超超临界火电机组锅炉用钢的分析

超超临界火电机组锅炉用钢的分析
超超临界火电机组锅炉用钢的分析

超超临界火电机组燃烧控制系统设计

, 毕业论文(设计)题目:超超临界火电机组燃烧控制系统设计 姓名林逸君 学号201100170220 学院控制科学与工程学院 专业测控技术与仪器 年级 2011级 指导教师刘红波 2015年 5 月 10 日

目录 摘要 (3) ABSTRACT (4) 第一章绪论 (5) 1.1课题背景及意义 (5) 1.2 超超临界火电机组控制技术应用现状 (5) 1.3 毕业设计主要内容 (5) 第二章超超临界火电机组燃烧控制系统概述 (6) 2.1 机组工艺流程简述 (6) 2.2 机组燃烧过程控制系统任务 (7) 2.3 机组燃烧过程控制系统组成与特点 (8) 第三章超超临界火电机组燃烧控制方案设计 (9) 3.1常规控制方案 (9) 3.2改进控制方案 (10) 第四章控制方案仿真验证 (10) 4.1 MATLAB简介 (11) 4.2 控制方案的Simulink仿真验证............................... 错误!未定义书签。结论. (15) 致谢 (16) 参考文献 (17) 附录 附录1 Controller design for a 1000 MWultra super critical once-through boiler power plant 附录2 文献翻译

摘要 随着科学技术的进步,传统电厂的工作方式正在发生着革新,超超临界电厂得到了越来越广泛的应用。相比于传统电厂,超超临界电厂主要区别在于提高了锅炉内的工质,一般为水的压力,来提高电厂的发电效率。本文通过对电厂燃烧过程控制系统的改进来减少电厂控制变量之间的相互干扰,从而进一步提高电厂的发电效率。首先,根据电厂的工作原理分析出电厂各控制变量与各被控量之间的相互关系,建立电厂的简化数学模型。之后,根据各变量之间的相互作用关系采取PID增益控制、解耦等方式提出改进的控制方案。然后,根据从网上搜集到的超超临界电厂在实际工况下所采集到的数据完成数学模型的数据输入工作。最后,通过MATLAB下的Simulink工具箱对数学模型进行仿真实验,得出电厂输出量的波形图,通过对比研究改进后的控制方案的实际运行成果。 关键词:超超临界电厂, 燃烧过程控制系统, 数学模型, MATLAB, Simulink仿真

电厂锅炉培训教材

热电锅炉培训教案 2008年1月

第一章发电厂整体认识 火力发电厂的三大主机是锅炉、汽轮机、发电机锅炉用燃料燃烧释放出来的热能将水加热成具有一定压力和温度的蒸汽,然后蒸汽沿管道进入汽轮机膨胀做功,带动发电机一起高速旋转,从而发出电能整个过程中存在三种能量转换过程: 锅炉 :燃料的化学能转换成热能 汽轮机 :热能转换成机械能 发电机 :机械能转换成电能

第二章锅炉整体认识 一、锅炉设备的作用及构成 1、作用: 锅炉是发电厂最重要的能量转换设备之一,它的任务就是:通过燃烧将给水进行加热,制造出合格品质的过热蒸汽,供汽轮机使用。 2、构成: 锅炉本体由“锅”和“炉”两部分组成 “锅”: 就是锅炉的汽水系统[由省煤器、汽包、下降管、水冷壁、过热器、再热器等组成] 过程:给水由给水泵打入省煤器以后,逐渐吸热,并蒸发成为饱和蒸汽;饱和蒸汽在汽包中经分离、清洗后,引入过热器,逐渐过热到规定温度,成为合格的过热蒸汽,然后送到汽轮机;过热蒸汽在汽轮机高压缸中膨胀做功后,汽温汽压均下降,在高压缸出口由导管将蒸汽引入锅炉再热器中再次进行加热成为高温再热蒸汽,送往汽轮机中/低压缸继续膨胀做功。 “炉”:就是锅炉的燃烧系统[包括:由炉膛、烟道、喷燃器、空气预热器等组成] 过程:送风机―空预器―制粉系统―喷燃器―炉膛―各受热面―除尘器-引风机-烟囱 [密封风、三次风] [二次风]

锅炉炉膛具有较大的空间,煤粉在炉膛内悬浮燃烧,炉膛周围墙壁上布置有密集排列的水冷壁管,管内有水和蒸汽通过,既能吸收炉膛的辐射热,又能保护炉墙不致被烧坏。燃烧中心具有1500℃或更高的温度,但在上部炉膛出口处,烟气温度要低于煤灰的熔点,以免融化的灰渣粘结在烟道内的受热面上。煤粉燃烧所生成的较大灰粒将至炉膛底部的冷灰斗中,逐渐冷却和凝固,并落入排渣装置,由排渣机排走。大量较细的灰粒随烟气离开炉膛,流经一系列的受热面,逐渐冷却,最后由引风机经烟囱排入大气。排烟温度一般为150℃左右。为了减少排烟所带出的飞灰污染环境,离开锅炉的烟气先流经除尘器使绝大部分飞灰被捕捉下来,最后只有极少量的细微灰粒排入大气。 二、锅炉的类型划分 可以按燃烧方式分、按蒸气参数分、按水循环特性分、按燃煤炉的排渣方

超超临界机组锅炉高温材料的选择和应用

超超临界机组锅炉高温材料的选择和应用 根据现今全球超超临界机组中百万千瓦级的动态发展情况,分析已有的机组参数。超超临界锅炉用耐高温材料与其参数是紧密联系在一起的,研究并开发应用超超临界锅炉的高效性能、方便加工和经济性新型材料,是未来发展的主要方向。 标签:超超临界锅炉;高温材料;选择及应用 在国民经济稳定持续增长的大背景中,人们不断的增加电力需求和国家实施节能减排的政策,建设容量大、效率快、参数高及节能好的机组是我国电力的发展趋势。提高锅炉的蒸汽压力、温度以及其他参数都能有效提高发电厂的发电效率,其中温度的影响效果最明显。现今国际上超超临界机组的参数为初压力24.1-31MPa,其主蒸汽/再热蒸汽的温度是580℃-600℃/580℃-610℃,用USC作表示。而其使用金属材料的耐高压、耐高温与焊接问题是如何提高蒸汽参数这个问题中所存在的首要技术难题。 1 高温材料的选择 开发具有更好耐高温性的耐热钢是发展高效超超临界火力发电机组的关键技术,让他们适用在更高的温度范围。现今全球在管道及锅炉的用钢发展可大致分为两方向: (1)发展铁素体耐热钢,马氏体、贝氏体及珠光体耐热钢都被统称作铁素体耐热钢; (2)发展奥氏体耐热钢。全球先进国家所研制推广以及普通采用新的耐热钢种有三大类:a.新型细晶强韧化铁素体耐热钢;b.新型细晶奥氏体耐热钢;c.高铬镍奥氏体钢。 2 高温材料的应用 在过热器以及再热器的用钢方面,不仅需要满足蠕变的强度,还必须满足蒸汽侧抗氧化的性能以及向火侧抗腐蚀与冲刷的性能。所有的铁素体钢几乎不能用在蒸汽温度高于565℃的过热器或者再热器中,这里使用奥氏体钢在需要耐高温的部件上。这里对几种高温材料进行详细描述。 2.1 T91/P91 T91具有良好的力学性能,其结构及性能具有较好的稳定性,焊接与工艺性能优良,具备较高的持久与抗氧化性。和TP304H作对比,T91的导热系数相对较高、热膨胀系数相对更低、持久强度中的等强温度相对较好以及等应力温度相对更高,并分别到达625℃及607℃。T91和T9钢作对比,T91的持久强度是

超临界锅炉运行技术

超临界锅炉运行技术 4. 超临界机组协调控制模式 (1)CCBF,机炉自动,机调负荷,炉调压力; 能充分利用锅炉蓄热,负荷响应快;主汽压力控制存在较大延迟,降低了主汽压稳定性。 (2)CCTF,机炉自动,炉调负荷,机调压力; 主汽压稳定性好,负荷响应慢。 (3)机炉协调; 机炉同时接受负荷和主汽压力指令,同步响应负荷和主汽压力的变化。 其中:(1)应用最广,(3)的调节器若匹配不当,机炉间容易引起震荡。 3.2.3 600MW超临界机组协调控制策略 1. 被控参数 (1)给水流量/蒸汽流量 因为给水系统和蒸汽系统是直接连通的,且由于超临界锅炉直流蓄热能力较小,给水流量和蒸汽流量比率的偏差过大将导致较大的汽压波动。 (2)煤水比 稳定运行工况时,煤水比必须维持不变,以保证过热器出口汽温为设计值。而在变动工况下,煤水比必须按一定规律改变,以便既充分利用锅炉蓄热能力,又按要求增减燃料,把锅炉热负荷调到与机组

新的负荷相适应的水平. (3)喷水流量/给水流量 超临界锅炉喷水仅能瞬时快速改变汽温.但不能始终维持汽温,因为过热受热面的长度和热焓都是不定的。为了保持通过改变喷水流量来校正汽温的能力,控制系统必须不断地把喷水流量和总给水流量之比恢复到设计值。 (4)送风量/给煤量(风煤比) 为了抑制NOx的产生,以及锅炉的经济、安全运行,需对各燃烧器的进风量进行控制,具体是通过各层燃烧器的二次风门和燃尽风门控制风量,每层风量根据负荷对应的风煤比来控制。 2 协调控制回路 超临界机组蓄热能力相对较小.锅炉跟随系统的局限性较大,对于锅炉和汽机的控制指令既考虑稳态偏差又要考虑动态偏差。为了在机组负荷变化时机炉同时响应,机组负荷指令作为前馈信号分别送到锅炉和汽机的主控系统,以便将过程控制变量维持在可接受的限度内。 汽轮机调节汽门直接控制功率,锅炉控制主汽压力(CCBF),给水流量由锅炉给水泵改变。功率指令直接发送到汽轮机调节汽门,使得功率响应较快。由于锅炉惯性大,负荷应变较慢.为防止汽机调门动作过大锅炉燃烧跟不上,设计了压力偏差拉回逻辑,当压力偏差过大时限制调门进一步动作,直到燃烧满足负荷需求。 在协调控制模式下,主汽压力偏差一直作为限制主汽调门响应负荷需

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况 一、超超临界的定义 水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。 超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。 结论:其实没有统一的定义,本质上超临界与超超临界无区别。 二、国外超超临界技术发展趋势 (一)超超临界机组的发展历史 超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo 电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。 世界上超超临界发电技术的发展过程一般划分为三个阶段: 第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968 年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。 结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。 第二阶段(上世纪80年代) 以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。 第三阶段(上世纪90年代开始) 迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。 三、各国超超临界发电技术情况

超临界600MW火电机组热力系统的火用分析

第30卷第32期中国电机工程学报V ol.30 No.32 Nov.15, 2010 8 2010年11月15日Proceedings of the CSEE ?2010 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2010) 32-0008-05 中图分类号:TK 212 文献标志码:A 学科分类号:470?20 超临界600 MW火电机组热力系统的火用分析 刘强,段远源 (清华大学热科学与动力工程教育部重点实验室,北京市海淀区 100084) Exergy Analysis for Thermal Power System of A 600 MW Supercritical Power Unit LIU Qiang, DUAN Yuanyuan (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Haidian district, Beijing 100084, China) ABSTRACT: The matrix equation for exergy balance of regenerative system was derived, and the mathematical model for exergy analysis of thermal power system was presented. Exergy losses and exergy efficiencies of the main components of a domestic N600-24.2/566/566 power unit were calculated by this model. The results indicate that the exergy efficiencies of low pressure heaters are lower than those of high pressure heaters, the exergy destructions in low pressure heaters are also lower. The exergy efficiency of the steam turbine is higher than relative internal efficiency, the exergy efficiencies of the high pressure turbine, intermediate pressure turbine and low pressure turbine are 93.20%, 96.18% and 89.61%, but the work of the low pressure turbine is the largest, so there is energy conservation potential for the low pressure turbine. The coefficient of exergy loss is found to be maximum in the boiler (49.47%) while much lower in condenser (1.232%). In addition, the calculated thermal efficiency of this power plant is 44.54% while the exergy efficiency of the power cycle is 43.52%. KEY WORDS: power unit; thermal power system; exergy analysis; energy conservation 摘要:提出了火电机组回热系统的火用平衡矩阵方程式,并构建了热力系统火用分析的数学模型。应用该模型,分析了国产某超临界N600–24.2/566/566机组热力系统主要部件的火用损失和火用效率。结果表明:高压加热器的火用效率高于低压加热器,但是低压加热器的火用损系数较小;除氧器的火用损系数最大;汽轮机的火用效率高于其相对内效率;高压缸、中压缸和低压缸的火用效率分别为93.20%,96.18%和89.61%,但是低压缸承担做功量最大,因此低压缸仍有一定的节能潜力;锅炉的火用损系数高达49.47%,而凝汽器的火用损系数只有1.232%,所以锅炉是节能的重点对象。此外该机组的全厂热效率为44.54%,而火用效率为43.52%。 关键词:火电机组;热力系统;火用分析;节能 0 引言 火力发电机组承担着我国约80%的发电量,是耗能和排放大户,因此准确而有效的节能理论将有助于火电机组的节能减排工作。火电机组热经济性的评价方法一般分为两类:基于热力学第一定律的热量法,如热平衡法、等效焓降法、矩阵法、循环函数法等,一般用于定量分析;基于热力学第二定律的火用分析法、熵分析法、热经济学法等,一般用于定性分析。目前,我国火电机组的热经济性分析普遍采用热量法,但节能不仅要重视量,还应注意节能潜力的挖掘以及能级匹配的改善,所以对火电机组进行火用分析可以有效评价能量利用的合理程度,科学地指导电厂节能工作。火用分析和热经济学的理论研究在我国从20世纪80年代开始发展[1-4],并得到了一定的应用[5-15],但是国内对超临界火电机组热力系统进行火用分析的工作仍较少,而目前超(超)临界600 MW及以上机组正相继投入运行,所以本文拟构建火电机组火用分析数学模型,并对某台超临界600 MW机组进行火用分析,为大型火电机组的节能提供理论依据。 1 火电机组热力系统的火用分析数学模型 1.1 火用损失和火用效率 火用损失的大小可以表明实际过程的不可逆程度,故其大小可以衡量热力过程的完善程度。但火用损失是一绝对量,无法比较不同工况火用的利用程度,因此常采用火用效率来评价热力过程或设备的热 基金项目:国家重点基础研究发展计划项目(973项目) (2009CB219805)。 Project Supported by National Basic Research Program of China (973 Program) (2009CB219805).

超临界大型火电机组安全控制技术示范文本

超临界大型火电机组安全控制技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

超临界大型火电机组安全控制技术示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 目前,国内装机容量已突破4亿千瓦,引进和建设低 煤耗、大容量的超临界大型火电机组可以提高我国发电厂 的经济性,同时也能满足节能、环保的要求,国内已投产 600 MW、800 MW、900 MW级超临界燃煤机组多台, 邹县电厂2×1000 MW超超临界燃煤机组立项在建。随着 超临界燃煤机组占国内装机容量的比重越来越大,其运行 情况将对电网安全产生很大影响。所以根据超临界大型火 电机组的特点,实施科学合理的安全控制监测,将对确保 电力安全生产发挥积极的作用。 1 超临界机组安全生产的特点 超临界大型火电机组蒸汽参数高(压力≥22.12 MPa、

温度≥540 ℃),和亚临界机组相比在运行过程中存在的问题有所不同。其主要问题有:①过热器进出口的部分管子过度磨损和水冷壁管、再热器管的泄漏,这些问题大多与燃料的含灰量和烟气流速有关;②汽机高压缸第一级叶片根部腐蚀,此种现象在机组投运6~8年后渐渐严重,蒸汽品质是主要的原因;③高压阀门的泄漏问题。 超临界大型火电机组的不可用率(包括强迫停炉、维修与计划停运)的影响因素是多方面的,超临界压力锅炉的不可用率约为汽轮机、发电机和电站辅机的3倍。水冷壁管泄漏是锅炉方面的主要问题,大部分是由于过热所致。管壁结垢和水冷壁中质量流量过低、管内紊流程度不够,使锅炉在高热负荷区发生核态沸腾所引起。造成上述问题的原因大多是锅炉水冷壁无法得到足够的冷却和缺少凝结水除盐设备或除盐设备不完善。水的品质对于超临界机组的可靠运行极为重要。

超超临界锅炉制造技术的研究

超超临界锅炉制造技术的研究 摘要:超超临界锅炉的材料以及结构有其自身的制造特点,要想能够使得超临 界锅炉的制造技术能够实现进一步的发展,就需要在有效掌握超临界锅炉制造工 艺特点的基础上,采取有效的方式来对超超临界锅炉制造技术进行改进,选取合 理的制造技术应用到超超临界锅炉的研制当中,从而使得超超临界锅炉的未来应 用范围更加的宽广。本文将对超超临界锅炉制造技术进行研究。 关键词:超超临界锅炉,螺旋管圈水冷壁,细晶粒不锈钢,集箱管座机械焊超超临界机组因其煤耗低,节约能源,我国已经把大幅度提高发电效率、加 速发展洁净煤技术的超超临界机组作为我国可持续发展、节约能源、保护环境的 重要措施。 1超超临界锅炉用钢 超超临界机组蒸汽压力和温度的提高对关键部件材料带来更高的要求,尤其 是材料的高温强度性能、抗高温腐蚀和氧化性能以及高温疲劳蠕变性能。超超临 界机组广泛采用各种低合金高强钢、耐热钢。如水冷壁采用具有优异的焊接性能 的T23和T24,联箱和蒸汽管道主要采用P91、P92、P122等马氏体高强钢,过热器、再热器主要采用P91马氏体高强钢及uper304H和TP347HFG奥氏体耐热钢。 2超超临界直流锅炉制造工艺方案 2.1 集箱制造工艺 超超临界锅炉集箱本体的材料与超临界、亚临界锅炉略有不同,主要体现在 过热器和再热器集箱选用了性能更好的 T P347H、P92 作为集箱本体材料。集箱管径较大、管壁较厚,特别是超长集箱给集箱制造、翻转、吊运及运输等均带来一 定的难度,另外,尤为关键的是所有管座与集箱连接的角焊缝均要求全焊透。根 据以上特点,我们采取了如下措施: (1)针对 TP347H、P92、P91 等钢的焊接难点,避免焊接返修,保证一次合格率,我们新研制了1 台集箱环缝对接的窄间隙自动焊机。此设备能实现不点固焊 装配、全自动氩弧焊打底及细丝窄间隙埋弧焊一次性焊妥,此技术在国内外尚无 先例,系自主创新成果。 (2)对于管径大于 108mm 的管座角焊缝,我们采用机械焊,用先进的工艺装 备保证产品质量。 (3)对于全焊透结构的小管座角焊缝,我们尽量采用自动内孔氩弧焊封底+ 手 工电弧焊焊妥工艺。对有些无法采用内孔氩弧焊设备的长管接头角焊缝,在选用 合理的焊接坡口的同时,我们采用独创的外壁自动氩弧焊打底设备焊接,保证根 部全焊透,然后用手工电弧焊焊妥。 (4)对于超长集箱的翻转、吊运及运输,除了添置必需的工艺装备之外,我们 还制定了一系列的吊运、运输工艺守则及注意事项,防止集箱碰伤、碰坏。 (5)针对 TP347H 不锈钢集箱的制造难点,我们设计制作了焊缝背面气体保护 防氧化工装,选用合理的焊接规范,控制层间温度,减少在敏化温度区域内的停 留时间,并通过焊后稳定化处理解决受焊接热循环影响出现的“贫铬区”间隙。 2.2 “三器”制造工艺 对于蛇形管的制造工艺,无论是超(超)临界机组还是亚临界机组均无明显区别,只是按锅炉容量的大小在管径、壁厚和外形尺寸上有所不同。超超临界锅炉的“三器”管排均为超长、超宽管排,且末级过热器和再热器采用 Super304H、TP347HFG 等细晶粒不锈钢,针对制造中的难点,我们采取如下措施:

超(超)临界锅炉的特点

超(超)临界锅炉的特点 一、引言 随着我国火力发电事业的快速发展和节能、环保要求的日趋严格,提高燃煤机组的容量与蒸汽参数,进一步降低煤耗是大势所趋。在这个基础上,节约一次能源,加强环境保护,减少有害气体的排放,已越来越受到国内外的高度重视。超超临界机组因其煤耗低,节约能源,我国已经把大幅度提高发电效率、加速发展洁净煤技术的超超临界机组作为我国可持续发展、节约能源、保护环境的重要措施。尽管在同等蒸汽参数情况下,联合循环的效率比蒸汽循环的效率高10%左右,但是,由于PF-BC和IGCC尚处于试验或示范阶段,在技术上还存在许多不完善之处,而超临界技术已十分成熟,超超临界机组也已批量投运,且积累了良好的运行经验,国外已有一套完整而成熟的设计、制造技术。因此,技术成熟的大容量超临界和超超临界机组将是我国清洁煤发电技术的主要发展方向,也是解决电力短缺、能源利用率低和环境污染严重等问题的最现实和最有效的途径。 超超临界压力锅炉的关键技术是多方面的,在材料的选择、水冷壁系统及其水动力安全性、受热面布置、再热系统汽温的调控等多方面均存在设计和制造上的高难技术。 二、超(超)临界锅炉的特点 超临界机组区别与普通机组主要有以下特点: 1、蒸汽参数的选择 机组的蒸汽参数是决定机组热经济性的重要因素。一般压力为16.6~31.0MPa、温度在535~600℃的范围内,压力每提高1MPa,机组的热效率上升0.18%~0.29%:新蒸汽温度或再热蒸汽温度每提高10℃,机组的热效率就提高0.25%~0.3%;因此提高蒸汽参数是提高机组热效率的重要途径。目前超超临界与超临界的划分界限尚无国际统一的标准,下表列举了一些发达国家的典型机组的参数[1]。 现在常规的超临界机组采用的蒸汽参数为24.1MPa、538℃/566℃。一般认为蒸汽压力大于25MPa,蒸汽温度高于580℃称为超超临界。研究分析[2]指出对600/600℃这一温度等级,当主汽压力自25MPa升高到28MPa,锅炉岛和汽机岛的钢耗量将分别增加3.5%和2%。此外主汽压力28MPa时,汽机低压缸末级叶片排汽湿度将达到10.7%,已接近采用一次再热的极限值。 有文章表明[3]我国今后重点发展的超临界机组的参数将为汽机进口参数24.2MPa/566℃/566℃,锅炉的出口参数则为25.4MPa/571℃/569℃;超超临界机组的参数为汽机进口参数26.25MPa/600℃600℃,锅炉出口的参数则为27.56MPa/605℃/603℃;机组容量将主要为600MW和1000MW两种。

锅炉本体说明书

华能长兴电厂2X660MW超超临界燃煤机组锅炉HG-1968/29.3-YM5锅炉 超超临界直流锅炉本体说明书 编号:F0310BT001B161 编写: 校对: 审核: 审定: 锅炉厂有限责任公司 二○一四年三月

目录 1.锅炉技术规 (1) 2.设计条件 (2) 2.1煤种 (2) 2.2点火助燃用油 (3) 2.3自然条件 (3) 2.4锅炉给水及蒸汽品质要求 (5) 2.5锅炉运行条件 (6) 3.锅炉特点 (6) 3.1技术特点 (8) 3.2结构特点 (9) 4.锅炉整体布置 (9) 4.1 炉膛及水冷壁 (10) 4.2 启动系统 (13) 4.3过热器系统 (17) 4.4 再热器 (18) 4.5 省煤器 (18) 4.6 蒸汽冷却间隔管和蒸汽冷却夹管 (19) 4.7 杂项管道 (19) 4.8 燃烧设备 (20) 4.9 空气预热器 (21) 4.10 吹灰系统和烟温探针 (21) 4.11 安全阀 (22) 4.12 热膨胀系统 (23) 4.13 炉顶密封和包覆框架 (24) 4.14 锅炉钢结构(冷结构) (25) 4.15 刚性梁 (28) 5.主蒸汽和再热蒸汽温度控制 (30) 5.1主蒸汽温度控制 (30) 5.2再热蒸汽温度控制 (32) 6.锅炉运行、维护、检修注意事项 (32)

6.1安装注意事项 (32) 6.2运行注意事项 (35) 6.3循环泵运行注意事项 (36) 附图01-01:锅炉总体布置图(纵剖视) (37) 附图01-02:锅炉总体布置图(前视图) (38) 附图01-03:锅炉总图布置图(顶视图) (39) 附图01-04:锅炉总图布置图(水平图) (40) 附图01-05:水冷壁流程图 (41) 附图01-06:过热器和分离器流程图 (42) 附图01-07:再热器流程图 (43) 附图01-08:启动系统流程图 (44) 附图01-09:热膨胀系统图一 (45) 附图01-10:热膨胀系统图二 (46) 附图01-11:调温挡板 (47) 附图01-12:流体冷却夹管 (48) 附图01-13:蒸汽冷却间隔管 (49) 附图01-14:立面框架的典型结构图(1) (50) 附图01-15:立面框架的典型结构图(2) (51) 附图10-16:柱接头典型结构图 (52) 附图10-17:柱、梁和垂直支撑及水平支撑的连接节点详图 (53) 附图01-18:EL13700平面图 (54) 附图01-19:EL86800平面图(锅炉受压部件支撑平面) (55) 附图01-20:导向装置 (56) 附图01-21:刚性梁导向装置 (57) 附图01-22:顶板布置图 (58) 附图01-23:极热态启动曲线 (59) 附图01-24:热态启动曲线 (60) 附图01-25:温态启动曲线 (61) 附图01-26:冷态启动曲线 (62)

超临界锅炉用钢

超临界、超超临界锅炉用钢 杨富1,李为民2,任永宁2 (1. 中国电力企业联合会,北京100761;2. 北京电力建设公司北京 100024) 摘要:提高火力发电厂效率的主要途径是提高蒸汽的参数即提高蒸汽的压力和温度,而提高蒸汽参数的关键有赖于金属材料的发展。从发展超临界、超超临界机组与发展新钢种的关系以及超临界、超超临界锅炉对钢材的要求,概述了火电锅炉用钢的发展历程以及部分新钢种的性能。 关键词:临界、超超临界;锅炉;材料 2020年全国装机容量将达到9.5亿kW,其中火电装机仍然占70%,即今后17年将投产4.0亿kW左右的火电机组。火电建设将主要是发展高效率高参数的超临界(SC)和超超临界(USC)火电机组。从目前世界火力发电技术水平看,提高火力发电厂效率的主要途径是提高蒸汽的参数,即提高蒸汽的压力和温度。发展超临界和超超临界火电机组,提高蒸汽的参数对于提高火力发电厂效率的作用是十分明显的。表1给出了蒸汽参数与火电厂效率、供电煤耗关系[1]。 表1 蒸汽参数与火电厂效率、供电煤耗关系 机组类型蒸汽压力/Mpa 蒸汽温度/℃电厂效率/%供电煤耗*/kW·h 中压机组 3.5 435 27 460 高压机组9.0 510 33 390 超高压机组13.0 535/535 35 360 亚临界机组17.0 540/540 38 324 超临界机组25.5 567/567 41 300 高温超临界机组25.0 600/600 44 278 超超临界机组30.0 600/600/600 48 256 高温超超临界机组30.0 700 57 215 超700℃机组超700 60 205

超临界火电机组

火力发电革命性变革 ——超临界(超超临界)机组运用 超临界(超超临界)是一个热力学概念。对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。同时这一状态下对应的饱和温度为374.15℃。超临界机组即指蒸汽压力达到超临界状态的发电机组。蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。 超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。现在全世界各国都非常重视超临界(超超临界)机组技术的发展。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。 超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。 超临界(超超临界)机组具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。

锅炉本体的设计和布置

第六章锅炉本体的设计和布置 (见329页) §6-1 锅炉本体布置 §6-2 主要设计参数的选择 §6-3 锅炉热力计算方法

基本要求: 1、掌握蒸汽参数和锅炉容量对锅炉本体布置的影响; 2、掌握燃料特性对锅炉本体布置的影响(重点); 3、了解锅炉本体布置的典型结构的特点; 4、掌握锅炉热力计算的方法(重点)。

§6-1 锅炉本体布置 一、锅炉本体布置的典型结构(332页图13-14) 锅炉本体布置采用的炉型,要根据燃料种类、燃烧方式、锅炉容量、循环方式和厂房布置条件来选择。 1、П型布置:应用最广泛,各种容量和各种燃料均可采用。 优点:高度较低,安装起吊方便;受热面易于布置成工质与烟气呈相互逆流;尾部烟道烟气向下流动,有利于吹灰;锅炉烟气出口在底层,送风机、引风机、除尘器等均布置在地面。 缺点:占地大;烟道转弯容易引起受热面局部磨损;锅炉 转弯烟室部分难以利用,当燃用发热值低的劣质燃料时,尾部对流受热面可能布置不下。

2、塔式布置 其特点是烟气一直向上流动,炉膛可呈正方形,四周布置膜式水冷壁直至炉膛上部,适用于褐煤、多灰分劣质烟煤。 优点:所有对流受热面均水平悬吊在炉膛上部,便于疏优点 水;烟气流速高,锅炉体积小,占地少;烟气不改变方向,对受热面冲刷均匀,磨损减轻。 缺点:锅炉很高,安装和检修困难;蒸汽管道长;将空气缺点 预热器和送、引风机放在顶部,加重锅炉负荷。 为了克服上述缺点,将全塔型与П型结合,形成半塔型布置。将空气预热器、除尘器和送引风机放到地面。

3、箱型布置 广泛用于中、大容量燃油、燃气锅炉。 优点:布置紧凑,除空气预热器以外的各个受热面部件都布置在一个箱型炉体中,外形尺寸小,构架简单、占地面积小。 缺点:锅炉较高,水平对流受热面支吊结构复杂;过热器辐射特性较差;安装检修不方便。 二、锅炉本体布置的影响因素 1. 蒸汽参数和锅炉容量 见表13-5,随着参数提高,蒸发吸热的比例下降,过热吸热的比例则大幅增加,而加热水的比例增加不多。这些变化将直接影响到参与这三部分吸热的省煤器、蒸发受热面和过热器(再热器)在锅炉内的布置。

超临界机组锅炉培训题库判断题

超临界机组锅炉培训题库判断题 第一章初级 1.后弯式叶片离心风机获得的风压最高。() 答案:答案:(×) 2.前弯式叶片离心风机获得风压较后弯式叶片高。() 答案:答案:(√) 3.轴流式风机流量大,风压低。() 答案:(√) 4.轴流式风机比离几式风机的体积相对要大。() 答案:(×) 5.轴流式风机的高效工况区比离心式高效风机高交工况区宽大。() 答案:(√) 6.轴流式风机的工作范围较宽阔。() 答案:(√) 7.锅炉各项热损失中,散热损失最大。() 答案:(×) 8.当油温突然降到凝固点时,油会立即凝固。() 答案:(×) 9.锅炉正常运行时可以停用除尘器。() 答案:(×) 10.输灰管、灰渣管、灰沟可以不加耐磨保护层。() 答案:答案:(×) 11.电流直接经过人体或不经过人体的触电伤害,叫电击。() 答案:× 12.油达到闪点温度时只闪燃一下,当移去火源量不能连续燃烧。()答案:√ 13.磨煤机的任务除将煤块磨成煤粉外,还利用热风对煤进行干燥。( ) 答案:(√)

14.煤成分中的氧是杂质。() 答案:(√) 15.碳是煤中发热量最高的物质。() 答案:(×) 16.对电厂锅炉而言,热损失最大的一项是机械不完全燃烧损失。() 答案:(×) 17.锅炉的支出热量有:烟气带走的热量、灰渣(飞灰)带走的热量、炉壁散热损失的热量和燃料由于不完全燃烧未能发出的热量。() 答案:(×) 18.不同液体在相同压力下沸点不同,但同一液体在不同压力下沸点也不同。( ) 答案:答案:(√) 19.液体在整个沸腾阶段,不吸热温度也不上升。() 答案:(×) 20.锅炉辅机联锁保护是一项热工保护。() 答案:(×) 21.电子计算机的运算基础是采用二进制数。() 答案:(√) 22.超过爆炸上限的油气和空气的混合气体既不会爆炸也不会燃烧。() 答案:(×) 23.锅炉散热损失与锅炉负荷有关,锅炉负荷越高,热损失越大,否则反之。() 答案:(×) 24.人体电阻值受多种因素影响而变化,但影响较大的情况是电极与皮肤接触的面积。( ) 答案:答案:(×) 25.电厂生产用水主要是为了维持热力循环系统的正常汽水循环所需要的补充水。()答案:答案:(×) 26.厂用电是指发电厂辅助设备、辅助车间的用电。不包括生产照明用电。() 答案:(×) 27.发电机的额定功率是指发电机输出有用功的能力。单位为千瓦或兆瓦。() 答案:(√) 28.发电机既发有功功率又发无功功率。所以通常说的发电机容量是指发电机的全功率。

超超临界机组技术交流2013年会

超超临界机组技术交流2013年会会议报道 一年一度的超超临界机组技术交流年会11月6-8日在天津召开。会议由中国动力工程学会主办、天津国投津能发电有限公司协办、中国电力科技网承办。34位科研院所专家、生产一线技术主管和200多位与会嘉宾交流、研讨。本着宁缺毋滥,好中选好的原则,专家对会前征集的近200篇论文进行审核,精选60篇出版论文集。 中国动力工程学会名誉理事长、原机械工业部副部长陆燕荪题词祝贺:“发挥中国动力工程学会学术优势,依托中国电力科技网站交流平台,凝聚冶金机械电力综合研发成果,推动超超临界机组健康有序发展,促进国家创新驱动战略全面落地,实现装备制造由大变强之中国梦——祝第七届超超临界机组技术交流2013年会圆满成功”。他还给会议提出了宝贵建议。 超超临界机组技术交流2013年会会场 中国动力工程学会原副理事长程钧培主持开幕式。天津国投津能发电有限公司教授级高级工程师郭启刚总经理致欢迎辞并发表“打造五位一体循环经济示范模式,创建高效节能生态环保绿色电站”主题演讲:“我谨代表天津国投津能发电有限公司向大会致以热烈地祝贺,并对出席会议的各位领导、专家和科技工作者表示热烈欢迎和衷心感谢!” 国投北疆发电厂是国家循环经济试点项目,规划建设6台1000MW超超临界发电机组和60万吨/日海水淡化装置,按照三期建设。一期工程建设

2台1000MW发电机组和20万吨/日海水淡化装置,分别于2009年9月24日和11月30日投产发电,首批10万吨/日海水淡化装置于2010年4月26日全部投产,后10万吨/日海水淡化装置已于近期投运。二期扩建工程2台1000MW发电机组和30万吨/日海水淡化装置,目前正在积极筹建。 北疆一期工程投产近4年来,各子项目运行良好,各项技术经济指标都达到了国内外先进水平。截至10月底,实现了工程开工以来2411天长周期安全生产纪录,累计完成发电量454.58亿千瓦时,各项能耗环保指标均达到或高于国家标准。国投北疆发电厂先后获得中国电力优质工程奖、国家循环经济示范项目、全国循环经济工作先进单位、全国五一劳动奖状等荣誉称号。获得2012年度全国火电一千兆瓦机组竞赛一等奖。 天津国投津能发电有限公司教授级高级工程师郭启刚总经理致欢迎辞 左:王峰;右:冯德明 天津国投津能发电有限公司工程师王峰发表“北疆电厂汽轮机优化运行

目前主要国内制造厂1000MW超超临界锅炉设备及特点

目前主要国内制造厂1000MW超超临界锅炉设备及特点

超超临界机组技术资料汇编锅炉专业第五章目前主要国内制造厂1000MW超超临界锅炉设备及特点 概述 我国电力工业以煤为主要燃料,以煤为主的发电格局在今后相当长的时期内不会改变。超临界机组在国际上已经是商业化成熟的发电技术,对于超临界机组,一般可以分为两个层次,一个是常规超临界机组(Conventional Supercritical),其中主汽压力一般为240bar左右,主汽和再热蒸汽温度为540-560℃,另一个是高效超临界机组(High Efficiency Supercritical Cycle),通常也称为超超临界机组(Ultra Supercritical)或者高参数超临界机组(Advanced Supercritical),其中主汽压力为280~300bar,主汽和再热蒸汽温度为580~600℃。 目前我国超超临界锅炉的主要设计生产厂家 241

超超临界机组技术资料汇编锅炉专业主要有:哈尔滨锅炉厂(简称HBC),其技术支持方为日本三菱重工业株式会社(MHI);东方锅炉厂(简称DBC),其技术支持方为日本巴布科克-日立公司(BHK);上海锅炉厂(简称SBWL)的技术支持方为美国阿尔斯通公司(API)。 哈尔滨锅炉厂选定三菱重工株式会社(MHI)作为技术支持方。MHI是全球著名的发电设备和重型机械制造公司之一,在开发超临界和超超临界技术方面走在世界的前列,到目前为止已投运的容量大于500MW的超临界和超超临界锅炉已达60台,其中采用螺旋管圈水冷壁的变压运行超临界锅炉为21台,采用新型的垂直管圈水冷壁的变压超临界锅炉和超超临界锅炉已投运12台。采用内螺纹管垂直管圈、变压运行的超超临界锅炉在技术上代表了当前高效超临界锅炉的最新水平。到2003年,MHI已生产了68台超临界锅炉和超 242

660MW超超临界锅炉技术特点及分析

2010年第2期(总第59期) 2010年4月 收稿日期:2010 02 01 第一作者简介:李亚峰,1974年生,男,山西长治人,1996年毕业于太原电力高等专科学校热能与动力工程专业,工程师。 工作研究 660M W 超超临界锅炉技术特点及分析 李亚峰, 薛青鸿 (国华陈家港发电有限公司,江苏 盐城 224631) 摘 要: 介绍了国华陈家港电厂660M W 超超临界锅炉水冷系统、启动系统、低NO x 燃烧器等的主要技术特点。指出,该型号锅炉在节能减排、环境保护等方面有显著的技术优越性。关键词: 超超临界锅炉;技术特点;系统 中图分类号: T K 229 文献标识码: A 文章编号: 1674 3997 (2010)02 0018 03 Analysis on Technical C haracteristics of 660MW Ultra Supercritical Boiler LI Ya feng,XU E Qing hong (GuoHua Chenjiagang Power Generation C O.,LTD.,YanC heng 224631,Jiangsu,Chi na) Abstract:T his paper analyzed 660M W ultr a supercritical boiler technical characteristics of Guohua Chengjiag ang pow er plant.T he unit showed a more significant technical super iority on energ y saving emission r eduction,and enviro nment friendly among ul tra supercritical units throug h analyzed t he technical characteristics of water cooling system,boot,low N ox Burner etc.Key words:ultra supercr itical boiler;technical character istics;system 0 引言 中国以火电为主的电力结构,决定了节能减排的重点是煤炭的清洁利用。大力发展大容量、高参数超超临界机组是中国可持续发展、节约能源、保护环境的重要措施之一。 国华陈家港电厂一期2台660MW 超超临界锅炉是上海锅炉厂有限公司在消化吸收ALST OM 公司超超临界锅炉设计制造技术的基础上,结合超超临界机组参数、锅炉燃煤的特点及用户的特殊要求自行设计的660MW 超超临界机组锅炉。笔者在介绍该型号锅炉承压部件、燃烧系统、启动调节等方面独特技术特点基础上,指出其在节能减排、提高能效方面的优越性和发展前景。 1 总体介绍 陈家港电厂2台660M W 超超临界锅炉采用的是超超临界参数变压运行螺旋管圈与垂直管屏直流炉结合、单炉膛、一次中间再热、四角切圆燃烧方式、平衡通风、 型露天布置,固态排渣,全钢架悬吊结构。额定工况及BM CR 工况主要参数见表1。 炉膛上部布置有分隔屏过热器和后屏过热器,炉膛折焰角上方布置了高温过热器,水平烟道布置了高温再热器,尾部烟道为并联双烟道,后烟井前烟道布置 有低温再热器、后烟道布置有低温过热器,在低温再热器和低温过热器管组下方布置有省煤器,省煤器的型式与常规机组一样。 表1 额定工况及BM CR 工况主要参数 名称单位额定工况 BM CR 工况 过热蒸汽流量t/h 1940 2037 过热蒸汽出口压力M Pa 26.0326.15过热蒸汽出口温度 605605再热蒸汽流量t/h 16291716再热蒸汽进口压力M Pa 5.84 6.16再热蒸汽进口温度 377386再热蒸汽出口压力M Pa 5.66 5.97再热蒸汽出口温度 603603给水温度 294 298 锅炉燃烧系统,按中速磨冷一次风直吹式制粉系统设计。24只直流式燃烧器分6层布置于炉膛下部四角,煤粉和空气从四角送入,在炉膛中呈切圆方式燃烧。 过热器汽温通过煤水比调节和三级喷水来控制。再热器汽温采用烟气挡板调温、燃烧器摆动和过量空气系数的变化调节,两级再热器之间连接管道上设置微量喷水。 2 技术特点及分析 2.1 省煤器及水冷系统 超超临界锅炉采用一级省煤器,并联布置在后烟井中,分别在低温再热器和低温过热器的下部。给水由锅炉左侧单路经过电动闸阀和止回阀后进入省煤器 18

相关文档
最新文档