超超临界火电机组四大管道选材分析

超超临界火电机组四大管道选材分析
超超临界火电机组四大管道选材分析

超超临界火电机组四大管道选材分析

申松林

华东电力设计院,上海市,200063

摘要:超超临界600MW及1000MW等级火电机组这几年在我国迅速发展,本文结合国内外参数相近火电机组四大管道材料的选择,介绍新材料的性能及应用状况,综合考虑电厂投资、运行、安全等诸多方面因素,说明四大管道选材的相关内容,供相似工程参考。

关键词:超超临界;四大管道;新材料

1前言

随着我国经济的稳定、快速发展,对能源需求不断增加,同时环保要求也不断提高。发展大容量高参数机组,特别是超超临界机组将是我国火力发电提高发电效率、节约一次能源、改善环境、降低发电成本的必然趋势。而这一发展与大量新型耐热合金钢材的开发与应用是分不开的。可以说,电力技术的发展在很大程度上取决于材料技术的发展。

本报告针对国内外超超临界机组四大管道材料的选择进行分析,供超超临界火电机组四大管道选材时参考。

2定义

2.1超超临界机组

对于火力发电机组,当机组作功介质蒸汽的工作压力大于水的临界状态点压力

(P c=22.115MPa)时,我们称之为超临界机组。目前常规的超临界机组蒸汽参数一般为

24.2MPa/538/566o C或24.2MPa/566/566o C。

所谓超超临界机组(Ultra Supercritical)是相对于常规超临界机组的蒸汽参数而言的,我国电力百科全书中称:通常把蒸汽压力高于27MPa的超临界机组称为超超临界机组;国际上普遍认为在常规超临界参数的基础上压力和温度再提升一个档次,也就是工作压力超过24.2MPa或者主蒸汽(或再热蒸汽)温度超过566o C,都属于超超临界机组的范畴。超超临界机组也称为高效超临界机组(High Efficiency Supercritical)。

目前国外超超临界机组参数为初压力24.1~31MPa、主蒸汽/再热蒸汽温度

580~600/580~610℃。国内正在建设的超超临界机组参数为初压力25~26.5MPa、主蒸汽/再热蒸汽温度600/600℃。

2.2四大管道

四大管道指主蒸汽管道、高温再热蒸汽管道(热段)、低温再热蒸汽管道(冷段)和高压给水管道。

3选材原则

目前国际上超超临界1000MW等级大容量机组的主蒸汽管道、高温再热蒸汽管道、高压给水管道大多采用双列式,管道管径的单列容量仅500MW、小于单列的600MW机组,而低

温再热蒸汽管道又采用焊接钢管。因此,四大管道的管径并不会对发展1000MW等级超超临界机组构成影响。

四大管道材料的选择主要还是取决于蒸汽参数。华能玉环电厂工程为国内第一个开始建设的超超临界机组,额定出力为1000MW,机组参数为26.25MPa/600/600℃,四大管道管道的设计参数、介质流量等详见表3-1。

表3-1四大管道设计参数表

序号管道名称设计压力

MPa(a)

设计温度

流量

t/h

1主蒸汽管道

半容量管27.66101476 2热再热蒸汽管道

半容量管7.2376081223 3冷再热蒸汽管道

主管7.2375152446

支管(半容量)7.2375151223 4主给水管道

主给水管道主管35.5297.72952

主给水管道半容量管35.5297.71476

3.1主蒸汽和高温再热蒸汽管道

对于大容量超超临界机组的主蒸汽和高温再热蒸汽管道,将比常规超临界机组面临更高压力和更高温度的考验。首先,管道材料的高温蠕变强度必须满足由于管道热膨胀而引起的热应力的要求。一般来说,适合于作为高温蒸汽管道的材料,其在工作温度下的105小时蠕变应力值应达到90~100MPa。同时,还要求管道材料的热膨胀系数比较小且导热率较大,从而能够降低管道内的热应力水平。对于以上要求,同时考虑到运行可靠性和经济因素,使主蒸汽和高温再热蒸汽管道的材料的选择范围很小。

3.2低温再热蒸汽管道

对于低温再热蒸汽管道,虽然主蒸汽压力提高,但是受到低压缸排汽湿度的限制,高压缸的排汽压力变化不大,因此其正常工作最大排汽温度也不会超过400℃。如果机组没有特殊要求,低温再热蒸汽管道可采用最高允许使用温度为427℃的A672B70CL32电熔焊接钢管。

但对于一些工程,由于系统有特殊要求,如外高桥电厂二期超临界2×900MW工程旁路阀有安全阀作用,同时根据Siemens的说明,其汽轮机高压缸排汽在某些状况会出现温度高达515℃,故低温再热蒸汽管道采用A691Cr1-1/4CL22电熔焊接钢管,以保证机组的安全长期运行。华能玉环电厂也因汽轮机有同样要求,低温再热蒸汽管道采用A691Cr1-1/4CL22电熔焊接钢管。

可见,对低温再热蒸汽管道,需要根据不同工程的具体情况确定其材料。但不管采用碳钢A672B70CL32还是低合金钢A691Cr1-1/4CL22,都不涉及新材料的应用。

3.3给水管道

对于给水管道,由于受到烟气露点的限制,空气预热器出口的排烟温度很难做到低于120℃,因此尽管超超临界机组的蒸汽参数提高得较多,给水温度仍将维持在300℃左右,而目前建设的超超临界机组给水管道压力只是略高600MW超临界机组,就目前国内外高压给水管道普遍采用的15NiCuMoNb5无缝钢管来说仍然适用,不涉及新材料的应用。

鉴于上述原因,本文将着重结合高温材料的发展历程及现状,对超超临界机组的主蒸汽管道和高温再热蒸汽管道材料的选择进行论述分析。

4耐高温钢材的发展

4.1珠光体钢

20世纪50年代,电站锅炉钢管大多采用珠光体低合金耐热钢,其含Cr≤3%,含Mo≤1%,其典型钢种及使用温度如下:

12Cr1MoV≤580℃

10CrMo910≤580℃

A335P22≤580℃

当时,当蒸汽温度超过580℃,则使用奥氏体耐热不锈钢TP304、TP347等。奥氏体不锈钢虽然高温蠕变强度较大,允许使用的温度也较高,但是其相对于的马氏体合金钢,则导热率低、热膨胀系数大,却又造成了高温蒸汽管道较高的热应力水平。

4.2铁素体/马氏体钢

4.2.1EM12钢

50年代末比利时Liege冶金研究中心研究了“超级9Cr”钢,其化学成分为9Cr-2Mo,并有V、Nb添加剂,材料牌号为EM12。1964年,法国电力公司批准EM12钢可用于620℃的过热器和再热器,代替过去使用的不锈钢。但是,由于该钢种是二元结构,冲击韧性差,后来未得到广泛使用。

4.2.2F12钢

60年代末,德国研究开发了12Cr钢,F12(X20CrMoV121)钢至1979年正式纳入DIN17175标准中(化学成分见表4-1),使用温度可达630~650℃。但其含碳量高,焊接性差。较后同一系列的钢种有瑞典的HT9和日本的HCM12。

4.2.3P91钢

1974年,美国能源部委托橡树岭国家实验室研究用于液体金属快中子增殖堆计划的钢材,开始改进9Cr1Mo钢,并进行了性能试验,在593℃/10万小时条件下的持久强度达到100MPa,韧性也较好。从技术和经济角度分析,这种钢比法国的EM12好(化学成分如表4-1)。1982年橡树岭国家实验室进行了对比试验,发现这种改进的9Cr-1Mo钢优于EM12和F12。1983年美国ASME认可了这种钢为T91、P91,即SA213-T91和SA335-P91。其中,SA213-T91为

小口径锅炉受热面管材。

1987年法国瓦鲁海克公司针对P91与F12和EM12的比较评估研究发表技术报告认为P91有明显优点,强调要从EM12转为使用P91钢。80年代末,德国也从F12转向使用T91、P91钢。

4.2.4P92、P122、E911钢

90年代初日本在大量推广P91钢的基础上发现当使用温度超过600℃时,P91钢不能满足长期安全运行的要求。另外调峰任务重的机组,管材的疲劳失效也是一个大问题。日本在开发新的大机组高参数机组用钢方面做了大量的试验研究工作,目前已生产出商品钢管P92(NF616)和P122(HCM12A)。1994年这两种钢也被纳入了ASME锅炉和压力容器规范,规范号分别为CASE2179和CASE2180。

P92钢是在P91钢的基础上加入1.5~2%的W,降低了Mo含量,从而大大增强了固溶强化的效果,具有更高的许用应力,使用温度则可达到620℃。

E911钢是一个欧洲牌号的钢种,其化学成分与P92相似,机械性能也基本接近。

P122是在德国牌号X20CrMoV121的基础上改进的12Cr钢,添加了2%W、0.07%Nb和1%Cu,固溶强化和析出强化的效果都有很大的增加,具有更高的热强性和耐腐蚀性。尤其是由于含C量的减少,使得焊接冷裂敏感性有了改善。

4.3新一代的NF12和镍基合金

新一代的NF12和镍基合金Alloy617两种材料根据现已出版的资料,105小时蠕变强度达到100MPa的温度分别达到了650℃和690℃,适用的最高蒸汽参数将分别达到:30.0MPa/625℃/640℃和30.0MPa/660℃/680℃左右。不过这两种材料目前正处在试验和开发的阶段,不能作为成熟材料而推广使用。

表4-1部分铁素体/马氏体钢的化学成分

5新型耐高温材料的应用

5.1国外

1)日本

日本在90年代大量推广使用P91、T91钢。在日本超超临界机组的高温高压的蒸汽管道中,绝大部分采用了这一钢种。最高应用的压力为川越电厂31.0MPa/566/566/566℃的超超临界机组;最高应用的温度则在原町电厂,蒸汽参数24.5MPa/600/600℃。在2000年投运的橘湾电厂1050MW/600/610℃的超超临界机组的锅炉过热器和再热器出口联箱上首次使用了P122钢。日本超超临界电厂高温材料具体应用情况见表5-1。

表5-1耐高温钢在日本电厂的应用日本除了在锅炉安装试验管段,没有采用P92作为主汽和再热汽热段管道,一个原因是开发P92的新日铁没有生产大口径无缝管的能力,而住友金属还没有开始商业生产P92钢。

发电所名

会社名

额定出力(MW)

主蒸汽压力(MPa)蒸汽温度(℃)运转开始(年月)主蒸汽管

原町1号东北电力100024.5566/5931997-07P91松浦2号电源开关100024.1593/5931997-07P91三隅1号中国电力100024.5600/6001998-07P91七尾大田2号北陆电力70024.1593/5931998-07P91原町2号东北电力100024.5600/6001998-07P91橘湾四国电力70024.1566/5932000-07P91橘湾火力1号电源开关105025600/6102000-07P91敦贺2号北陆电力70024.1593/5932000-10HCM12A 橘湾火力2号电源开关105025600/6102001-07HCM12A 碧南4号中部电力100024.1566/5932001-11P91新矶子1号电源开关60025600/6102002-04HCM12A 苫东厚真4号北海道电力70025600/6102002-06HCM12A 碧南5号中部电力100024.1566/5932002-11P91苓北2号九州电力70024.1593/5932003-07HCM12A 常陆那珂1号东京电力100024.5600/6002003-12HCM12A 广野5号东京电力70024.5600/6002004-07HCM12A 舞鹤1号

关西电力

900

24.5

595/595

2004-08

HCM12A

2)欧洲

欧洲的丹麦和德国的机组比日本的机组压力稍高,由于管道壁厚增加较多,因此较多的应用了E911钢,另外试验性的应用了P92钢。收集的资料中,在丹麦有两台580℃的机组主汽管道采用P91,欧洲认为P91不适合作为更高温度的主汽管道材料;P92在欧洲共有4台机组作为主汽管,其中一台机组主汽温度为580℃,共有二台超超临界机组采用E911作为主汽和再热汽管,其中一台温度为580℃,另一台正在建设的机组主汽温度600℃,再热汽温度625℃。表5-2列举了一些应用的电厂。

表5-2新型含W钢在欧洲电厂的应用

安装时间电厂名称材料牌号管道尺寸蒸汽参数

MPa/℃

Vestkraft#3P92ID240×3925/5601992 Nordjyllandsvaeket P92、P122ID160×4529/5821996 Schkopau#B E911ID550×247/5601996 Staudinger#1E911ID201×2221.3/5401996 Skaerbaek#3E911ID230×6029/5821996

GK Kiel P92ID480×28 5.3/5451997

26.5/580/6002002 Niederaussem K E911ID250×55(主汽)

ID510×38(热段)

从上述日本和欧洲超超临界机组应用情况来看,欧洲的超超临界机组较早的采用了P92、E911钢,而在日本的机组虽然温度普遍高于欧洲的机组,但其压力则要略低于欧洲的机组,目前也仅局限于P91和P122钢的应用。总的来说,P91、P92、P122、E911钢在超超临界机组中都还得到了的应用,积累了一定的运行性能方面的数据和经验。

5.2国内

由于国内超临界机组起步较晚,主力机型还是以300MW、600MW亚临界机组为主,有一定数量的机组仍然使用10CrMo910、P22等低合金耐热钢。例如平圩电厂亚临界600MW机组的主蒸汽管道选用了P22;绥中电厂引进的俄罗斯超临界800MW机组(P=26MPa、T=540℃),主蒸汽管道材料为15Cr1MoV。

近年来,P91钢的优良性能被我国的电力行业所认知,目前已作为亚临界600MW、超临界600MW、900MW机组主蒸汽管道、高温再热蒸汽管道的首选。它的焊接技术要求也已被我国电力设备和施工单位所掌握,并建立了一套完整的工艺控制方法。

从2003年起,国内第一个超超临界1000MW/600℃/600℃机组华能玉环电厂开始进行建设,根据目前工程进展的情况,四大管道材料已定货,其中在锅炉范围主蒸汽管道由日本三菱重工公司担任技术支持方,采用P122材料,BOP部分主蒸汽管道经过多材料方案招标,最终确定选用P92钢。经各方面专家综合技术、安全等因素,最后确定锅炉范围及BOP部分高温再热管道采用P91材料。

截至目前,还有邹县电厂四期、外高桥电厂三期、泰州电厂等1000MW超超临界机组正

在建设中,另外还有阚山600MW等超超临界机组也正在进行中。而这些工程都将面临主蒸汽/再热蒸汽管道材料的选择。

随着以上工程的投运,将对国内超超临界新材料的应用积累宝贵的经验。

6国内目前新型耐高温材料应用面对的问题

从以上可以看出,虽然供国内超超临界工程主蒸汽及热再热蒸汽管道可选择的材料较多,有P92、P122、E911等新材料,也包括应用已较多的P91材料,但由于目前我国各工程均在建设中,国外工程运行时间业不长,尚有许多问题需要现在及今后面对。

6.1材料选择问题

P92和P122由于目前的试验时间还没有达到10万小时,ASME规范中现在的数据是日本新日铁和住友公司分别根据各自短时间的蠕变断裂数据外推出来,分别为132MPa和128MPa,P91600℃工作温度下10万小时的持久强度为94MPa,E911为115MPa,照此计算1000MW 超超临界主蒸汽管道单位长度重量比约为P91:E911:P92:P122=100:92:61:66,另外考虑更高设计温度下各材料强度的变化趋势,在强度上P92和P122有较大的优势。然而,欧洲对日本采用P92和P122的数据外推的方法提出置疑,按照欧洲的外推,P92在600℃下10万小时的持久强度为115MPa,因此,这两种钢与E911比强度上仅仅略占优势,而且根据他们对P92较长时间的研究结果,P92、P122在长时间的运行中强度降低幅度比E911大。

如何根据各种材料尚不够丰富的应用而做出抉择,将是目前正在进行中工程无法绕过的一个难题。

6.2焊接问题

P91在国内已经得到长时间的应用,焊接上已经没有太大的技术问题。对P91焊接的经验可应用于P92,但所有新材料,包括P122及E911都需要考虑焊接工艺、技术培训等。另外,由于超超临界高温阀门在一段时间内,仍多会采用F91材料,故新材料与异种钢之间也需要考虑焊接工艺、技术培训等问题。

降低焊缝的脆性是个重要的技术问题,需要从焊材和工艺方面进行解决,W含量有一定影响,P92和P122比P91和E911需要更长的焊后热处理时间来保证焊缝韧性。焊接裂纹敏感性P92与E911接近,但作为12Cr钢的P122在焊接上会有较大的难度。焊缝的强度在短时间内与母材相当,但在长时间的运行中,在热影响区存在IV型裂纹倾向,强度降低30%,因此采用这四种钢在管道的长期安全运行上都存在一定的风险,需要在工程进行同时对焊接接头的长期性能进行研究,提出相应的监督和评估措施和手段,保证焊接接头的安全。

6.3运行中的组织稳定性

作为高Cr铁素体耐热钢,供货状态为回火,在高温运行过程中的主要组织结构的变化主要包括位错密度的降低、固溶W析出形成Laves相等,前者降低高温强度,固溶W的减少也降低高温强度,但析出的Laves相可适当弥补W的变化带来的强度影响,然而Laves相的析出会导致脆性的增加。在三种含W的耐热钢中,P122因为含有1.0%的Cu,会促进Laves相的析出和长大,在运行中的组织稳定性最差,E911和P92接近;现有的研究数据表明,运行10000小时后,P122的冲击韧性降低最明显,P92与E911也明显下降,P91冲击韧性变化最小。但缺乏更长时间的运行试验数据说明进一步的发展趋势。这需要超超临界工程相关各方在电厂运行中加强材料监督。

6.4高温蒸汽氧化与腐蚀性能

耐热钢的抗蒸汽氧化性能主要取决于Cr和Si的含量,P91、P92和E911含Cr都是9%,其氧化与腐蚀性能相近,P122含Cr量为12%,抗氧化腐蚀性能有所提高。在超超临界机组中,由于蒸汽温度的提高,蒸汽侧氧化和氧化层的剥落问题要比亚临界和超临界机组严重,国外的超超临界机组中有因为严重的蒸汽氧化问题被迫降低参数运行的例子,但问题主要在过热器和再热器,对于600℃下运行的主汽管道和再热汽热段管道,由于金属壁温的波动不频繁,氧化层剥落的可能性较小,运行一段时间后,氧化速率逐渐下降达到平衡,因此9%Cr钢估计可以满足抗蒸汽氧化的性能要求。但建议在工程设计时予以充分考虑。

6.5商务因素对材料选择的影响

随着这几年中国电力建设的飞速发展,进口材料价格变动非常大。同时考虑到近些年超超临界机组所用新材料主要在中国目前市场,国际上不同钢铁公司可能基于不同的出发点,对各工程新材料商务报价各不相同。虽然华能玉环电厂工程综合技术及商务因素,选择了P92,后续几个工程,也有可能做出不同的选择。

7综述

综上所述,四大管道是电厂系统的重要组成部分,管道材料的机械特性和高温性能将直接影响电厂机组的安全可靠性及今后运行的经济性。如果材料选择不当,将来可能造成降参数运行,影响电厂效益,严重者将会带来安全问题,导致更大的经济损失。

根据以上的分析,结合四大管道材料应用和发展的现状,就超超临界参数机组的四大管道材料选择,提出以下参考意见:

1)对于主蒸汽管道,P91材料已应用到最高限度温度,且管道较厚,将带来现场焊接困难,故不再适宜选用,可考虑从P92、P122、E911三种新材料中选用。P92材料使用时间较短,按目前标准执行长期使用是否会出现问题需要时间来考验;从使用业绩方面,P122材料相对较多,技术上相对安全,但由于该材料在现场焊接上较难把握,故实际初次应用也有风险;根据一些资料反映,E911材料近期价格较高,但考虑到影响商务的因素较多,对稍晚一些的工程也许会显现竞争力,可继续保留作为一个选择。综合以上多方面因素,建议目前进行的超超临界工程主蒸汽管道可按P92、P122、E911多种材料方案进行招标等工作。

2)对于高温再热蒸汽管道,同样可选择P92、P122、E911多种材料。考虑到超超临界机组采用P91钢有一定业绩,相对P92钢的强度数据问题,具有相对较小的风险。另外,由于高温再热蒸汽压力不高,超超临界机组采用P91管道壁厚适中,不会出现高强度材料薄壁管道的焊接难题。建议目前进行的超超临界工程除考虑P92、P122、E911等新材料以外,可考虑保留P91材料作为一个选择。

3)低温再热(冷段)蒸汽管道可采用A672B70CL32或A691Cr1-1/4CL22电熔焊钢管,根据工程具体要求进行选择。

4)高压给水管道可采用15NiCuMoNb5材料。

展望未来,虽然近期建设中的超超临界机组在新材料选择及应用方面面临许多难题,但伴随着各个方面的积极合作与交流,所作的选择将会是集众人智慧结晶的最安全、经济、优化选择。随着这些工程的建成投运,将为未来建设的更多、参数更高、容量更大的超超临界机组积累宝贵的经验。

参考文献:

[1][华能玉环电厂工程四大管道选材专题报告].上海:华东电力设计院,2004.

[2][Power Piping]ASME B31.1

[3][The T92/P92Book]Vallourec&Mannesman Tubes

[4][SUMITOMO Boiler Tubes&Pipe]SUMITOMO Metal Ind.,Ltd

[5][Properties of HCM12(12Cr-2W-0.4Mo-1Cu-V-Nb-B)Ferritic Steel Tubes and Pipe].SUMITOMO Metal Ind.,Ltd.

[6][国外超超临界锅炉用高温高压钢管材料特性及应用介绍]东方锅炉杨华春屠勇

[7][火力发电厂汽水管道设计技术规定]DL/T5054-1996

[8][火力发电厂汽水管道应力计算技术规定]SDGJ6-90

[9][The WB36Book(15NiCuMoNb5)]Vallourec&Mannesman Tubes

作者简介:

申松林(1972年-),毕业于上海交通大学电厂热能动力工程专业,1994年进入电力设计院工作,从事多项电厂工程设计,现为华东电力设计院高级工程师,任华能玉环电厂4×1000MW超超临界机组工程汽机专业主设人,任外高桥电厂三期2×1000MW超超临界机组工程及泰州电厂2×1000MW超超临界机组工程汽机专业主管科长。

我国超超临界发电机组容量和蒸汽参数选择探讨

我国超超临界发电机组容量和蒸汽参数选择探讨 国电热工研究院(西安 710032)李续军安敏善 [摘要]根据各国超超临界发电机组容量和蒸汽参数的演绎及发展历史的回顾,对一个超超临界发电机组的热力系统的不同蒸汽参数下的机组热效率进行了计算,并对目前超超临界机组的主要用钢进行了介绍和分析,提出了我国超超临界发电机组机组容量和蒸汽参数的选择方案。 [主题词]超超临界机组容量蒸汽参数 0.前言 从历史发展的过程来看,蒸汽动力装置的发展和进步就一直是沿着提高参数的方向前进的。提高蒸汽参数并与发展大容量机组相结合是提高常规火电厂效率及降低单位容量造价最有效的途径[11。根据我国的能源资源状况和电力技术发展的水平,发展高效、节能、环保的超超临界火力发电机组则势在必行。为此,国家有关部委已经制定了超超临界火力发电机组的研发计划和示范工程的试点。 1.国外超超临界发电机组发展历史和研发计划 1.1 世界主要发达国家超超临界机组的发展概况[11 [21 [31 前苏联限于燃料成本与奥氏体钢价格之间的关系,苏联的超临界机组蒸汽参数大多为常规超临界参数,选用24.12MPa、545/545℃。俄罗斯目前正在开发二次中间再热机组,今后计划研制功率为800~1 000MW,参数为31.5MPa、650/650℃的汽轮机,同时将研制单机功率等级为1600MW的汽轮机。 日本1989年日本投运了世界上第一台采用超超临界参数的川越电厂1号机组,该机组为中部电力公司设计制造的700MW机组,燃液化天然气,主蒸汽压力为31MPa,主蒸汽温度和再热蒸汽温度为566/566/566℃,机组热效率为41.9%。 日本在通过吸收美国技术,成功发展超临界技术的基础上,进一步自主开发超超临界机组。日本投运的超超临界机组蒸汽参数逐步由566℃/566℃提高到566/593℃、600/600℃,蒸汽压力则保持24~25MPa,容量为1000MW为多。 以三菱、东芝、日立等公司为代表的制造业,将发展超超临界汽轮机参数的计划分为三个阶段,第一阶段24.5MPa、600/600℃已完成。第二阶段计划采用31.4MPa、593/593/593℃参数。第三阶段则采用更高的34.5MPa、649/593/593℃的蒸汽参数。 美国美国是世界上发展超超临界压力火电机组最早的国家之一。 美国于1957年在俄亥俄州费洛(Philo)电厂投产了世界上第一台试验性的高参数超临界压力机组。机组容量为125MW,蒸汽参数为31MPa、蒸汽温度为621/566/566℃,二次中间再热。由B&W公司制造。 1959年,艾迪斯顿电厂又投运了一台325MW,34.4MPa((350kgf/cm2),蒸汽温度为650/566/566℃,二次中间再热机组,热耗为8630kJ/(kw·h), 该机组同时打破了当时发电机组最高出力、最高压力、最高温度和最高效率4项纪录。该机组后来将参数降为32.4MPa,610/560/560℃运行。 美国电力研究院(EPRl)从1986年起就一直致力于开发32 MPa、593/593/593℃带中间负荷的燃煤火电机组。 德国德国也是发展超超临界技术最早的国家,但其单机容量较小。1956年参数为29.3MPa、600℃(无再热)的117MW超超临界机组投运。德国近年来很重视发展超超临界机组,目前最具有代表性的超临界机组是1992年投运的斯道丁格电站5号机组,该机组容量

超超临界火电机组燃烧控制系统设计

, 毕业论文(设计)题目:超超临界火电机组燃烧控制系统设计 姓名林逸君 学号201100170220 学院控制科学与工程学院 专业测控技术与仪器 年级 2011级 指导教师刘红波 2015年 5 月 10 日

目录 摘要 (3) ABSTRACT (4) 第一章绪论 (5) 1.1课题背景及意义 (5) 1.2 超超临界火电机组控制技术应用现状 (5) 1.3 毕业设计主要内容 (5) 第二章超超临界火电机组燃烧控制系统概述 (6) 2.1 机组工艺流程简述 (6) 2.2 机组燃烧过程控制系统任务 (7) 2.3 机组燃烧过程控制系统组成与特点 (8) 第三章超超临界火电机组燃烧控制方案设计 (9) 3.1常规控制方案 (9) 3.2改进控制方案 (10) 第四章控制方案仿真验证 (10) 4.1 MATLAB简介 (11) 4.2 控制方案的Simulink仿真验证............................... 错误!未定义书签。结论. (15) 致谢 (16) 参考文献 (17) 附录 附录1 Controller design for a 1000 MWultra super critical once-through boiler power plant 附录2 文献翻译

摘要 随着科学技术的进步,传统电厂的工作方式正在发生着革新,超超临界电厂得到了越来越广泛的应用。相比于传统电厂,超超临界电厂主要区别在于提高了锅炉内的工质,一般为水的压力,来提高电厂的发电效率。本文通过对电厂燃烧过程控制系统的改进来减少电厂控制变量之间的相互干扰,从而进一步提高电厂的发电效率。首先,根据电厂的工作原理分析出电厂各控制变量与各被控量之间的相互关系,建立电厂的简化数学模型。之后,根据各变量之间的相互作用关系采取PID增益控制、解耦等方式提出改进的控制方案。然后,根据从网上搜集到的超超临界电厂在实际工况下所采集到的数据完成数学模型的数据输入工作。最后,通过MATLAB下的Simulink工具箱对数学模型进行仿真实验,得出电厂输出量的波形图,通过对比研究改进后的控制方案的实际运行成果。 关键词:超超临界电厂, 燃烧过程控制系统, 数学模型, MATLAB, Simulink仿真

管道应力分析基础知识

管道应力分析基础知识 2009-04-09 13:55 1. 进行应力分析的目的是 1) 使管道应力在规范的许用范围内; 2) 使设备管口载荷符合制造商的要求或公认的标准; 3) 计算出作用在管道支吊架上的荷载; 4) 解决管道动力学问题; 5) 帮助配管优化设计。 2. 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 1) 静力分析包括: (l)压力荷载和持续荷载作用下的一次应力计算――防止塑性变形破坏; (2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算――防止疲劳破坏; (3)管道对设备作用力的计算――防止作用力太大,保证设备正常运行; (4)管道支吊架的受力计算――为支吊架设计提供依据; (5)管道上法兰的受力计算――防止法兰泄漏; (6)管系位移计算――防止管道碰撞和支吊点位移过大。 2) 动力分析包括: (l)管道自振频率分析――防止管道系统共振; (2)管道强迫振动响应分析――控制管道振动及应力; (3)往复压缩机气柱频率分析――防止气柱共振; (4)往复压缩机压力脉动分析――控制压力脉动值。 3. 管道应力分析的方法 管道应力分析的方法有:目测法、图表法、公式法、和计算机分析方法。选用什

么分析方法,应根据管道输送的介质、管道操作温度、操作压力、公称直径和所连接的设备类型等设计条件确定。 4. 对管系进行分析计算 1) 建立计算模型(编节点号),进行计算机应力分析时,管道轴测图上需要提供给计算机软件数据的部位和需要计算机软件输出数据的部位称作节点: (1)管道端点 (2)管道约束点、支撑点、给定位移点 (3)管道方向改变点、分支点 (4)管径、壁厚改变点 (5)存在条件变化点(温度、压力变化处) (6)定义边界条件(约束和附加位移) (7)管道材料改变处(包括刚度改变处,如刚性元件) (8)定义节点的荷载条件(保温材料重量、附加力、风载、雪载等) (9)需了解分析结果处(如跨距较长的跨中心点) (10) 动力分析需增设点 2) 初步计算(输入数据符合要求即可进行计算) (1) 利用计算机推荐工况(用CASWARII计算,集中荷载、均布荷载特别加入) (2) 弹簧可由程序自动选取 (3) 计算结果分析 (4) 查看一次应力、二次应力的核算结果 (5) 查看冷态、热态位移 (6) 查看机器设备受力 (7) 查看支吊架受力(垂直荷载、水平荷载) (8) 查看弹簧表

超临界大型火电机组安全控制技术

I If 编号:SM-ZD-71283 超临界大型火电机组安全 控制技术 Through the p rocess agreeme nt to achieve a uni fied action p olicy for differe nt people, so as to coord in ate acti on, reduce bli ndn ess, and make the work orderly. 编制: 审核: 批准: 本文档下载后可任意修改

超临界大型火电机组安全控制技术 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 目前,国内装机容量已突破 4亿千瓦,引进和建设低煤 耗、大容量的超临界大型火电机组可以提高我国发电厂的经 济性,同时也能满足节能、环保的要求,国内已投产600 MW 、 800 MW 、900 MW 级超临界燃煤机组多台,邹县电厂 2 X 1000 MW 超超临界燃煤机组立项在建。随着超临界燃煤机 组占国内装机容量的比重越来越大,其运行情况将对电网安 全产生很大影响。所以根据超临界大型火电机组的特点,实 施科学合理的安全控制监测,将对确保电力安全生产发挥积 极的作用。 1超临界机组安全生产的特点 温度》540 C),和亚临界机组相比在运行过程中存 题有所不同。其主要问题有:①过热器进出口的部分管子过 度磨损和水冷壁管、再热器管的泄漏,这些问题大多与燃料 的含灰量和烟气流速有关;②汽机高压缸第一级叶片根部腐 蚀,此种现象在机组投运 6?8年后渐渐严重,蒸汽品质是 主要的原因;③高压阀门的泄漏问题。 超临界大型火电机组的不可用率(包括强迫停炉、维修 与计划停运)的影响因素是多方面的,超临界压力锅炉的不 超临界大型火电机组蒸汽参数高(压力》 22.12 MPa 、 在的问

超临界600MW火电机组热力系统的火用分析

第30卷第32期中国电机工程学报V ol.30 No.32 Nov.15, 2010 8 2010年11月15日Proceedings of the CSEE ?2010 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2010) 32-0008-05 中图分类号:TK 212 文献标志码:A 学科分类号:470?20 超临界600 MW火电机组热力系统的火用分析 刘强,段远源 (清华大学热科学与动力工程教育部重点实验室,北京市海淀区 100084) Exergy Analysis for Thermal Power System of A 600 MW Supercritical Power Unit LIU Qiang, DUAN Yuanyuan (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Haidian district, Beijing 100084, China) ABSTRACT: The matrix equation for exergy balance of regenerative system was derived, and the mathematical model for exergy analysis of thermal power system was presented. Exergy losses and exergy efficiencies of the main components of a domestic N600-24.2/566/566 power unit were calculated by this model. The results indicate that the exergy efficiencies of low pressure heaters are lower than those of high pressure heaters, the exergy destructions in low pressure heaters are also lower. The exergy efficiency of the steam turbine is higher than relative internal efficiency, the exergy efficiencies of the high pressure turbine, intermediate pressure turbine and low pressure turbine are 93.20%, 96.18% and 89.61%, but the work of the low pressure turbine is the largest, so there is energy conservation potential for the low pressure turbine. The coefficient of exergy loss is found to be maximum in the boiler (49.47%) while much lower in condenser (1.232%). In addition, the calculated thermal efficiency of this power plant is 44.54% while the exergy efficiency of the power cycle is 43.52%. KEY WORDS: power unit; thermal power system; exergy analysis; energy conservation 摘要:提出了火电机组回热系统的火用平衡矩阵方程式,并构建了热力系统火用分析的数学模型。应用该模型,分析了国产某超临界N600–24.2/566/566机组热力系统主要部件的火用损失和火用效率。结果表明:高压加热器的火用效率高于低压加热器,但是低压加热器的火用损系数较小;除氧器的火用损系数最大;汽轮机的火用效率高于其相对内效率;高压缸、中压缸和低压缸的火用效率分别为93.20%,96.18%和89.61%,但是低压缸承担做功量最大,因此低压缸仍有一定的节能潜力;锅炉的火用损系数高达49.47%,而凝汽器的火用损系数只有1.232%,所以锅炉是节能的重点对象。此外该机组的全厂热效率为44.54%,而火用效率为43.52%。 关键词:火电机组;热力系统;火用分析;节能 0 引言 火力发电机组承担着我国约80%的发电量,是耗能和排放大户,因此准确而有效的节能理论将有助于火电机组的节能减排工作。火电机组热经济性的评价方法一般分为两类:基于热力学第一定律的热量法,如热平衡法、等效焓降法、矩阵法、循环函数法等,一般用于定量分析;基于热力学第二定律的火用分析法、熵分析法、热经济学法等,一般用于定性分析。目前,我国火电机组的热经济性分析普遍采用热量法,但节能不仅要重视量,还应注意节能潜力的挖掘以及能级匹配的改善,所以对火电机组进行火用分析可以有效评价能量利用的合理程度,科学地指导电厂节能工作。火用分析和热经济学的理论研究在我国从20世纪80年代开始发展[1-4],并得到了一定的应用[5-15],但是国内对超临界火电机组热力系统进行火用分析的工作仍较少,而目前超(超)临界600 MW及以上机组正相继投入运行,所以本文拟构建火电机组火用分析数学模型,并对某台超临界600 MW机组进行火用分析,为大型火电机组的节能提供理论依据。 1 火电机组热力系统的火用分析数学模型 1.1 火用损失和火用效率 火用损失的大小可以表明实际过程的不可逆程度,故其大小可以衡量热力过程的完善程度。但火用损失是一绝对量,无法比较不同工况火用的利用程度,因此常采用火用效率来评价热力过程或设备的热 基金项目:国家重点基础研究发展计划项目(973项目) (2009CB219805)。 Project Supported by National Basic Research Program of China (973 Program) (2009CB219805).

四大管道基础知识

火电厂超超临界机组和超临界机组指的是锅炉内工质的压力。锅炉内的工质都是水,水的临界压力是: ^C ;在这个压力和温度时,水和蒸汽的密度是相同的,就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31 MPa被称为超超临界。 超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率要提高%,一年就可节约6000吨优质煤。未来火电建设将主要是发展高效率高参数的超临界(SC)和超超临界(USC)火电机组,它们在发达国家已得到广泛的研究和应用。 600MW就是说电厂一台机组每小时可以发电60万千瓦/小时。但是这是在这台机组满负荷发电的情况下。600MW也是指这台机组发电机的额定功率。 四大管道是主蒸汽管道,高温再热蒸汽管道,低温再热蒸汽管道,高压给水管道。四大管道为:主汽、给水、再热热段、再热冷段。抽汽管道是辅助管道。是汽机高压缸到高压加热器之间的连接管。 工厂化: 四大管道工厂化加工是施工单位的保证施工质量和工程进度,减少浪费的措施,值得给予极大关注。 进行招标的注意事项: 1、实行邀请招标,选用有资质的厂家不少于3家进行招标。 2、分品种招标,按照设计院图纸分出不同品种的大约数量请厂家报出分项单价。 3、要求厂家按设计院图纸加工。 4、要求厂家提供少量备用材料。 5、主蒸汽管道必须酸洗合格。 6、做堵盖板防止杂物进入,进行妥善包装,防止碰伤。 选厂家: 1、选用电力系统、大型电力建设单位定点管道管件厂,有这些单位的证明文件。 2、有经过ISO质量认证体系认证证书。执行国家标准。 3、有业绩,特别是大型电厂和国外电厂的业绩。 4、工厂考察,有技术人员、质检人员、设备、厂房、和有资金或融资能力。 5、能及时交货。

《燃煤电厂四大管道设计选用导则》

企业标准 Q/CPI ××—20×× 代替Q/CPI ××—20××燃煤电厂四大管道设计选用导则 20××—××—××发布 20××—××—××实施中国电力投资集团公司发布

目录 前言 (1) 1范围 (2) 2规范性引用文件 (2) 3定义与术语 (3) 4符号、代号和缩略语 (4) 5设计参数 (4) 6管道材质规格选型 (4) 附录A(资料性附录)四大管道特性数据 (8) 附录B(规范性附录)火力发电厂推荐四大管道材质和规格系列 (11)

前言 随着火力发电技术的不断发展,中国电力投资集团公司(以下简称集团公司)新建火力发电机组已经从300MW、600MW管道发展机组亚临界参数发展到600MW超临界、600MW超超临界、1000MW超超临界参数,四大管道材质和规格系列也随着不断变化,新的材料、新的管道规格设计选型不断出现。通过对四大管道的材质和规格系列进行统一,可以充分发挥集团公司集中打捆招标采购的优势,并为项目间四大管道调剂使用创造条件,也可使前期项目剩余的管道能够在后期的电厂建设中得到利用,从而有利于减低项目工程造价和节省建设成本。 集团公司曾于2004年4月、2007年3月、2008年3月和2009年5月四次主持召开了在建工程四大管道设计协调会,形成并不断完善了集团公司四大管道材质和规格系列。并在上述四次会议成果的基础上编制了《中国电力投资集团公司火力发电机组四大管道设计选用指导意见》。随着新的机型和设计参数不断出现,新材料的运用和使用经验的不断积累,各种类型机组四大管道材质和规格系列将根据需要进一步完善。 本导则由集团公司火电部组织编制,是集团公司企业技术标准系列之一 本导则由集团火电部提出。 本导则由集团火电部起草。 本导则由集团火电部归口。 本导则主要起草人:×××。 本导则所代替标准的历次版本发布情况:

我国百万千瓦火电机组一览

我国百万千瓦火电机组一览 截至2011年底,我国已建成投产的百万千瓦级超超临界火电机组达到38台。平均供电煤耗为290克/千瓦时。 目前已建成投产的百万千瓦级超超临界火电机组见下表: 序号企业数量 1 华能玉环电厂 4 2 华能汕头海门电厂 2 3 华能金陵电厂 1 4 华能沁北电厂 2 5 国电泰州电厂 2 6 国电北仑电厂 2 7 国电谏壁电厂 2 8 国华绥中电厂 2 9 国华粤电台山电厂 1 10 国华宁海电厂 2 11 华电国际邹县发电厂 2 12 华电宁夏灵武电厂 2 13 中电投漕泾电厂 2 14 中电投平顶山发电分公司 2 15 华润徐州彭城发电厂 2 16 申能外高桥发电公司 2 17 国投天津北疆电厂 2 18 浙能嘉兴电厂 1 1 19 皖能铜陵电厂 20 广东惠州平海发电厂 2 合计38 目前中国在建的百万千瓦火电机组为66台,具体如下: ·大唐广东三百门电厂 位于广东省潮州市饶平县东南部的柘林镇大埕湾畔,规划装机容量为2×60万千瓦、 6×100万千瓦燃煤发电机组。整个项目投产后,年发电量将达到72亿千瓦时。 ·大唐克什克腾电厂(空冷) 位于内蒙古自治区赤峰市克什克腾旗三义乡和浩来呼热乡境内,总装机容量200万千瓦。其所发电力直接送入京津唐电网,未来将形成煤、电、路一体化发展格局。 ·大唐山西定襄电厂(空冷) 位于山西省忻州市定襄县东王村,建设规模为200万千瓦。电厂所发电力电量拟全部送入京津唐电网。 ·大唐山东东营电厂 位于山东省东营市河口区临港工业园之内,建设规模为4×100万千瓦,一期工程建设2

台机组。 ·大唐浙江乌沙山电厂 位于浙江省宁波市象山县西周镇东北约2.5公里的乌沙山西侧的山前平原上。该项目为二期工程,建设2台100万千瓦机组,同步配套日产10万吨海水淡化项目。 ·大唐江西抚州电厂 位于江西省抚州市临川区,规划建设4×100万千瓦燃煤发电机组。该项目为一期工程,建设2台100万千瓦机组。 ·国电安徽铜陵电厂 位于安徽省铜陵市东北铜陵县东联乡境内,一期工程2×60万千瓦,已投产发电,二期工程2×100万千瓦。该电厂是中国国电集团公司在安徽投资兴建的首个电源点。 ·国电山东博兴电厂 位于山东省滨州市博兴县境内,建设2×100万千瓦发电机组。近期规划4×100万千瓦发电机组,远景规划8×100万千瓦发电机组。该项目是滨州市第一个大型公用发电厂,靠近山东省中部负荷中心,将成为山东电网500千伏北通道的重要电源支撑点。 ·国电湖北汉川电厂 位于湖北省武汉市西面,一、二期总装机容量4× 30万千瓦火电机组,三期工程2×100万千瓦。处于湖北电网鄂东负荷中心,是湖北省境内重要的电源支撑点。 ·国电广西钦州电厂 位于广西壮族自治区钦州市南部的钦州港经济开发区鹰岭作业区钦州电厂的二期工程场地内,建设2×100万千瓦燃煤发电机组。将成为广西乃至西南地区最大的火电基地之一,可为南方电网“西电东送”主网架提供电源支撑。 ·华电宁夏灵武电厂(空冷) 位于宁夏回族自治区银川市灵武境内的宁东能源化工基地,煤炭资源丰富,是典型的坑口电厂。该项目是灵武电厂三期工程,建设2台100万千瓦空冷火电机组,建成后将是世界上首个100万千瓦空冷机组,同时也是国内最大的、装机规模520万千瓦的空冷发电厂,是宁夏区域“西电东送”的重要电源支撑点。 ·华电宁夏灵武电厂 是灵武电厂二期工程,建设2台100万千瓦火电机组。 ·华电安徽芜湖电厂 位于长江南岸长三角经济带边缘、安徽省东南部的芜湖市境内。规划装机容量332万千瓦,一期工程建设2×66万千瓦机组,二期建设2×100万千瓦机组,建成后将成为华东地区特大型骨干电厂。 ·华电江苏句容电厂 位于江苏省镇江市境内句容市下蜀镇桥头农场,规划容量4×100万千瓦机组,一期建设2台100万千瓦机组。该电厂为苏南区域性电厂,电力将主要送苏锡地区。 ·华能江苏金陵电厂 位于江苏省南京市栖霞经济开发区,一期2×39万千瓦燃气——蒸汽联合循环发电机组已建成投产,二期工程建设2×100万千瓦燃煤发电机组。 ·华能河南沁北电厂 位于河南省济源市五龙口镇境内,规划装机容量440万千瓦。一、二期工程4×60万千瓦机组已投运,三期工程2×100万千瓦。该电厂紧靠晋东南和晋南煤炭基地,位于华中、华北、西北电网的交汇处。 ·华能广东海门电厂 位于广东省汕头市潮阳区海门镇洪洞村,规划建设6×100万千瓦燃煤机组,首期建设4

南昌发电厂科学治理锅炉四管

南昌发电厂科学治理锅 炉四管 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

南昌发电厂科学治理锅炉“四管”火电厂锅炉“四管”的突发性爆破事故历来被视为影响安全生产的难治之症。近年来,江西南昌发电厂工程技术人员将此作为重点攻关课题,以科技手段着力查究该顽症的“病灶”,对症下药,取得明显效果,锅炉“四管”的爆破事故率两年为零,产生出良好的经济效益。 锅炉“四管”(省煤器管、水冷壁管、过热器管、再热器管)犹如人体内纵横交错的动脉血管。锅炉在长期运行期间,管外受到高温烟气的长期摩擦,管内承受高压冲击以及煤焦结块等因素影响,容易引发突发性炉管爆破事故,致使发电机组的安全经济运行受到困扰。南昌发电厂在90年代初,曾吃过锅炉“四管”频频爆破的不少苦头,两台主力机组几乎在每个月内都有此类事故的发生。据统计资料显示,该厂10号机组曾在一年内仅“四管”爆破而被迫停炉抢修多达20次左右,以每停、升一次机组所消耗助燃油30吨计,一年经济受损就达10万元。 针对这一顽症,该厂专门成立以总工室、生技科和锅炉专业工程技术人员为骨干的防磨防爆整治小组,着手实施攻关计划,以科技手段和技术措施对其予以综合整治。他们抓住锅炉“四管”爆破停炉或机组调峰停运等机会,钻进炉内察看“四管”爆破的“病灶”,收集第一手资料。采用金属检测、割管取样等技术措施,对现场资料作反复细致的科学分析,并建立了“四管”金属跟踪监督卡,从中查找出诸如煤质变化偏离

设计值、灰分超标、机组调峰造成负荷变动频繁、风量调整不当、焊接工艺质量差等不良症状。在此基础上,该厂制定了相应的技改方案,利用机组大修之际,先后对两台锅炉原后隔省煤器下集箱布置不当进行了下移改造,减轻了烟气对低温再热器弯管处磨损。与此同时,从强化管理手段入手,该厂制订了《锅炉“四管”防磨防爆考核条例》,严格规定对已检测发现变形腐蚀严重,管壁厚度不符合运行要求的予以及时更换。同时,采用高新技术材料,对易磨损部位采取加装护磨套等,从而大大提高了锅炉“四管”的耐磨性能。此外,在检修工艺和操作方式上也对职工的技术素质进行了严格培训和规范,推广采用了氩弧焊焊接工艺,焊口无损探伤,完善监控设施等一系列手段,使锅炉“四管”寿命预测形成科学管理的有效机制。据近两年的统计资料显示:该厂再也未发生过因锅炉“四管”突发性爆破而迫使机组停运的事故,连续实现安全运行755天,取得了安全效益双丰收。

超临界火电机组

火力发电革命性变革 ——超临界(超超临界)机组运用 超临界(超超临界)是一个热力学概念。对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。同时这一状态下对应的饱和温度为374.15℃。超临界机组即指蒸汽压力达到超临界状态的发电机组。蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。 超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。现在全世界各国都非常重视超临界(超超临界)机组技术的发展。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。 超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。 超临界(超超临界)机组具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。

超临界和超超临界发电机组

Latest Developments in the World ′s Wind Power Industry Luo Chengxian (Former SINOPEC Center of Information ,Beijing 100011) [Abstract]In recent years ,renewable energy source-based power generation ,particularly wind power ,has been growing rapidly.Pushed by some wind power foregoer countries ,significant progress has been made in the de -velopment of large-capacity wind turbine power generating sets with single-generator capacity having quickly broken through the key level of 1MW.10MW wind turbine power generating sets are expected to enter the market soon.The development of larger-capacity generators has enhanced the economic viability and competi -tiveness of wind power.The utilization rate of wind turbines will rise to 28%by 2015from the current about 25%and the investment cost will drop considerably.Under GWEC ′s high-growth scenario ,the investment cost will fall to 1093Euro/kW by 2030from 1350Euro/kW in 2009.Given the intermittent and stochastic nature of wind ,power storage technology is an effective approach to introducing renewable energy on a large scale.Japan and many American and European countries have invested in the research and development of power storage technology.A recent IEA research note shows that use in combination with heat and power cogenera -tion technology ,which focuses on heat supply ,can greatly expand the scale of use of renewable energy sources.Smart grids will be the fundamental approach to resolving the problems relating to the large -scale grid integration of wind power and power transmission.Smart grid technology will greatly enhance the overall utilization efficiency of the power system and can effectively reduce the fossil fuel consumption of power plants.China has made some progress in developing smart grids although there are still many problems yet to be resolved.The renewable energy -derived power purchasing policies enacted by countries around the globe have promoted the development of the global wind power industry.Germany ′s wind power purchasing policies can be used by China for reference. [Keywords]wind power generation ;larger generator ;equipment utilization rate ;investment cost ;power storage technology ;smart grid ;wind power purchasing policy ·39· 第5期罗承先.世界促进风电产业发展最新动向·能源知识· 超临界和超超临界发电机组 火电厂超临界和超超临界机组指的是锅炉内工质的压力。锅炉内的工质都是水,水的临界压力是22.115MPa ,温度为347.15℃。在这个压力和温度时,水和蒸汽的密度是相同的,这就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31MPa 则称为超超临界。 超临界机组具有无可比拟的经济性,单台机组发电热效率最高可达50%,每千瓦时煤耗最低仅为255g(丹麦BWE 公司),较亚临界压力机组(最低约327g 左右)煤耗低;同时采用低氧化氮技术,在燃烧过程中减少65%的氮氧化合物及其他有害物质,且脱硫率超98%,可实现节能降耗、环保的目的。超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率还要高1.2%,一年就可节约6000t 优质煤。未来火电建设将主要发展高效率、高参数的超临界(SC)和超超临界(USC)火电机组。我国已成功掌握先进的超超临界火力发电技术,并为百万千瓦超超临界机组产业化创造了条件。目前一批百万千瓦超超临界机组项目正在建设中。(供稿舟丹)

火电厂四大管道选材

2×1000MW超超临界燃煤机组四大管道(主蒸汽管道、热再热蒸汽管道、高压旁路管道、低压旁路管道、高压给水管道、给水再循环管道以及高旁减温水管道,以下简称四大管道)的设计参数及管道规格如下: 1.内径管 内径管的有关参数见表11-3: 表11-3内径管的有关参数

2 外径管 外径管的有关参数见表11-4: 表11-4外径管的有关参数序 号 名称 管道规格 mmxmm 设计压 力 (MPa.g) 温度 ( C) 管道材质 公称外径 (mm) 公称壁厚 (mm) 1 高压给水主管Ф610×65 36 302 15NiCuMoN b5 610 65 2 汽动泵出口管(阀 前) Ф457×55 39 180 15NiCuMoN b5 457 55 3 汽动泵出口管(阀 后) Ф457×50 36 302 15NiCuMoN b5 457 50 4 电动泵出口管(阀 前) Ф323.9× 40 39 180 15NiCuMoN b5 323.9 40 5 电动泵出口管(阀 后) Ф323.9× 36 36 302 15NiCuMoN b5 323.9 36 6 汽泵给水再循环管 Ф219.1× 28. 39 180 15NiCuMoN b5 219.1 28 7 汽泵再循环(阀后) Ф273.1× 31.75 39 180 15NiCuMoN b5 273 31.75 8 电泵给水再循环管 Ф168.3× 22.2 39 180 15NiCuMoN b5 168.3 22.2 9 电泵再循环(阀后) Ф219.1× 28. 39 180 15NiCuMoN b5 219.1 28 10 高压旁路减温水 Ф168.3× 22.2 36 180 15NiCuMoN b5 168.3 22.2

亚临界电站锅炉四大管道支吊架检查调整技术要求

亚临界燃煤锅炉四大管道支吊架检查调整项目技术条件书 1 总则 1.1 本技术条件书的使用范围,适用于****公司#*-*炉四大管道支吊架检查调整项目,它包括项目的工程范围及检查调整的技术要求。 1.2 本技术条件书提出的是最低限度的技术要求。 1.3 施工(技术)资质要求:具有国家质量检验检疫总局颁发的《中华人民共和国特种设备检验检测机构核准证》(综合检验机构甲类)。 1.4 在签订合同之后,招标方保留对本技术条件书提出补充要求和修改的权力,投标方予以配合。如提出修改,具体项目和条件由双方商定。 1.5 业绩要求:投标人近五年至少从事过3台套300MW机组及以上机组锅炉汽、水管道及四大管道支吊架检查、调整和金属监督检验工作经验。 1.6 本技术条件书所使用的标准如与投标方所执行的标准发生矛盾时,按较高标准执行。 1.7 投标方必须提供真实的符合本技术条件书的已运行业绩,弄虚作假中标也可依法废标。 2 项目范围和工期 2.1 项目工程范围 我公司#*-*锅炉为哈尔滨锅炉厂生产的型号为HG-1025/18.2-WM10亚临界一次中间再热自然循环汽包炉,采用单炉膛Π型布置,水平低温过热器,低温再热器和省煤器布置在后烟道,再热汽温采用尾部烟气挡板调节。汽轮机为东方汽轮机厂生产的型号为N320-16.7/537/537-4亚临界一次中间再热、单轴、高中压合缸、双缸双排汽、凝汽式汽轮机,共28级叶轮,第1级为调节级,其余27级为压力级,具有8段不调整抽汽。#*-*锅炉为东锅生产的型号为DG1900/25.4-Ⅱ1型超临界参数变压直流本生型锅炉,一次再热,单炉膛,尾部双烟道结构,采用平行挡板调节再热汽温,固态排渣,全钢构架,全悬吊结构,平衡通风,露天布置。汽轮机为上海汽轮机厂生产的型号为N600-24.2/566/566超临界、单轴、三缸四排汽、一次中间再热、凝汽式汽轮机,具有冲动式调节级和反动式压力级的混合形式,共48级叶轮,其中高压缸1+11级,中压缸8级,低压缸2×2×7级,有8段不调整抽汽。 #*-*机组四大管道、抽汽管道有部分支吊架存在过载、失载和严重锈蚀等,需进行全面检查、应力核算和调整 2.2 工程接口和分界点

管道应力分析和计算

管道应力分析和计算

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2管道的柔性分析与计算 2.1管道的柔性 2.2管道的热膨胀补偿 2.3管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算

3 管道的应力验算 3.1管道的设计参数 3.2钢材的许用应力 3.3管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程(2)ASME B 31.1-2004动力管道 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或顾客有要求时,采用B 31.1进行管道应力验算。 1.3 管道应力分析方法 管道应力分析方法分为静力分析和动力分析。 对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和B31.1规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。 对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。 1.4 管道荷载

锅炉四管爆破

浅谈电厂锅炉“四管”泄漏、尾部漏风和堵灰的原因及防治对策 罗云柱(宜宾发电总厂) 125.71.27.27 2006-11-22 00:00:03.0 摘要:锅炉“四管”指省煤器管、水冷壁管、过热器管和再热器管,一旦泄漏,将造成巨大经济损失。尾部受热面漏风和堵灰可能严重降低锅炉出力,降低经济性。本文总结了宜宾发电总厂锅炉“四管”泄漏、尾部漏风和堵灰的原因和处理对策。 关键词:锅炉“四管” 泄漏漏风堵灰原因对策 0 引言 锅炉“四管”工作环境恶劣,一旦泄漏,巨大损失。同时,尾部漏风和堵灰也不容忽视。正确处理这些问题,有利于提高火电厂安全经济性。 1 析“四管”泄漏原因 “四管”泄漏原因一般分为拉裂、过热、焊接质量、磨损、管材原始缺陷、腐蚀、吹损等七大类。宜宾发电总厂“四管”泄漏的主要原因是拉裂、过热、焊接质量、磨损、腐蚀。 1.1 拉裂 炉侧包墙过热器联箱、低温过热器入口联箱、低温省煤器联箱管插座与支管焊缝,原设计均为插入式焊接,在管插座内壁留下环状应力集中部位,这些部位对交变热应力适应能力差,热敏感性强,随着设备逐渐老化,容易拉裂。在启、停炉或调峰过程中,负荷变化速度快,受热面膨胀收缩不畅,会引起更多拉裂或微小隐患。 侧包墙过热器与侧墙水冷壁鳍片焊缝处拉裂泄漏。这是由于两者内部介质温差较大,两者膨胀量差异较大,鳍片产生较大内应力,鳍片焊缝被拉裂;二是受热面管屏膨胀不畅,管插座与联箱连接处比较薄弱,此处角焊缝被拉裂。 由于电力紧缺,调度部门要求尽可能缩短“四管”泄漏抢修时间,停炉后被迫快速冷却,“四管”性能严重

下降,当时未表现出来,但已留下隐患。 1.2 过热 过热是受热面温度超过该金属许用温度,其显微组织发生了变化,出现珠光体球化、石墨化和热脆性等,其许用应力大大降低。这时,管子在高温高压作用下,容易产生塑性变形和蠕变而爆管。 炉膛出口左右烟温偏差一般达30~50℃,最高达80~100℃,已造成全大屏和后屏过热器一定程度结焦,管子容易超温,缩短寿命或直接损坏。烟温和烟气流量偏差大的原因:一是运行人员缺乏先进的调整手段,火焰中心偏向某一侧,该侧烟温和烟气量都偏大;二是经常低负荷调峰运行,烟温随烟速下降而降低,造成低温空气预热器积灰严重,积灰少的一侧烟气量偏大,烟温偏高。历次停炉检查,甲、乙侧积灰程度差别很大。 炉的屏式过热器局部超温已出现4~5级球化。究其原因:一是大量使用严重偏离设计煤种的小窑煤,燃烬时间增加,屏式过热器处烟温明显增高,屏过长期严重挂焦,造成管子过热;二是两炉原先均为有渣位炉底,均改为无渣位炉底,喷燃器标高随炉底升高而提升了350mm,缩短了炉膛燃烧高度和水冷壁吸热高度,屏过烟温升高,造成管子过热。 炉屏式过热器大弯外弧向火面发生爆漏,爆口长120mm,最宽处30mm,最小壁厚4.1 mm,最大胀粗5%,减薄和胀粗不明显,呈粗糙脆性断口,内、外壁氧化皮较厚,分别呈黑色、棕红色。爆口形状符合长时过热爆管特征。 1.3 焊接质量 焊口缺陷包括未熔合、未焊透、气孔、砂眼、夹渣、裂纹、严重咬边等,致使焊口成为薄弱部位而爆管。 #3炉低温省煤器全抽管排大修,采用全氩弧焊,但运行5个月,甲、乙侧管插座与支管焊口各有一道仍然泄漏。焊缝探伤虽合格,但无法对沿着管子径向的缺陷长度做出评判,容易对那些细长的、几乎达到贯穿性的气孔缺陷做出合格的评定。 电厂锅炉发生过多次焊口泄漏。究其原因:一是管内外介质腐蚀促使气孔缺陷扩展到表面,形成穿孔;二是焊口夹渣,酸洗后夹渣被酸液溶解;三是锅炉虽未酸洗,但运行时间长,焊缝夹渣被炉水溶蚀。

相关文档
最新文档