以上,主蒸汽和再热蒸汽温度一般580℃以上。 1.简介 在超临界与超超临界状态,水由液态直接成为汽态,即由湿蒸汽直接成为过热蒸汽、饱和蒸汽,热效率较高,因此超超临界机组具有煤耗低、环保性能好、技术含量高的特点,机组热效率能够达到45%左右。节煤是超超临界技术的最大优势,它比国内现有最先进的超临界机组的热效率提高2%到3%。以热效率提高1%计算,对一台30万千瓦的火电机组来说,一年就可以节约6000吨优质煤。超超临界机组发展的方向是在保持其可用率、可靠性、运行灵活性和机组寿命等的同时,进一步提高蒸汽参数,从而获得更高的效率和环保性能。 2机组相关事件 在常规火电设备方面,国内正在从30万千瓦、60万千瓦亚临界机组向超临界、超超临界的60万千瓦和100万千瓦机组过渡。 国内发电设备制造业通过与国外合作生产的方式,从2002年开始,应用国外成熟、先进的技术,为国内电站设计制造60万千瓦和100万千瓦等级的超临界机组,目前订货量已超过100套。这些机组的设计、建造和运行,使我国对于超临界和超超临界机组关键技术的理解进一步加深。目前,在超超临界机组制造方面,国内哈电、东方和上电三大发电设备企业通过引进消化国外技术,具备了加工制造100万千瓦超超临界火电机组的能力。2006年年底,由国内企业生产制造的3台100万千瓦超超临界火电机组已经陆续投运。但是,由于外方对技术转让的严格限制,在设计技术与核心制造技术方面国内尚未完全实现自主化,尤

600MW超临界机组控制技术

超临界机组的自动发电(AGC)控制

江苏省电力试验研究院有限公司 2007 年 7 月 1. 超临界机组的特性 1.1 临界火电机组的技术特点 超临界火电机组的参数、容量及效率 超临界机组是指过热器出口主蒸汽压力超过22.129MPa。目前运行的超临界机组运行压力均为24MPa~25MPa,理论上认为,在水的状态参数达到临界点时(压力22.129MPa、温度374.℃),水的汽化会在一瞬间完成,即在临界点时饱和水和饱和蒸汽之间不再有汽、水共存的二相区存在,二者的参数不再有区别。由于在临界参数下汽水密度相等,因此在超临界压力下无法维持自然循环,即不再能采用汽包锅炉,直流锅炉成为唯一型式。 提高蒸汽参数并与发展大容量机组相结合是提高常规火电厂效率及降低单位容量造价最有效的途径。与同容量亚临界火电机组的热效率相比,采用超临界参数可在理论上提高效率2%~2.5%,采用超超临界参数可提高4%~5%。目前,世界上先进的超临界机组效率已达到47%~49%。 1.2 超临界机组的启动特点 超临界锅炉与亚临界自然循环锅炉的结构和工作原理不同,启动方法也有较大的差异,超临界锅炉与自然循环锅炉相比,有以下的启动特点: 1.2.1 设置专门的启动旁路系统 直流锅炉的启动特点是在锅炉点火前就必须不间断的向锅炉进水,建立足够的启动流量,以保证给水连续不断的强制流经受热面,使其得到冷却。 一般高参数大容量的直流锅炉都采用单元制系统,在单元制系统启动中,汽轮机要求暖机、冲转的蒸汽在相应的进汽压力下具有50℃以上的过热度,其目的是防止低温蒸汽送入汽轮机后凝结,造成汽轮机的水冲击,因此直流炉需要设置专门的启动旁路系统来排除这些不合格的工质。 1.2.2 配置汽水分离器和疏水回收系统 超临界机组运行在正常范围内,锅炉给水靠给水泵压头直接流过省煤器、水冷壁和过热器,直流运行状态的负荷从锅炉满负荷到直流最小负荷。直流最小负荷一般为25%~45%。

相关文档
最新文档