超超临界机组介绍

超超临界机组介绍
超超临界机组介绍

火电厂超超临界机组和超临界机组指的是锅炉内工质的压力。锅炉内的工质都是水,水的临界压力是:22.115MPA 374℃[2] ;在这个压力和温度时,水和蒸汽的密度是相同的,就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31 MPa被称为超超临界。

从国际及国内已建成及在建的超临界或超超临界机组的参数选择情况来说,只要锅炉参数在临界点以上,都是超临界机组。但对超临界和超超临界机组并无严格的界限,只是参数高了多少的一个问题,目前国内及国际上一般认为只要主蒸汽温度达到或超过600度,就认为是超超临界机组。

超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率要提高 1.2%,一年就可节约6000吨优质煤。未来火电建设将主要是发展高效率高参数的超临界(SC)和超超临界(USC)火电机组,它们在发达国家已得到广泛的研究和应用。

一般而言,新蒸汽的压力大于临界压力(22.064MPa)小于25MPa 的锅炉称为超临界锅炉,配套的汽轮机称为超临界汽轮机;新蒸汽的压力介于25-31MPa的锅炉称为超超临界锅炉,配套的汽轮机称为超超临界汽轮机。

先进发电技术小资料

■超超临界燃煤发电技术:指容量为60万千瓦以上,主蒸汽压力达到25兆帕以上,温度达到593-650℃或者更高的参数,并具有一次再热或二次再热循环的燃煤发电技术,具有煤耗低、环保性能好、技术含量高的特点,机组热效率能够达到45%左右。

■煤炭高效洁净燃烧技术:指使煤炭在燃烧过程中提高效率、减少污染物排放的技术,包括超(超)临界发电、循环流化床锅炉(CFB)燃烧发电、增压流化床燃烧联合循环(PFBC-CC)发电、低氮氧化合物(NOX)燃烧等洁净发电技术以及工业锅炉高效燃烧技术等。

■大型空冷发电机组:指用空气作为凝汽器冷却介质的汽轮机发电机组,突出优势是节水。

■循环流化床技术:指用循环流化床燃烧方式的火力发电技术。循环流化床燃烧的基本原理是把煤和吸附剂石灰石加入锅炉燃烧室

的床层中,通过炉底鼓风使床层悬浮、形成湍流混合条件,使燃烧效率得到提高。

■整体煤气化燃气—蒸汽联合循环发电技术:是将煤通过气化和脱硫、除尘等净化处理转化为清洁煤气,直接燃烧供燃气轮机做功、发电,尾气再供应余热锅炉、生产蒸汽驱动蒸汽轮机发电的发电厂。在单机容量、煤种的适应性、变负荷能力及环保等方面均比其它洁净煤发电技术更先进。

■先进压水堆核电技术:是利用压水反应堆将核裂变能转换为热能、再产生蒸汽发电的技术,其压水堆以高压热水作为慢化剂和冷却剂。先进压水堆核电站在安全性和机组效率等方面较以往其他类型的核电站更具优势。

超超临界火电机组燃烧控制系统设计

, 毕业论文(设计)题目:超超临界火电机组燃烧控制系统设计 姓名林逸君 学号201100170220 学院控制科学与工程学院 专业测控技术与仪器 年级 2011级 指导教师刘红波 2015年 5 月 10 日

目录 摘要 (3) ABSTRACT (4) 第一章绪论 (5) 1.1课题背景及意义 (5) 1.2 超超临界火电机组控制技术应用现状 (5) 1.3 毕业设计主要内容 (5) 第二章超超临界火电机组燃烧控制系统概述 (6) 2.1 机组工艺流程简述 (6) 2.2 机组燃烧过程控制系统任务 (7) 2.3 机组燃烧过程控制系统组成与特点 (8) 第三章超超临界火电机组燃烧控制方案设计 (9) 3.1常规控制方案 (9) 3.2改进控制方案 (10) 第四章控制方案仿真验证 (10) 4.1 MATLAB简介 (11) 4.2 控制方案的Simulink仿真验证............................... 错误!未定义书签。结论. (15) 致谢 (16) 参考文献 (17) 附录 附录1 Controller design for a 1000 MWultra super critical once-through boiler power plant 附录2 文献翻译

摘要 随着科学技术的进步,传统电厂的工作方式正在发生着革新,超超临界电厂得到了越来越广泛的应用。相比于传统电厂,超超临界电厂主要区别在于提高了锅炉内的工质,一般为水的压力,来提高电厂的发电效率。本文通过对电厂燃烧过程控制系统的改进来减少电厂控制变量之间的相互干扰,从而进一步提高电厂的发电效率。首先,根据电厂的工作原理分析出电厂各控制变量与各被控量之间的相互关系,建立电厂的简化数学模型。之后,根据各变量之间的相互作用关系采取PID增益控制、解耦等方式提出改进的控制方案。然后,根据从网上搜集到的超超临界电厂在实际工况下所采集到的数据完成数学模型的数据输入工作。最后,通过MATLAB下的Simulink工具箱对数学模型进行仿真实验,得出电厂输出量的波形图,通过对比研究改进后的控制方案的实际运行成果。 关键词:超超临界电厂, 燃烧过程控制系统, 数学模型, MATLAB, Simulink仿真

湖南华电常德发电有限公司2×660MW超超临界机组整套启动调试方案汇总

特级调试证书单位(证书号:第2090号) 通过GB/T19001-2008、GB/T28001-2011、GB/T24001-2004 调试方案日期2015.03.25XTS/F 项目名称 湖南华电常德一期2×660MW项目 审核: 批准:

目录 1.试运目的 (1) 2.系统及设备概况 (1) 3.技术标准和规程规范 (2) 4.系统投运前应具备的条件 (2) 5.调试工作程序及步骤 (3) 6.调试需使用的仪器 (8) 7.质量控制点 (9) 8.人员分工 (9) 9.环境、职业健康、安全风险因素识别和控制措施 (9) 附录1整套启动调试危险源辨识表 (11)

湖南华电常德一期2×660MW项目 1号机组整套启动调试方案 1试运目的 依据DL/T5437—2009《火力发电建设工程启动试运及验收规程》的规定和湖南华电常德发电有限公司调试技术合同的要求,在整套启动过程中对机组汽水品质进行化学监督,防止热力设备腐蚀。保证机组顺利投产及以后的长期安全、经济运行。 2系统简介 2.1 机组概况 湖南华电常德电厂一期工程2×660MW项目超超临界机组发电工程锅炉为超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、四角切圆燃烧方式、平衡通风、Π型露天布置、刮板捞渣机机械除渣装置、全钢架悬吊结构。炉后尾部布置两台三分仓容克式空气预热器。主要参数如表1: 表1 锅炉主要参数 名称单位最大连续蒸发量 (BMCR) 额定工况蒸发量 (BRL) 过热蒸汽流量t/h 2035 1976 过热蒸汽出口压力MPa.g 26.15 26.08 过热蒸汽出口温度℃605 605 再热蒸汽流量t/h 1603 1551 再热蒸汽进口压力MPa.g 5.73 5.54 再热蒸汽进口温度℃374 368 再热蒸汽出口压力MPa.g 5.53 5.34 再热蒸汽出口温度℃603 603 给水温度℃299 297 2.2 经混凝澄清处理的沅江干流水→清水池→双层滤料过滤器→UF装置(自带自清洗过滤器)→超滤水箱→一级RO→RO缓冲水箱→二级RO→淡水箱→ EDI装置→除盐水箱。 2.3 加药系统主要设备 机组启动期间给水处理采用全挥发AVT碱性工况,正常运行时采用加氨加氧联合水处理CWT工况。2台机组设一套给水加氨、一套凝结水加氨设备,加氨泵均为2用1备;每台机设1套加氧设备,包括给水、凝结水加氧。

超临界600MW火电机组热力系统的火用分析

第30卷第32期中国电机工程学报V ol.30 No.32 Nov.15, 2010 8 2010年11月15日Proceedings of the CSEE ?2010 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2010) 32-0008-05 中图分类号:TK 212 文献标志码:A 学科分类号:470?20 超临界600 MW火电机组热力系统的火用分析 刘强,段远源 (清华大学热科学与动力工程教育部重点实验室,北京市海淀区 100084) Exergy Analysis for Thermal Power System of A 600 MW Supercritical Power Unit LIU Qiang, DUAN Yuanyuan (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Haidian district, Beijing 100084, China) ABSTRACT: The matrix equation for exergy balance of regenerative system was derived, and the mathematical model for exergy analysis of thermal power system was presented. Exergy losses and exergy efficiencies of the main components of a domestic N600-24.2/566/566 power unit were calculated by this model. The results indicate that the exergy efficiencies of low pressure heaters are lower than those of high pressure heaters, the exergy destructions in low pressure heaters are also lower. The exergy efficiency of the steam turbine is higher than relative internal efficiency, the exergy efficiencies of the high pressure turbine, intermediate pressure turbine and low pressure turbine are 93.20%, 96.18% and 89.61%, but the work of the low pressure turbine is the largest, so there is energy conservation potential for the low pressure turbine. The coefficient of exergy loss is found to be maximum in the boiler (49.47%) while much lower in condenser (1.232%). In addition, the calculated thermal efficiency of this power plant is 44.54% while the exergy efficiency of the power cycle is 43.52%. KEY WORDS: power unit; thermal power system; exergy analysis; energy conservation 摘要:提出了火电机组回热系统的火用平衡矩阵方程式,并构建了热力系统火用分析的数学模型。应用该模型,分析了国产某超临界N600–24.2/566/566机组热力系统主要部件的火用损失和火用效率。结果表明:高压加热器的火用效率高于低压加热器,但是低压加热器的火用损系数较小;除氧器的火用损系数最大;汽轮机的火用效率高于其相对内效率;高压缸、中压缸和低压缸的火用效率分别为93.20%,96.18%和89.61%,但是低压缸承担做功量最大,因此低压缸仍有一定的节能潜力;锅炉的火用损系数高达49.47%,而凝汽器的火用损系数只有1.232%,所以锅炉是节能的重点对象。此外该机组的全厂热效率为44.54%,而火用效率为43.52%。 关键词:火电机组;热力系统;火用分析;节能 0 引言 火力发电机组承担着我国约80%的发电量,是耗能和排放大户,因此准确而有效的节能理论将有助于火电机组的节能减排工作。火电机组热经济性的评价方法一般分为两类:基于热力学第一定律的热量法,如热平衡法、等效焓降法、矩阵法、循环函数法等,一般用于定量分析;基于热力学第二定律的火用分析法、熵分析法、热经济学法等,一般用于定性分析。目前,我国火电机组的热经济性分析普遍采用热量法,但节能不仅要重视量,还应注意节能潜力的挖掘以及能级匹配的改善,所以对火电机组进行火用分析可以有效评价能量利用的合理程度,科学地指导电厂节能工作。火用分析和热经济学的理论研究在我国从20世纪80年代开始发展[1-4],并得到了一定的应用[5-15],但是国内对超临界火电机组热力系统进行火用分析的工作仍较少,而目前超(超)临界600 MW及以上机组正相继投入运行,所以本文拟构建火电机组火用分析数学模型,并对某台超临界600 MW机组进行火用分析,为大型火电机组的节能提供理论依据。 1 火电机组热力系统的火用分析数学模型 1.1 火用损失和火用效率 火用损失的大小可以表明实际过程的不可逆程度,故其大小可以衡量热力过程的完善程度。但火用损失是一绝对量,无法比较不同工况火用的利用程度,因此常采用火用效率来评价热力过程或设备的热 基金项目:国家重点基础研究发展计划项目(973项目) (2009CB219805)。 Project Supported by National Basic Research Program of China (973 Program) (2009CB219805).

中国超超临界机组与电厂统计

中国已建、在建、拟建1000MW超超临界机组与电厂统计1.浙江华能玉环电厂 位于浙江台州玉环县的华能玉环电厂工程是国家“十五”863计划“超超临界燃煤发电技术”课题的依托工程和超超临界国产化示范项目,规划装机容量为4台1000MW超超临界燃煤机组,一期建设二台1000MW机组,投资约96亿元,机组主蒸汽压力达到兆帕,主蒸汽和再热蒸汽温度达到600度,是目前国内单机容量最大、运行参数最高的燃煤发电机组,该工程是国内机组热效率、环保综合性能最高,发电煤耗最低的燃煤发电厂。自2004年6月开工以来,按照华能集团公司总经理李小鹏提出的建设“技术水平最高,经济效益最好,单位千瓦用人最少,国内最好、国际优秀” 高效、节能、环保电厂的目标,在业主、设计、施工、调试、监理、制造各参建方的共同努力下,坚持技术创新,敢于走前人未走之路,攻克了一个又一个技术难题,创造了一个又一个国内电建史上的第一。 1#机组投产比计划工期提前6个月,2006年11月28日,华能玉环电厂1#机组顺利经过土建、安装、调试、并网试运环节,正式投入商业运行。2#机组于2006年12月投产。 二期3#、4#机组于2007年11月投产,成为我国最大的超超临界机组火力发电厂。 2.山东华电邹县发电厂 地处山东省邹城市。南面是水资源丰富的微山湖,北与兖州煤田相邻,向东4公里,有津浦铁路南北贯通。充足的煤炭,便利的交通,以及丰富的水资源,为邹县电厂的建设与发展提供了非常优越的条件。邹县发电厂一、二、三期工程,是“六五”至“九五”期间国家重点建设工程。现有1台300MW、1台330MW和2台335MW国产改造机组和2台600MW机组,装机总容量2500MW,是目前我国内地最大的火力发电厂之一。四期工程计划再安装2台1000MW等级超超临界机组,华电国际邹县发电厂国产百万千瓦超超临界燃煤凝汽式汽轮发电机组,是国家“863”计划依托项目和“十一五”重点建设工程,是引进超超临界技术建设的大容量、高参数、环保型机组的里程碑工程,也是2006年华电集团突破装机规模和经营效益的标志性项目。7号机组工程从开工到

1000MW超超临界机组锅炉启动系统结构与运行特性

1000MW超超临界机组锅炉启动系统结构与运行特性

摘要 介绍了国产1000MW超超临界机组锅炉启动系统结构及运行特性,阐述了启动系统的结构,启动系统的流程以及运行特性,分析了各种启动系统之间的不同(包括安全性,经济性等)以及不同设备运行对于启动系统运行的影响等。 关键词:超超临界启动系统结构特性运行特性 Abstract Introduced domestic 1000MW Supercritical Boiler Start System structure and operating characteristics, described the structure of the boot system, boot the system processes, and operational characteristics of the different promoters, the difference between the systems (including security, economy, etc.) and

start the system running for different devices running on and so on. Keywords:USC;Start System ;operational characteristics;operating characteristics

目录 第一章前言 (3) 第二章 1000MW超超临界锅炉主要系统 (5) 第三章超超临界锅炉启动系统 (9) 第一节超超临界锅炉启动系统的结构 (9) 第二节超超临界锅炉启动系统的分类 (12) 第三节锅炉启动系统的比较 (15) 第四章超超临界锅炉启动系统运行特性分析 (17) 第五章典型超超临界锅炉启动系统 (20) 第六章结束语 (28) 参考文献 (29) 附录 (30)

我国百万千瓦火电机组一览

我国百万千瓦火电机组一览 截至2011年底,我国已建成投产的百万千瓦级超超临界火电机组达到38台。平均供电煤耗为290克/千瓦时。 目前已建成投产的百万千瓦级超超临界火电机组见下表: 序号企业数量 1 华能玉环电厂 4 2 华能汕头海门电厂 2 3 华能金陵电厂 1 4 华能沁北电厂 2 5 国电泰州电厂 2 6 国电北仑电厂 2 7 国电谏壁电厂 2 8 国华绥中电厂 2 9 国华粤电台山电厂 1 10 国华宁海电厂 2 11 华电国际邹县发电厂 2 12 华电宁夏灵武电厂 2 13 中电投漕泾电厂 2 14 中电投平顶山发电分公司 2 15 华润徐州彭城发电厂 2 16 申能外高桥发电公司 2 17 国投天津北疆电厂 2 18 浙能嘉兴电厂 1 1 19 皖能铜陵电厂 20 广东惠州平海发电厂 2 合计38 目前中国在建的百万千瓦火电机组为66台,具体如下: ·大唐广东三百门电厂 位于广东省潮州市饶平县东南部的柘林镇大埕湾畔,规划装机容量为2×60万千瓦、 6×100万千瓦燃煤发电机组。整个项目投产后,年发电量将达到72亿千瓦时。 ·大唐克什克腾电厂(空冷) 位于内蒙古自治区赤峰市克什克腾旗三义乡和浩来呼热乡境内,总装机容量200万千瓦。其所发电力直接送入京津唐电网,未来将形成煤、电、路一体化发展格局。 ·大唐山西定襄电厂(空冷) 位于山西省忻州市定襄县东王村,建设规模为200万千瓦。电厂所发电力电量拟全部送入京津唐电网。 ·大唐山东东营电厂 位于山东省东营市河口区临港工业园之内,建设规模为4×100万千瓦,一期工程建设2

台机组。 ·大唐浙江乌沙山电厂 位于浙江省宁波市象山县西周镇东北约2.5公里的乌沙山西侧的山前平原上。该项目为二期工程,建设2台100万千瓦机组,同步配套日产10万吨海水淡化项目。 ·大唐江西抚州电厂 位于江西省抚州市临川区,规划建设4×100万千瓦燃煤发电机组。该项目为一期工程,建设2台100万千瓦机组。 ·国电安徽铜陵电厂 位于安徽省铜陵市东北铜陵县东联乡境内,一期工程2×60万千瓦,已投产发电,二期工程2×100万千瓦。该电厂是中国国电集团公司在安徽投资兴建的首个电源点。 ·国电山东博兴电厂 位于山东省滨州市博兴县境内,建设2×100万千瓦发电机组。近期规划4×100万千瓦发电机组,远景规划8×100万千瓦发电机组。该项目是滨州市第一个大型公用发电厂,靠近山东省中部负荷中心,将成为山东电网500千伏北通道的重要电源支撑点。 ·国电湖北汉川电厂 位于湖北省武汉市西面,一、二期总装机容量4× 30万千瓦火电机组,三期工程2×100万千瓦。处于湖北电网鄂东负荷中心,是湖北省境内重要的电源支撑点。 ·国电广西钦州电厂 位于广西壮族自治区钦州市南部的钦州港经济开发区鹰岭作业区钦州电厂的二期工程场地内,建设2×100万千瓦燃煤发电机组。将成为广西乃至西南地区最大的火电基地之一,可为南方电网“西电东送”主网架提供电源支撑。 ·华电宁夏灵武电厂(空冷) 位于宁夏回族自治区银川市灵武境内的宁东能源化工基地,煤炭资源丰富,是典型的坑口电厂。该项目是灵武电厂三期工程,建设2台100万千瓦空冷火电机组,建成后将是世界上首个100万千瓦空冷机组,同时也是国内最大的、装机规模520万千瓦的空冷发电厂,是宁夏区域“西电东送”的重要电源支撑点。 ·华电宁夏灵武电厂 是灵武电厂二期工程,建设2台100万千瓦火电机组。 ·华电安徽芜湖电厂 位于长江南岸长三角经济带边缘、安徽省东南部的芜湖市境内。规划装机容量332万千瓦,一期工程建设2×66万千瓦机组,二期建设2×100万千瓦机组,建成后将成为华东地区特大型骨干电厂。 ·华电江苏句容电厂 位于江苏省镇江市境内句容市下蜀镇桥头农场,规划容量4×100万千瓦机组,一期建设2台100万千瓦机组。该电厂为苏南区域性电厂,电力将主要送苏锡地区。 ·华能江苏金陵电厂 位于江苏省南京市栖霞经济开发区,一期2×39万千瓦燃气——蒸汽联合循环发电机组已建成投产,二期工程建设2×100万千瓦燃煤发电机组。 ·华能河南沁北电厂 位于河南省济源市五龙口镇境内,规划装机容量440万千瓦。一、二期工程4×60万千瓦机组已投运,三期工程2×100万千瓦。该电厂紧靠晋东南和晋南煤炭基地,位于华中、华北、西北电网的交汇处。 ·华能广东海门电厂 位于广东省汕头市潮阳区海门镇洪洞村,规划建设6×100万千瓦燃煤机组,首期建设4

五台百万机组施工介绍

五台百万机组施工介绍 超超临界百万机组由于有着优良的经济性能(供电煤耗不到300克标准煤),加之现在的火电超低排放技术的运用,所以不管从经济性能还是环保要求来考虑,今天的中国火力发电已经进入百万千瓦机组唱主角的时代,自从2006年11月28日华能玉环电厂首台百万机组投产以来,已经有大量的百万机组投产,要不了2年的时间中国的百万机组就要突破百台大关,就我们江苏省而言,已有国电泰州2台、华润彭城2台、国华徐州2台、国电谏壁2台,华能金陵2台、中电国际常熟2台、华电句容2台,国信新海1台,华能南通2台,加之目前在安装中的国电泰州二期的2台两次再热百万千瓦机组和国信新海的第二台百万机组,和即将建设的中电投协鑫滨海2台百万机组和北京三吉利能源张家港沙洲电力的2台百万机组,江苏省将拥有24台百万机组,在相当长的一段时间内江苏省的百万机组数量应该是排名国内第一! 国内目前百万机组锅炉俱乐部成员哈尔滨锅炉厂的技术支持方为MITSUBISHI(三菱)公司,上海锅炉厂的技术支持方为ALSTOM(阿尔斯通)公司,东方锅炉厂的技术支持方为BHK(日立-巴布科克)公司,北京巴威锅炉厂的技术支持方为Babcock & Wilcox(巴布科克·威尔科克斯)公司,纵观国内的百万机组的三大主机供应商无疑都是三大电气(上海、哈尔滨、东方)提供的设备,江苏省内已经投产的百万机组以上海电气的为主,百万机组汽轮机除了国电泰州工程汽轮机为哈尔滨汽轮机厂提供以外,其余均为上海汽轮机厂的西门子机型汽轮机,锅炉除了国电泰州和华能金陵采用哈尔滨锅炉厂提供的设备、华电句容采用东方锅炉提供的设备,其余的均采用上海锅炉厂的塔式锅炉,在百万俱乐部成员中除了这三大电气制造商以外,目前北京的巴威锅炉厂和北京北重阿尔斯通汽轮机也已经成功跻身为百万俱乐部成员,和三大电气制造商相比较,由于是合资企业,没有国家的政策支持,所以北京的这两家合资企业的产品在国内的市场占有率远不如三大电气制造厂的市场占有率高,但是他们的产品各自有各自的特色,下面我们就来谈谈江苏省内的我公司施工的超超临界百万机组,由于本人对汽轮机本体结构结构不熟悉,对江苏省内的百万机组设备介绍以锅炉为主,汽机大部分介绍为借鉴网上的资料,由于本人水平有限,文中错误之处还请大家见谅! 一、国电泰州电厂一期工程: 国电泰州电厂一期工程由中国国电集团公司投资兴建,是江苏省的首个百万机组电厂,设计单位为华东电力设计院,安装单位为江苏电建三公司(承建#1机组)和江苏电建一公司(承建#2机组),国电泰州工程是国电集团的首个百万机组工程,也是江苏省的首个百万机组工程,更是江苏电建一、三公司的首个百万机组工程,是江苏电建一、三公司实力上台阶的工程,泰州工程#1机组于2007.12.04号投产,位列国内百万机组投产第7名,前6名分别是华能玉环的4台百万机组和华电国际邹县电厂2台百万机组,泰州#1机组是中国电力装机容量突破7亿千瓦的标志性机组;泰州工程#2机组于2008.03.31号投产,位列国内百万机组投产第9名,第8名为2008.03.26投产的上海外高桥#7机组,泰州的三大主机均由哈电集团提供,锅炉设备和华能玉环的锅炉相同为哈尔滨锅炉厂引进日本MITSUBISHI公司技术标准制造的超超临界锅炉,锅炉的主蒸汽流量:2953t/h;压力:27.46 MPa;温度为:605 ℃;再热汽流量:2446t/h;压力:5.94 MPa;温度603 ℃,哈锅的三菱技术超超临界锅炉的最大的特点是水冷壁不采用螺旋管,全部为垂直段水冷壁,加装中间混合集箱及两级分配器,减少了水冷壁偏差,并将节流孔圈装于水冷壁下联箱外面的水冷壁管上以便于调试、简化结构。燃烧方式:反向双切圆(八角切圆)燃烧方式以获得均匀的炉内空气动力场和热负荷分配,降低炉膛出口烟气温度场和水冷壁出口工质温度的偏差。哈锅的超超临界锅炉还有一个显著的特点就是分离器和贮水箱布置在炉后,这个和其他的超超临界锅炉分离器和贮水箱布置在炉前是不一样的,而且顶棚和四侧包墙属于水冷壁系统(以分离器出口为过热系统分界)。 锅炉的热力系统(一次汽):高压给水来→省煤器进口集箱→低再侧、低过侧省煤器蛇形管排→省煤器悬吊管→省煤器出口集箱→省煤器下降管→下降支管→四侧水冷壁进口集箱→水冷壁中间集箱一级混合器→水冷壁二级混合器→水冷壁(前、左、右)上集箱(后侧水出口集箱通过连接管至侧墙延伸水冷壁进口集箱和后水吊挂管进口集箱到侧墙水冷壁出口集箱和后水吊挂管出口集箱再通过连接管集中到顶棚出口集

超临界火电机组

火力发电革命性变革 ——超临界(超超临界)机组运用 超临界(超超临界)是一个热力学概念。对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。同时这一状态下对应的饱和温度为374.15℃。超临界机组即指蒸汽压力达到超临界状态的发电机组。蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。 超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。现在全世界各国都非常重视超临界(超超临界)机组技术的发展。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。 超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。 超临界(超超临界)机组具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。

(整理)600MW超超临界机组资料

600MW超超临界汽轮机介绍第一部分 两缸两排汽 600MW超超临界汽轮机介绍 0 前言 近几年来我国电力事业飞速发展,大容量机组的装机数量逐年上升,同时随着国家对环保事业的日益重视及电厂高效率的要求,机组的初参数已从亚临界向超临界甚至超超临界快速发展。根据我国电力市场的发展趋势,25MPa/600℃/600℃两缸两排汽 600MW 超超临界汽轮发电机组将依据其环保、高效、布局紧凑及利于维护等特点占据相当一部分市场份额,下面对哈汽、三菱公司联合制造生产的25MPa/600℃/600℃两缸两排汽600MW超超临界汽轮机做一个详细的介绍。 1 概述 哈汽、三菱公司联合制造生产的600MW超超临界汽轮机为单轴、两缸、两排汽、一次中间再热、凝汽式机组。高中压汽轮机采用合缸结构,低压汽轮机采用一个48英寸末级叶片的双分流低压缸,这种设计降低了汽轮机总长度,紧缩电厂布局。机组的通流及排汽部分采用三维设计优化,具有高的运行效率。机组的组成模块经历了大量的实验研究,并有成熟的运行经验,机组运行高度可靠。 机组设计有两个主汽调节联合阀,分别布置在机组的两侧。阀门通过挠性导汽管与高中压缸连接,这种结构使高温部件与高中压缸隔离,大大地降低了汽缸内的温度梯度,可有效防止启动过程缸体产生裂纹。主汽阀、调节阀为联合阀结构,每个阀门由一个水平布置的主汽阀和两个垂直布置的调节阀组成。这种布置减小了所需的整体空间,将所有的运行部件布置在汽轮机运行层以上,便于维修。调节阀为柱塞阀,出口为扩散式。来自调节阀的蒸汽通过四个导汽管(两个在上半,两个在下半)进入高中压缸中部,然后进入四个喷嘴室。导汽管通过挠性进汽套筒与喷嘴室连接。 进入喷嘴室的蒸汽流过冲动式调节级,然后流过反动式高压压力级,做功后通过外缸下半的排汽口进入再热器。 再热后的蒸汽通过布置在汽缸前端两侧的两个再热主汽阀和四个中压调节阀返回

660MW超超临界直接空冷机组整套启动中的问题及处理措施

660MW超超临界直接空冷机组整套启动中的问题及处理措施 本文主要针对660MW超超临界直接空冷机组整套启动过程中存在的问题开展论述,结合问题存在的原因,提出相应的处理措施,保证整个机组试运行顺利推进。 标签:超超临界直接空冷机组整套启动存在问题处理措施 内蒙古大唐国际托克托发电有限责任公司五期工程2×660MW汽轮机发电机组,该机组是由东汽生产的660MW超超临界一次中间再热,三缸两排汽,直接空冷凝汽式汽轮机。本次研究主要针对该机组整套启动过程中存在的的问题进行了总结分析,并进一步分析了问题产生的原因,提出了相应的处理措施,现将具体研究内容介绍如下: 一、盘车转子停止转动 1.问题分析 在对机组进行电气专业短路实验和空载实验完成之后,技术人员准备对整个机组的阀门进行严密性试验。当时锅炉的运行参数为主汽压力11.9MPa,再热汽压力2.3119MPa。当严密性试验完毕之后,汽机转速到0,人工手动啮合盘车,启动过程中的电流为0当时电流30.3A,启动约一分半后,盘车掉闸。间隔20分钟后再次启动,启动失败,这时对盘车电机的电流进行检查,发现在33~35A 之间波动。半个小时之后,挂闸困难,强行挂闸后,手动盘车不能正常运作,随后盘车电流突然激增到71A,汽轮机真空遭到破坏。通过对整个机组进行全面检查之后,导致上述问题出现的原因,主要包括以下几个方面,一个是盘车机电出现了电气故障,另一个是汽轮机大轴内部存在残余的弯曲,机械设备在启动过程中,由于启动力矩太大,不能正常开启。还有就是顶轴油压出现了突变,使得大轴顶起高度,达不到相应标准,启动力矩增加。最后一个原因是盘车大齿与大轴齿轮啮合不到位,从而引起启动力矩增加。 2.处理措施 针对上述故障可能发生的原因,技术人员立即采取措施进行检修。首先将所在机组的所有疏水关闭,开始进行闷缸处理。在故障现场调整机组各个瓦顶轴油压以及顶起的高度,检查之后发现一个发电机的7瓦顶起高度不符合要求。针对这一现象,重新调整了3号~8号瓦顶轴油压,调整之后的油压分别为6.9MPa、5.5MPa、6.9MPa、8.5MPa、5.2MPa、7.8MPa。3~8号瓦大轴顶起高度分别为3丝、3丝、4丝、5丝、5丝、6丝。然后对盘车进行了解体,发现回油槽内部存在很多铜屑,由此可以断定,是因为油槽中存在铜屑,造成了齿轮啮合困难。通过对机组进行闷缸处理两个小时之后,重新开启盘车,机组电流稳定,没有继续出现突然增大现象。然后将盘车挂闸,能够顺利进行。将盘车再次启动之后,机组的电流控制在25A,转子偏心162mm。随后机组的电流下降到20A,接近冷

亚临界,超临界,超超临界火电机组技术

亚临界、超临界、超超临界火电机组技术区别 一、定义 所谓的"临界"是指锅炉工作情况下承受的一定温度和压力的蒸汽状态。可以查出水的临界压力为22.115MPa ,由此知,此压力对应下的状态叫临界状态; (1)水在加热过程中存在一个状态点——临界点 (2)低于临界点压力,从低温下的水加热到过热蒸汽的过程中要经过汽化过程,即经过水和水蒸汽共存的状态; (3)而如果压力在临界压力或临界压力以上时,水在加热的过程中就没有汽水共存状态而直接从水转变为蒸汽。 T-S图 临界点 T 饱和水线饱和汽线 S 水的临界点 1.1 压力低于25MPa(对应的蒸汽温度低于538摄氏度)时的状态为亚临界状态;亚 临界自然循环汽包锅炉的燃烧室蒸发受热面与汽包构成循环回路。受热面上升管吸热量越大,则上升管内的含汽率增大,与下降管比重差增大,因此推动更大的循环量。其特性是带有“自补偿”性质的。而直流锅炉燃烧室内的平行上升管组吸热量越大则工质比容增大,体

积流速变大,阻力增大。对带有联箱的平行管组,吸热多的管子质量流量必然降低,其特点是“直流”性质的。 1.2 压力在25MPa 时的状态(对应的蒸汽温度高于538摄氏度)为超临界状态;超临界是物质的一种特殊状态,当环境温度、压力达到物质的临界点时,气液两相的相界面消失,成为均相体系。当温度压力进一步提高,即超过临界点时,物质就处于超临界状态,成为超临界流体。超临界水是一种重要超临界流体,在超临界状态下,水具有类似于气体的良好流动性,又具有远高于气体的密度。超临界水是一种很好的反应介质,具有独特的理化性质,例如扩散系数高、传质速率高、粘度低、混合性好、介电常数低、与有机物、气体组分完全互溶;对无机物溶解度低,利于固体分离,反应性高、分解力高;超临界水本身可参与自由基和离子反应等等。 1.3 压力在25-31MPa 之间(温度在600度以上)则称为超超临界状态。 二、 参数 水的临界状态参数为压力22.115MPa 、温度374.15℃ 2.1 亚临界火电机组蒸汽参数: P=16~19MPa ,T= 538℃/ 538℃或T= 540℃/ 540 ℃。超临界压力下朗肯循环过程的T —S 图

超超临界机组介绍

超超临界锅炉介绍 国家政策情况 节能调度 一、基本原则和适用范围 (一)节能发电调度是指在保障电力可靠供应的前提下,按照节能、经济的原则,优先调度可再生发电资源,按机组能耗和污染物排放水平由低到高排序,依次调用化石类发电资源,最大限度地减少能源、资源消耗和污染物排放。 (二)基本原则。以确保电力系统安全稳定运行和连续供电为前提,以节能、环保为目标,通过对各类发电机组按能耗和污染物排放水平排序,以分省排序、区域内优化、区域间协调的方式,实施优化调度,并与电力市场建设工作相结合,充分发挥电力市场的作用,努力做到单位电能生产中能耗和污染物排放最少。 (三)适用范围。节能发电调度适用于所有并网运行的发电机组,上网电价暂按国家现行管理办法执行。对符合国家有关规定的外商直接投资企业的发电机组,可继续执行现有购电合同,合同期满后,执行本办法。 二、机组发电序位表的编制 (四)机组发电排序的序位表(以下简称排序表)是节能发电调度的主要依据。各省(区、市)的排序表由省级人民政府责成其发展改革委(经贸委)组织编制,并根据机组投产和实际运行情况及时调整。排序表的编制应公开、公平、公正,并对电力企业和社会公开,对存在重大分歧的可进行听证。 (五)各类发电机组按以下顺序确定序位: 1.无调节能力的风能、太阳能、海洋能、水能等可再生能源发电机组; 2.有调节能力的水能、生物质能、地热能等可再生能源发电机组和满足环保要求的垃圾发电机组; 3.核能发电机组; 4.按“以热定电”方式运行的燃煤热电联产机组,余热、余气、余压、煤矸石、洗中煤、煤层气等资源综合利用发电机组; 5.天然气、煤气化发电机组; 6.其他燃煤发电机组,包括未带热负荷的热电联产机组; 7.燃油发电机组。 (六)同类型火力发电机组按照能耗水平由低到高排序,节能优先;能耗水平相同时,按照污染物排放水平由低到高排序。机组运行能耗水平近期暂依照设备制造厂商提供

超临界和超超临界发电机组

Latest Developments in the World ′s Wind Power Industry Luo Chengxian (Former SINOPEC Center of Information ,Beijing 100011) [Abstract]In recent years ,renewable energy source-based power generation ,particularly wind power ,has been growing rapidly.Pushed by some wind power foregoer countries ,significant progress has been made in the de -velopment of large-capacity wind turbine power generating sets with single-generator capacity having quickly broken through the key level of 1MW.10MW wind turbine power generating sets are expected to enter the market soon.The development of larger-capacity generators has enhanced the economic viability and competi -tiveness of wind power.The utilization rate of wind turbines will rise to 28%by 2015from the current about 25%and the investment cost will drop considerably.Under GWEC ′s high-growth scenario ,the investment cost will fall to 1093Euro/kW by 2030from 1350Euro/kW in 2009.Given the intermittent and stochastic nature of wind ,power storage technology is an effective approach to introducing renewable energy on a large scale.Japan and many American and European countries have invested in the research and development of power storage technology.A recent IEA research note shows that use in combination with heat and power cogenera -tion technology ,which focuses on heat supply ,can greatly expand the scale of use of renewable energy sources.Smart grids will be the fundamental approach to resolving the problems relating to the large -scale grid integration of wind power and power transmission.Smart grid technology will greatly enhance the overall utilization efficiency of the power system and can effectively reduce the fossil fuel consumption of power plants.China has made some progress in developing smart grids although there are still many problems yet to be resolved.The renewable energy -derived power purchasing policies enacted by countries around the globe have promoted the development of the global wind power industry.Germany ′s wind power purchasing policies can be used by China for reference. [Keywords]wind power generation ;larger generator ;equipment utilization rate ;investment cost ;power storage technology ;smart grid ;wind power purchasing policy ·39· 第5期罗承先.世界促进风电产业发展最新动向·能源知识· 超临界和超超临界发电机组 火电厂超临界和超超临界机组指的是锅炉内工质的压力。锅炉内的工质都是水,水的临界压力是22.115MPa ,温度为347.15℃。在这个压力和温度时,水和蒸汽的密度是相同的,这就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31MPa 则称为超超临界。 超临界机组具有无可比拟的经济性,单台机组发电热效率最高可达50%,每千瓦时煤耗最低仅为255g(丹麦BWE 公司),较亚临界压力机组(最低约327g 左右)煤耗低;同时采用低氧化氮技术,在燃烧过程中减少65%的氮氧化合物及其他有害物质,且脱硫率超98%,可实现节能降耗、环保的目的。超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率还要高1.2%,一年就可节约6000t 优质煤。未来火电建设将主要发展高效率、高参数的超临界(SC)和超超临界(USC)火电机组。我国已成功掌握先进的超超临界火力发电技术,并为百万千瓦超超临界机组产业化创造了条件。目前一批百万千瓦超超临界机组项目正在建设中。(供稿舟丹)

超超临界机组的金属材料介绍

超超临界机组的金属材料介绍 1.1概述 以亚临界火电机组的电厂净效率为基值,蒸汽参数为25MPa/540℃/560℃的超临界火电机组电厂净效率比亚临界火电机组的电厂净效率高 1.6%;27MPa/580℃/600℃超临界火电机组电厂净效率比25MPa/540℃/560℃的电厂净效率高 1.3%;30MPa/620℃/640℃超临界火电机组电厂净效率比27MPa/580℃/600℃超临界火电机组电厂净效率高1.3%;30MPa/700℃/720℃超临界火电机组电厂净效率比30MPa/620℃/640℃超临界火电机组电厂净效率高1.6%。这符合热力学所指出的:热机的初参数越高,效率就越好。因此,随着科技进步,人们不断地在开发更高参数的超临界火电机组。 然而,机组参数的提高,受制于耐高温材料的开发与制造,随着蒸汽参数的提高就要应用更能耐高温的材料。早在50年代末,美国就投运了参数为31MPa/621℃/566℃/566℃的Philo6号和参数为34.5MPa/ 649℃/566℃/566℃的Eddystonel号超超临界机组。这二台机组采用的参数由于超越了当时的材料制造水平,投运后多次出现爆管事故和严重的高温腐蚀等材料问题,不得不降参数运行。原苏联首台超临界机组参数为23.5MPa/580℃/565℃,运行后也多次出现材料方面的问题,不得不把参数降到23.5MPa,540℃/540℃运行。日本发展超临界机组,很注重材料的研究与开发,机组参数稳步推进,超临界、超超临界机组得以顺利发展。上世纪80年代以来,欧洲、美国、日本在超超临界发展计划中,首先实施材料开发的计划。由此可见材料是发展超超临界机组的关键。 20世纪50年代初,日本从欧美引进锅炉用碳钢、钼钢、铬铝钢、18-8型不锈钢和转子用CrMoV钢,从1981年开始分两个阶段实施超超临界发电计划。第一阶段把蒸汽温度从566℃提高到593℃,第二阶段目标是650℃。在材料的开发上,主要是利用过去对9~12%Cr系钢和奥氏体系钢的开发研究成果,进一步开发高强度9~12%Cr系钢代替部分奥氏体钢,开发比原来奥氏体高温强度更高、耐蚀性更好的新奥氏体钢,以及兼顾高温强度和耐蚀性的渗铬管、喷焊管和双层管。全面回顾和进一步研究合金元素Cr、Mo、W、V、Nb、Cu、Co、Cr、Si、C、N、B、Re单独添加和V-Nb、C-N、Mo-W等复合添加的影响,开发了TB9,TB12,NF616,HCM12A,NF12, TP347HFG,Super304H,HR3C,NF709,SAVE25等锅炉用钢;TR1100,TRl50,TR1200,HR1200,TAF65等转子、叶片、螺栓用钢。日本对耐热钢的开发研制是花大力气的,并取得了举世目瞩目的成功。根据近期的研究成果,含钴的铁素体耐热钢(NF12,SAVE12,HRI200,TF650)最高使用温度有望达到650℃.但还需进一步试验。我国发展不同参数的超超临界机组的候选材料示于下表6-1中。 超超临界机组由于蒸汽温度的提高,对材料的耐腐蚀性要求可能会超过对蠕

相关文档
最新文档