最新北邮电磁场与电磁波演示实验

最新北邮电磁场与电磁波演示实验
最新北邮电磁场与电磁波演示实验

频谱特性测量演示实验

1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz

2.ESPI 测试接收机的RF输入端口

最大射频信号: +30dbm,最大直流:50v

3.是否直观的观测到电磁波的存在?(回答是/否)

4.演示实验可以测到的空间信号有哪些,频段分别为:

广播:531K~1602KHz

GSM900:上行:890~915 MHz 下行:935~960 MHz

GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz

WCDMA:上行:1920~1980MHz 下行:2110~2170MHz

CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz

TD-SCDMA:2010~2025MHz

5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视?

模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。

数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。

6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图:

GSM900上行:

GSM900下行:

CDMA下行:

3G下行:

7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请

分别说明,并指出其频率)

可以

该频谱仪能检测的频谱范围为9KHz—3GHz

所以,能够观察到:WIFI:2.4G

电磁炉:20KHz—30KHz

蓝牙:2.4G

网络参量测量演示实验

1矢量网络分析仪所测频段:300KHz—3GHz

2端口最大射频信号: 10DBM

3矢量网络分析仪为何要校准:

首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。

4默认校准和用户校准的区别:

默认校准通过网络分析仪的套包的一系列校准标准来完成,对系统误差进行校准;用户校准时校准标准由用户制定,由用户定义的标准来完成,用于对参考面等进行精确校准。

5使用矢量网络分析仪的注意事项:

1、检查电源:

分析仪加电前,必须确认供电电源插座的保护地线已经可靠接地;

2、供电电源要求:

为防止或减少由于多台设备通过电源产生的相互干扰,特别是大功率设备产生的尖峰脉冲干扰可能造成分析仪硬件的毁坏,最好用220V交流稳压电源为分析仪供电;

3、电源线的选择:

使用随机携带的电源线,更换电源线时,最好使用同类型的电源线;

4、静电防护:

A)在配有接地、导电桌垫的工作台上进行测试;

B)接触器件、附件和进行测试连接时,佩戴防静电手腕带,将手腕带与桌垫相连接,桌垫和地之间串联1MΩ电阻;

C)在具有导电地面的区域工作时佩戴防静电脚腕带,即使不能确定地面的导电性能,也最好佩戴防静电脚腕带;

D)清洁检查静电敏感器件、仪器测试端口或进行连接前,使自己接一下地,可以通过抓住已经接地的仪器测试端口或测试电缆连接器的外壳来实现;

E)将电缆连接到仪器的测试端口或静电敏感器件之前,一定要使电缆的中心道题首先接地,可以通过以下步骤来实现:

1)在电缆的一端连上短路器使电缆的中心导体和外导体短路;

2)当佩戴防静电腕带时,抓紧电缆连接器的外壳;

3)连好电缆的另一端,然后去掉短路器。

6用户二端口校准的方法:

(1)将探头的输入输出短接;

(2)按cal键,则屏幕右边有显示;

(3)按F1键,则可见显示屏幕右边第二栏由default变为measuring后变为c r e a t e d;

(4)按F6 键,则完成校准,此时可看幅频特性增益值为0db左右。

注意事项:

(1)每次调整参数,都应对网络分析仪进行重新校准,如不校准,会造成测量结果错误,读不同频率处增益或其他值时要先按marker键;

(2)当然,如没有对网络分析仪设置进行过改变,下次可不用复位,但仍需校准。

呼吸系统

急性上呼吸道感染

一、概述

急性上呼吸道感染,简称“上感”,俗称“感冒”,是小儿最常见的疾病。主要侵犯鼻、鼻咽部和咽部,以病毒(流感病毒、副流感病毒、腺病毒及呼吸道合胞病毒)感染者多见,约占原发感染的90%,细菌占一、0%左右,其中部分为病毒感染的基础上继发细菌感染。肺炎支原体亦可引起感染。上感是小儿时期最常见的疾病,其发病率占儿科疾病的首位,占急性上呼吸道疾病的50%以上,幼

儿每人每年可发病数次,一年四季均可发生。婴幼儿上感易向邻近组织扩散,在部分患儿可引起并发症而迁延不愈。

二、诊断标准

1、一般类型上感的诊断依据

⑴轻症上感有鼻塞、流涕、打喷嚏、干咳,可有发热,亦可有咽部不适或咽痛,咽充血,扁桃体肿大。多见于年长儿。

⑵重症上感多见于婴幼儿。多急骤起病,突然高热达39~40℃或更高,发冷、头痛、全身乏力、精神萎靡、食欲不振、睡眠不安、咳嗽频繁。婴幼儿常伴呕吐、腹泻。热重时,部分患儿可出现惊撅、腹痛等。体检可见咽部充血,扁桃体肿大,颌下淋巴结肿大及触痛,肺部呼吸音正常。系肠道病毒所致者,常伴不同形态的皮疹。

2、两种特殊类型上感的诊断依据

⑴疱疹性咽峡炎好发于夏秋季,急性起病,突起高热、咽痛、流涎、厌食、呕吐等。查体除咽部充血外,突出表现在咽腭弓、悬雍垂、软腭或扁桃体上可见2~4mm大小的疱疹,周围有红晕,疱疹破溃后形成小溃疡。病程一、周左右。

⑵咽结合膜热常发于春夏季节,突起高热、咽痛、眼部刺痛,一侧或两侧滤泡性眼结合膜炎。颈部、耳后淋巴结肿大。有时伴有胃肠道症状。病程一、~2周。凡具有上述表现之一者,排除急性传染病早期、流行性感冒、疱疹性口腔炎等,可诊断为相应类型上感。

3、区别病毒与细菌感染病毒感染时,血白细胞计数正常或降低,淋巴细胞正常或相对增加;细菌感染时,白细胞计数及中性粒细胞大多增高,并常有血C反应蛋白(CRP)升高。咽拭子做细菌培养可阳性。

三、鉴别诊断

⑴流行性感冒系流感病毒,副流感病毒所致,有明显流行病史,全身症状重。

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

北邮2016电磁场与电磁波实验报告

电磁场与电磁波实验报告 题目:校园无线信号场强特性的研究 姓名班级学号序号

目录 一、实验目的 (2) 二、实验内容 (2) 三、实验原理 (5) 四、实验步骤 (5) 1、实验对象选取 (5) 2、数据采集 (5) 五、实验数据 (2) 1、原始数据录入 (7) 2、数据处理流程 (7) 六、实验结果与分析 (8) 1、主楼周边电磁场信号强度分析 8 2、主楼室内不同楼层楼道信号强度分析 11 七、问题分析与解决 (15) 1、Matlab 仿真问题研究与解决 (23) 2、场强分布的研究 (23)

3、模型拟合........................................................ . (24) 八、分工安排及心得体会 (25) 附录I:原始数据 (26) 附录II:源代码 (30) 一.实验目的 1.掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗 的概念; 2.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 3.研究建筑物穿透损耗与建筑材料的关系。 4.掌握在移动环境下阴影衰落的概念以及正确测试方法。二.实验内容 利用DS1131场强仪和拉杆天线,实地测量信号场强。

1.研究具体现实环境下阴影衰落分布规律,以及具体的分布参数 如何; 2.研究在校园内电波传播规律与现有模型的吻合程度,测试值与 模型预测值的预测误差如何; 3.研究建筑物穿透损耗的变化规律 三.实验原理 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接收者,只有处在发射信号覆盖的区域内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。因此,基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区大小的因素主要有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑物的穿透损耗、同播、同频干扰。 【阴影衰落】 阴影衰落是电磁波在空间传播时受到地形起伏、高达建筑物群的阻挡,在这些障碍物后面会产生电磁场的阴影,造成场强中值的变化,从而引起信号衰减。阴影衰落的信号电平起伏是相对缓慢的,又称为慢衰落,其特点是衰落与无线电传播地形和地物的分布、高度有关。在无线信道里,造成慢衰落的最主要原因是建筑物或其他物体对电波的遮挡。在测量过程中,不同测量位置遇到的建筑物遮挡情况不同,

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波习题及答案

. 1 麦克斯韦方程组的微分形式 是:.D H J t ???=+?u v u u v u v ,B E t ???=-?u v u v ,0B ?=u v g ,D ρ?=u v g 2静电场的基本方程积分形式为: 0C E dl =? u v u u v g ? S D ds ρ =?u v u u v g ? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 3.00n S n n n S e e e e J ρ??=??=???=???=?D B E H r r r r r r r r r 4线性且各向同性媒质的本构关系方程是: 4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=u v u v 5电流连续性方程的微分形式为: 5. J t ρ??=- ?r g 6电位满足的泊松方程为 2ρ?ε?=- ; 在两种完纯介质分界面上电位满足的边界 。 12??= 1212n n εεεε??=?? 7应用镜像法和其它间接方法解静态场边值问题的理 论依据是: 唯一性定理。 8.电场强度E ?的单位是V/m ,电位移D ? 的单位是C/m2 。 9.静电场的两个基本方程的微分形式为 0E ??= ρ?=g D ; 10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A u v ,并令 B A =??u v u v 的依据是( 0B ?=u v g ) 2. “某处的电位0=?,则该处的电场强度0=E ? ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln( 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω=r r 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-?r r r 其振幅值为:3 04510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S u u v u u v g ?S d q =?得2 4q D r π= 24D e e u u v v v r r q D r π== 空间的电场分布2 04D E e u u v u u v v r q r επε== 导体球的电位 2 0044E l E r e r u u v u u v v u u v g g g r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε==

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

北邮2015电磁场与电磁波期末试题,感谢电子院17级fx学长

北京邮电大学2014—2015学年第 2 学期 《电磁场与电磁波》期末考试试题(A 卷) 一、 (10分,每空1分) 填空题 1. 设J 为电流密度矢量,则(',',')x y z ??=J 。 2. 描述了电磁场的变化规律,以及场与源的关系。 3. 根据麦克斯韦方程组,时变电场 旋 散,电场线可以闭合,也可以不闭合;时变磁场 旋 散,磁感线总是闭合的。(注:可选择填写“有”或者“无”) 4. 分离变量法可应用于直角坐标、圆柱坐标、球坐标等坐标系下。同一个问题,在不同的坐标系里求解会导致一般解的形式不同,但其解是 。 5. 在相对介电常数为4,相对磁导率为1的理想介质中,电磁波的波阻抗为 。 6. 平面波()() sin 2cos z m y m E t kx E t kx ωω=-+-E e e v v v 的传播方向为: ;其极化形式为: 。 答案: 1. 0; 2. 麦克斯韦方程组; 3. 有,有,有,无; 4. 唯一的; 5. 60π 377/2Ω或者 6. x 方向传播,右旋椭圆极化波; 二、(14分)如图1所示,一半径为R 的导体球上带有电量为Q 的电荷,在距离球心D (D > R )处有一点电荷q ,求: (1)导体球外空间的电位分布; (2)导体球对点电荷q 的力。 q (,) p r θ A

图1 题二图 解:(1)导体电位不为零,球外任一点P (到球心O 距离为r )的电位?可分解为一个电位为V 的导体产生的电位?1,以及电位为零的导体的感应电荷q ′与点电荷q 共同产生的电位?2。? = ?1+?2。q ′与可用镜像电荷代替,电位?1由放在球心的-q ′与Q 产生。 利用球面镜像得 2 ',R R q q d D D =-=…………………………3分 1200102 00102 ,4π4π4π4π4π4πQ q q q r r r Q q q q r r r ??εεε?εεε''-==+ ''-=++ ……………………5分 因此,导体球外任一点的电位为 42 221/2 2 1/2 021(4π(2cos )(2cos )DQ Rq qR q R R Dr r D rD D r r D D ?εθθ+= -+ +-+- …………………………8分 导体球的电位为 004πDQ Rq RD ?ε+= ……… …………………10分 (2)点电荷q 所受到的力为'Q q -和'q 对点电荷q 的力,即 ''322222222 00(2) [][]4π()4π()Q q q q q R q R D f Q D D d D D D R εε--=+=+-- …………………………14分 三、(14分)相对磁导率为r 1μ=的理想介质中传播电场瞬时值为 :8(,)30)cos[3π10π()]x z r t t x =+?-E e V/m 。试求:

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波例题详解

电磁场与电磁波例题详解

————————————————————————————————作者:————————————————————————————————日期:

第1章 矢量分析 例1.1 求标量场z y x -+=2)(φ通过点M (1, 0, 1)的等值面方程。 解:点M 的坐标是1,0,1000===z y x ,则该点的标量场值为 0)(0200=-+=z y x φ。其等值面方程为 : 0)(2=-+=z y x φ 或 2)(y x z += 例1.2 求矢量场222zy a y x a xy a A z y x ++=的矢量线方程。 解: 矢量线应满足的微分方程为 : z y dz y x dy xy dx 222== 从而有 ???????==z y dz xy dx y x dy xy dx 2222 解之即得矢量方程???=-=2 2 21c y x x c z ,c 1和c 2是积分常数。 例1.3 求函数xyz z xy -+=22?在点(1,1,2)处沿方向角 3 ,4 ,3 π γπ βπ α= = = 的方向导数。 解:由于 1) 2,1,1(2) 2,1,1(-=-=??==M M yz y x ?, 02) 2,1,1() 2,1,1(=-=??==M M xz xy y ?, 32) 2,1,1() 2,1,1(=-=??==M M xy z z ?, 2 1cos ,22cos ,21cos === γβα 所以

1cos cos cos =??+??+??= ??γ?β?α??z y x l M 例1.4 求函数xyz =?在点)2,1,5(处沿着点)2,1,5(到点)19,4,9(的方向导数。 解:点)2,1,5(到点)19,4,9(的方向矢量为 1734)219()14()59(z y x z y x a a a a a a l ++=-+-+-= 其单位矢量 3147 31433144cos cos cos z y x z y x a a a a a a l ++=++=γβα 5, 10, 2) 2,1,5()2,1,5()2,1,5() 2,1,5() 2,1,5() 2,1,5(==??==??==??xy z xz y yz x ? ?? 所求方向导数 314 123 cos cos cos = ??=??+??+??=?? l z y x l M ?γ?β?α?? 例1.5 已知z y x xy z y x 62332222--++++=?,求在点)0,0,0(和点)1,1,1( 处的梯度。 解:由于)66()24()32(-+-++++=?z a x y a y x a z y x ? 所以 623) 0,0,0(z y x a a a ---=?? ,36) 1,1,1(y x a a +=?? 例1.6 运用散度定理计算下列积分: ??++-+=S z y x S d z y xy a z y x a xz a I )]2()([2322 S 是0=z 和2 2 22y x a z --=所围成的半球区域的外表面。 解:设:)2()(2322z y xy a z y x a xz a A z y x ++-+= 则由散度定理???=??τ τs S d A d A 可得

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

北邮2020春电磁场与电磁波期末试题

北京邮电大学2019-2020年第二学期期末考试 电磁场与电磁波试题(开卷,A ) 已知:-12091= =8.8510(/)3610 F m επ??,70=410(/)H m μπ-? 一、(15分) 相距无穷远的不带电孤立导体球壳A 与孤立导体球B ,其中球壳A 的内径为b ,外径为a ,内外径之间为理想导体,r b <及r a >处为真空;导体球B 半径为与球壳A 的外径相同。在球壳A 中,距离中心c (c b <)处存在一电量为Q 的点电荷。将导体球B 从无穷远处移动到球壳A 处,并与球壳A 充分接触后再移动到无穷远处,试求:在整个移动导体球B 的过程中外力所作的功。(提示:可考虑功能原理) 二(10分)、太阳能电池板的能量转化效率为30%,一个2.5平方米的太阳能电池板供一个1000瓦的灯泡照明,假设太阳光是线偏振的单色平面波,试估计太阳光的电场与磁场的振幅。 三(15分)、设一平行大地的双导体传输线, 距地面高度为h, 导体半径为a, 二轴线间的距离为d (a<

四(15分)、一个长方形导体盒,各边尺寸分别是a ,b ,c ,各周界之间相互绝缘,每个面的电位函数如题四图所示,试求导体盒内部的电位函数。。 题四图 五(10分)、证明:对于良导体导体内单位宽度断面的表面电流:J s =H 0,期中H 0为导体表面的切向磁场强度。 六、(15分)一右旋圆极化波垂直入射到位于z=0的理想导体板上,其电场强度的复数表示式为0()j z x y i E E e j e e β→→ -=- 求:(1) 确定反射波的极化方式,说明原因; (2) 求导体板上的感应电流; (3) 求总电场的瞬时表达式。 七(10分)、设在波导中沿z 轴传播的电磁波的形式为: 022c c πππcos sin e j z z x E m m n E E x y k x k a a b βγγ-?-??????==- ? ? ???????? 试以此分析并说明相移常数β和波数k 之间的关系。 八、(10分)为什么说电偶极子的近区场为准静态场?是不是在近区场绝对没有能量的辐射?电偶极子的辐射效率如何?

《电磁场与电磁波》经典例题

一、选择题 1、以下关于时变电磁场的叙述中,正确的是( ) A 、电场是无旋场 B 、电场和磁场相互激发 C 、电场与磁场无关 2、区域V 全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是( ) A 、能量流出了区域 B 、能量在区域中被消耗 C 、电磁场做了功 D 、同时选择A 、C 3、两个载流线圈之间存在互感,对互感没有影响的的是( ) A 、线圈的尺寸 B 、两个线圈的相对位置 C 、线圈上的电流 D 、空间介质 4、导电介质中的恒定电场E 满足( ) A 、0??=E B 、0??=E C 、??=E J 5、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( ) A 、镜像电荷是否对称 B 、电位方程和边界条件不改变 C 、同时选择A 和B 6、在静电场中,电场强度表达式为3(32)()y x z cy ε=+--+x y z E e e e ,试确定常数 ε的值是( ) A 、ε=2 B 、ε=3 C 、ε=4 7、若矢量A 为磁感应强度B 的磁矢位,则下列表达式正确的是( ) A 、=?B A B 、=??B A C 、=??B A D 、2=?B A 8、空气(介电常数10εε=)与电介质(介电常数204εε=)的分界面是0z =平面, 若已知空气中的电场强度124= +x z E e e 。则电介质中的电场强度应为( ) A 、1216=+x z E e e B 、184=+x z E e e C 、12=+x z E e e 9、理想介质中的均匀平面波解是( ) A 、TM 波 B 、TEM 波 C 、TE 波 10、以下关于导电媒质中传播的电磁波的叙述中,正确的是( ) A 、不再是平面波 B 、电场和磁场不同相 C 、振幅不变 D 、以T E 波的形式传播 二、填空 1、一个半径为α的导体球作为电极深埋地下,土壤的电导率为 σ,略去地面的影响,则电极的接地电阻R = 2、 内外半径分别为a 、b 的无限长空心圆柱中均匀的分布着轴向电流I ,设空间离轴距离为()r r a <的某点处,B= 3、 自由空间中,某移动天线发射的电磁波的磁场强度

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

北邮2013年电磁场与电磁波期末试卷

北京邮电大学2012—2013学年第 2 学期 《电磁场与电磁波》期末考试试题(A 卷) 试题中需要用到的介质常数:0913610 επ=?F/m,70410μπ-=?H/m 一 填空题(每个空1分,共10分) (1) 截面为矩形(a ×b )的无限长金属槽, 各面的电位如图所示,使用分离变量法求解电位 (,)()()x y X x Y y φ=所满足的拉普拉斯方程,X (x )的通 解为 函数,Y (y )的通解为 函数。(无需写 出具体的解函数,仅指出函数类型即可) (2) 时变电磁场磁场强度的切向边界条件为 ,电场强度的切向边界条件为 。 (3)平行极化波从空气中斜入射到理想导体的表面,合成波在分界面法线方向上属于 波,在平行于分界面方向上属于 波。 (4) 极化波以布儒斯特角入射时会发生全折射现象,当平面波从折射率较高的介质入射到折射率较低的介质,当入射角 临界角时发生全反射现象。 (5)在电偶极子激发的电磁场中,近区场为 场,远区场为 场。 二 在接地的导体平面上有一半径为a 的半球凸部,半球的球心在导体平面上,若在半球对称轴上离球心h (h>a )处放一点电荷q , (1)确定镜像电荷的个数、大小与位置(10分); (2)求导体外任一点P 处的电位(5分)。 x

三 给出麦克斯韦方程组的微分形式、物质的本构方程(辅助方程)及用复数表示的麦克斯韦方程组的微分形式(10分) 四 真空中一均匀平面电磁波的磁场强度矢量为 63110()cos[()](/)22 x y z H a a a t x y z A m ωπ-=+++--r r r r ,求 (1) 波的传播方向的单位矢量,波长与频率(5分); (2) 电场强度矢量的瞬时值表达式(5分); (3) 波印廷矢量的平均值(5分)。 五 频率100MHz 的平面波在金属铜中传播,已知铜的电导率为75.810(/)S m σ=?,相对介电常数1r ε=,相对磁导率1r μ=,某处磁场强度的幅度为00.1(/)y H A m =,求 (1) 铜内平面波传播的衰减常数、相移常数及相速度(5分); (2) 波阻抗ηe 及磁场对应处的电场幅度E x 0(5分)。 (注意:解题过程可能会用到需要以下公式,大家可根据需要选择使用: 2111,281,2e e j σασβαβωεσηηωε???≈≈+≈≈? ??????= +=?? ) 六 均匀平面波(电场在x 方向,磁场在y 方向,向z 方向传播)由空气垂直入射到位于z=0处理想介质平面,已知入射波电场强度的幅度30 1.510(/)E V m +-=?,初相位?=0,介质的相对电导率4r ε=,相对磁导率1r μ=,8310(/)rad s ω=?,求 (1) 电场反射系数与透射系数(5分); (2) 反射波的电场强度与磁场强度的复数表达式(5分); (3) 透射波的电场强度与磁场强度的复数表达式(5分)。 七 证明题 (1) 证明任一线极化波总可以分解为两个振幅相等旋向相反的圆极化波的叠 加(5分);

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F 的散度处处为0,即0F ??≡,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F 的旋度处处为0,即0F ??≡,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=?? ?和 斯托克斯定理: s C F dS F dl ???=??? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题, 。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D dS dV Q ρ?==? ?和 0l E dl ?=?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=和0E ??=。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E =5x y z xe ye e --+。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D.电介质 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C )。 A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

北邮电磁场与电磁波演示实验

频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行:

GSM900下行:

CDMA下行: 3G下行:

7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请 分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G 电磁炉:20KHz—30KHz 蓝牙:2.4G 网络参量测量演示实验 1矢量网络分析仪所测频段:300KHz—3GHz 2端口最大射频信号: 10DBM 3矢量网络分析仪为何要校准: 首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。 4默认校准和用户校准的区别: 默认校准通过网络分析仪的套包的一系列校准标准来完成,对系统误差进行校准;用户校准时校准标准由用户制定,由用户定义的标准来完成,用于对参考面等进行精确校准。 5使用矢量网络分析仪的注意事项: 1、检查电源: 分析仪加电前,必须确认供电电源插座的保护地线已经可靠接地; 2、供电电源要求: 为防止或减少由于多台设备通过电源产生的相互干扰,特别是大功率设备产生的尖峰脉冲干扰可能造成分析仪硬件的毁坏,最好用220V交流稳压电源为分析仪供电; 3、电源线的选择: 使用随机携带的电源线,更换电源线时,最好使用同类型的电源线;

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

相关文档
最新文档