刀具几何角度对切削力的影响

第四章 切削力 思考题

第四章切削力 4.1 必备知识和考试要点 4.1.1 切削力的来源,切削合力及其分解,切削功率 1.了解切削力的来源。 2.掌握切削力的合成与分解方法,明确切削力各分力的作用。 3.掌握根据已知条件计算切削功率并确定机床电动机功率的方法。 4.1.2 切削力的测量及切削力的计算机辅助测试 1.了解测量切削力的主要方法。 2.了解电阻应变片式测力仪的工作原理。 3.了解切削力的计算机辅助测试方法。 4.1.3 切削力的指数公式和切削力的预报及估算 1.熟悉切削力的指数公式及公式中各符号的意义。 2,掌握根据切削力计算公式计算单位切削力及单位切削功率的方法。 3.熟练掌握切削力经验公式的建立过程。 4.1.4 影响切削力的因素 1.掌握被加工工件材料对切削力影响的要点。 2.掌握切削用量对切削力影响的要点。 3.能够正确分析背吃刀量、进给量对切削力影响程度不同的原因。 4.能够正确分析切削速度对切削力影响产生的驼峰曲线关系的原因。 5.掌握刀具前角对切削力影响的要点。 6.正确分析主偏角对各切削分力影响程度不同的原因。 7.掌握刀具材料对切削力影响的要点。 8.掌握切削液对切削力影响的要点。 9.掌握刀具磨损对切削力影响的要点。 4.1.5 其它 1.了解切削力的理论公式建立。 2.了解切削力理论公式的不足。 4.2 典型范例和答题技巧 [例4.1] 车削时切削合力F r为什么常分为三个相互垂直的分力?说明这三个分力的作用。 [分析]作用在切削刃上的切削力是沿空间的某一方向,根据切削运动,可以将合力分解成沿各运动方向的分力。车削是按主运动(切削速度)方向、进给运动(进给量)方向、切深运动(背吃刀量)方向进行分解,三个方向的分力在车削时是互相垂直的。同时,车床完成上述三个方向运动的各运动机构也将以各分力为设计、计算的依据参数。而钻削加工是把切削力分解成轴向力和扭矩,同样也是为了便于设计、计算机床功率、运动机构强度等问题。 [答案] 切削合力方向为空间的某一方向,与切削运动中的三个运动方向均不重合,切削力是设计、计算机床功率、校验运动机构强度、合理选择切削用量、提高工件加工精度的一个重要参数或影响因素。所以按照车削的实际情况,将切削力沿车削时的三个运动方向分解成三个力(见例图4.1)。车削时的切削运动为:主运动(切削速度)、进给运动(进给量)、切深运动(背吃刀量)。三个运动方向在车削时是互相垂直的,所以车削时将切削力分解成沿三个运动方向、互相垂直的分力。 各分力的名称、定义及作用为: F t(新国标为F c)——切削力或切向力。它切于加工表面并与基面垂直。F x是计算车刀

刀具角度在切削加工中起着非常重要的作用

1.刀具角度在切削加工中起着非常重要的作用。刀具前角γ0减小后,切削变形增 大、切削力增大、刃口强度增大、散热条件降低。 2.车床镗内孔时,刀尖安装高于工件回转中心,则刀具工作角度与标注角度相比,前角 减小,而后角增大(增大、减小)。 3.金属切削过程中切削热的来源主要有两个,即变形热和摩 擦热。 4.积屑瘤在切削过程中起到保护刀刃和代替刀刃切削的 作用,但又由于其周期性不稳定性,会影响加工零件的粗糙度和尺寸精度,故在粗加工时可可以有积屑瘤,精加工时要避免产生积屑瘤。 5.砂轮磨钝的磨料会脱落或碎裂,因此砂轮具有自锐性,砂轮硬度越小,磨粒越 容易脱落;磨粒越细,磨削加工的效率越低,表面粗糙度值越高。 6.在精加工中,切削热是影响加工质量的重要因素。切削用量通常首先选择其中对切削热 影响最小的背吃刀量,其次选择进给量,最后选择影响最大的切削速度。 7.就磨削加工的本质而言,磨削是不同切削,它是磨粒对加工表面的切屑、滑 擦和刻划的综合作用。 10.电火花加工过程中,单个脉冲的能量越大,则加工效率,而工件表面粗糙度。 11.超声波加工是磨粒在超声振动作用下的、和的综合结果。超声波加 工最适于加工材料。 12.在基面中测量的刀具角度有主偏角和副偏角,它们的符号分别是kr 和kr‘。 13.切削三要素是指金属切削过程中的切屑速度、进给量和背 吃刀量三个重要参数,总称切削用量,其中对刀具寿命影响最大的是切削速度。 14. 滚齿加工是利用滚刀与齿轮啮合的原理来加工齿轮的,属于展 成法加工。 1. 刀具的工作角度随着刀具的安装条件和进给量的大小变化而变化。……………………(√) 2. 通常切削塑性较大的材料时,最容易出现后刀面磨损。…………………………………(×) 3.在选择车刀的刃倾角 s时,粗加工取正值,以保证刀尖强度;精加工取负值或零,

车刀几何角度的选择方法

车刀几何角度的选择方法 车刀几何角度是指车刀切削部分各几何要素之间,或它们与参考平面之间构成的两面角或线、面之间的夹角。它们分别决定着车刀的切削刃和各刀面的空间位置。根据“一面二角”理论可知,车刀的独立标注角度有六个,它们分别是:确定车刀主切削刃位置的主偏角Kr和刃倾角λs;确定车刀前刀面Ar与后刀面Aa的前角ro和后角ao;确定副切削刃及副后刀面Aa′的副偏角Kr′和副后角ao′。 这些几何角度对车削过程影响很大,其中尤其以主偏角Kr、前角ro、后角ao和刃倾角λs的影响更为突出,科学合理地选择车刀的几何角度,对车削工艺的顺利实施起着决定性作用。下面就从车刀几何角度对切削力、切削热和刀具的耐用度的影响分析着手,本着使切削轻便、质量稳定,延长刀具使用寿命的宗旨,确定科学的车刀几何角度的一般性原则。 一、车刀几何角度对切削力的影响 在金属切削时,刀具切入工件,将多余材料从工件上切除会产生强烈的力的作用,这些力统称为切削力。切削力主要来源于被加工材料在发生弹性和塑性变形时的抗力和刀具与切屑及工件表面之间的摩擦作用。根据切削力产生的作用效果的不同,可将切削力分解成三个相互垂直方向的分力。它们分别是:主切削力Fz,进给抗力Fx和切深抗力Fy,其中Fz是切削总力Fr沿主运动切向分解而得,是计算车刀强度,设计机床零件,确定机床功率的主要依据;Fx也叫轴向力,它是Fr 沿工件轴向的分力,是设计进给机构,计算车刀进给功率所必需的;Fy也叫径向力,它是Fr沿着工件径向的分力,它不消耗机床功率,但是当机床或工艺系统刚度不

足时,易引起振动。 1、前角ro对切削力的影响 前角ro增大,剪切角Φ随着增大,金属塑性变形减小,变形系数ξ减小,沿前刀面的摩擦力减小,因此切削力减小。但对于脆性材料而言,前角ro的变化则不会对车削力产生较大的影响,这是因为脆性材料在车削时,切屑变形和加工硬化都很小,变形抗力自然会随之减小。同时,实验还证明,前角ro的增大,对切削分力Fx、Fy的影响程度也不一样,当主偏角Kr较大时,对Fx的影响较明显,而当主偏角Kr较小时,则对Fy的降低幅度更大些。 2、主偏角Kr对切削力的影响 主偏角Kr的改变,使得切削面积的形状和切削分力Fxy的作用方向改变,从而使切削力也随之变化。实验证明,主偏角Kr增大,切削厚度也随之增大,切削变厚,切削层的变形减小,因此主切削力也随之减小,如图3所示。但当Kr增大到60°-75°后,Fz又随着Kr的增大而有所回升,这是因为此时刀尖圆弧所占的切削工作比例增大,使切屑变形和排屑阻力增大,又使主切削力Fz增大。根据切削力分解公式:Fy=FxycosKr;Fx=FxysinKr可知,主偏角Kr增大,使Fy减小,Fx增大,这有利于减轻工件的变形和系统的振动。因此,在工程上我们往往采用较大主偏角的车刀切削细长轴类零件,来减小径向分力Fy。 3、刃倾角λs对切削力的影响 刃倾角λs对主切削力Fz影响很小,但对进给抗力Fx和切深抗力Fy的影响较大。当λs减小时,使刀具受到的正压力的方向发生了变化,从而改

切削用量对切削力的影响比较讲解

] 3[切削用量对切削力的影响比较 (陕西理工学院 机械工程学院 ) 摘 要:通过分析切削力单因素实验,探讨切削用量对切削力的影响规律; 同时讨论刀具几何参数对切削力的影响,得出一般结论;进而对比说明精密切削切削力的特殊规律。 关键词:切削变形;切削力;刀具;精密切削;规律 1.引言 金属机械加工过程中,产生的切削力直接影响工件的粗糙度和加工精度,同 时也是确定切削用量的基本参数。所以掌握切削用量对切削力的影响规律也显得重要。本文从一般切削和精密切削两个方面对切削用量对切削力的影响规律做初步探讨。 2.金属切削加工机理 金属切削加工是机械制造业中最基本的加工方法之一。金属切削加工是指在金属切削机床上使用金属切削刀具从工件表面上切除多余金属,从而获得在形状、尺寸精度及表面质量等方面都符合预定要求的加工。 2.1切削加工原理 利用刀具与工件之间的相对运动,在材料表面产生剪切变形、摩擦挤压和滑移变形,进而形成切屑。 2.2切削变形 根据金属切削实验中切削层的变形,如图1-2,可以将切削刃作用部位的切削层划分为3个变形区。 第Ⅰ变形区:剪切滑移区。该变 形区包括三个过程,分别是切削层弹 性变形、塑性变形、成为切屑。 第Ⅱ变形区:前刀面挤压摩擦区。 该变形区的金属层受到高温高压作用, 使靠近刀具前面处的金属纤维化。 第Ⅲ变形区:后刀面挤压摩擦区。 该变形区造成工件表层金属纤维化与 图1-2 切削层的变形区 加工硬化,并产生残余应力。

F x F y F z F xy F Z F 22222++=+ =] 1[3.切削力 切削力是指切削过程中作用在刀具或工件上的力,它是工件材料抵抗刀具切削所产生的阻力。 3.1切削力来源 根据切削变形的不同,切削过程中刀具会受到三种力的作用,即: (1)克服切削层弹性变形的抗力 (2)克服切削层塑性变形的抗力 (3)克服切屑对刀具前面、工件对刀具后面的摩擦力 3.2切削力的合成与分解 图2 - 2 切削力合力和分力 图2-2为车削外圆时切削力的合力与分力示意图。图中字母分别表示: N 1、F 1——作用在车刀前刀面的正压力、摩擦力 N 2、F 2——作用在车刀后刀面的正压力、摩擦力 Q 1、Q 2——N1与F 1、N 2与F 2的合力 F ——Q 1与Q 2的合力,即总切削力 一般地,为了研究方便,将总切削力F 按实际运动效果分为以下三个分力: 切削力F z ——垂直于水平面,与切削速度的方向一致,且该分力最大。 径向切削力F y ——在基面内,与进给方向垂直,沿切削深度方向,不做功,但能使工件变形或造成振动。 轴向切削力F x ——在基面内,与进给方向平行。 由图2-2可知,合力与各分力之间的关系为: 其中: k r F xy F x sin =。式中:F xy ——合力在基面上的分力。 k r F xy F y cos =

刀具角度选用原则

刀具几何角度的作用及选择原则 答: 1是前角; 2是后角; 3是副偏角; 4是刀尖角; 5是主偏角; 6是副后角; 7是副前角; 8是刃倾角 名称:前角 作用:加大前角,刀具锋利,切削层的变形及前面摩擦阻力小,切削力和切削温度可减低,可抑制或消除积屑瘤,但前角过大,刀尖强度降低; 选择原则:

(1)工件材料的强度、硬度低,塑性好时,应取较大的前角;反之应取较小的前角;加工特硬材料(如淬硬钢、冷硬铸铁等)甚至可取负的前角 (2)刀具材料的抗弯强度及韧性高时,可取较大的前角 (3)断续切削或精加工时,应取较小的前角,但如果此时有较大的副刃倾角配合,仍可取较大的前角,以减小径向切削力 (4)高速切削时,前角对切屑变形及切削力的影响较小,可取较小前角 (5)工艺系统钢性差时,应取较大的前角 名称:后角 作用:减少刀具后面与工件的切削表面和已加工表面之间的摩擦。前角一定时,后角愈锋利,但会减小楔角,影响刀具强度和散热面积。选择原则: (1)精加工时,切削厚度薄,磨损主要发生在后刀面,宜取较大后角;粗加工时,切削厚度大,负荷重,前、后面均要发生磨损、宜取较小后角 (2)多刃刀具切削厚度较薄,应取较大后角

(3)被加工工件和刀具钢性差时,应取较小后角,以增大后刀面与工件的接触面积,减少或消除振动 (4)工件材料的强度、硬度低、塑性好时,应取较大的后角,反之应取较小的后角;但对加工硬材料的负前角刀具,后角应稍大些,以便刀刃易于切入工件; (5)定尺寸刀具(如内拉刀、铰刀等)应取较小后角,以免重磨后刀具尺寸变化太大; (6)对进给运动速度较大的刀具(如螺纹车刀、铲齿车刀等),后角的选择应充分考虑到工作后角与标注后角之间的差异; (7)铲齿刀具(如成形铣刀、滚刀等)的后角要受到铲背量的限制,不能太大,但要保证侧刃后角不小于2°。 名称:主偏角 作用: (1)改变主偏角的大小可以调整径向切削分力和轴向切削分力之间的比例,主偏角增大时,径向切削分力减小,轴向切削分力增大;(2)减小主偏角可减小削厚度和切削刃单位长度上的负荷;同时主切削刃工作长度和刀尖角增大,刀具的散热得到改善,但主偏角过小会使径向切削分力增加,容易引起振动。 选择原则:

硬质合金车刀几何角度选择原则

●硬质合金车刀合理前角、后角的参考值 (1)前角的选择 增大前角,可减小切削变形,从而减小切削力、切削热,降低切削功率的消耗,还可以抑制积屑瘤和鳞刺的产生,提高加工质量。但增大前角,会使楔角减小、切削刃与刀头强度降低,容易造成崩刃,还会使刀头的散热面积和容热体积减小,使切削区局部温度上升,易造成刀具的磨损,刀具耐用度下降。 选择合理的前角时,在刀具强度允许的情况下,应尽可能取较大的值,具体选择原则如下: 1)加工塑性材料时,为减小切削变形,降低切削力和和切削温度,应选较大的前角,加工脆性材料时,为增加刃口强度,应取较小的前角。工件的强度低,硬度低,应选较大的前角,反之,应取较小的前角。用硬质合金刀具切削特硬材料或高强度钢时,应取负前角。 2)刀具材料的抗弯强度和冲击韧性较高时,应取较大的前角。如高速钢刀具的前角比硬质合金刀具的前角要大;陶瓷刀具的韧性差,其前角应更小。 3)粗加工、断续切削时,为提高切削刃的强度,应选用较小的前角。精加工时,为使刀具锋利,提高表面加工质量,应选用较大的前角。当机床的功率不足或工艺系统的刚度较低时,应取较大的前角。对于成形刀具和在数控机床、自动线上不宜频繁更换的刀具,为了保证工作的稳定性和刀具耐用度,应选较小的前角或零度前角。 (2)后角的选择 增大后角,可减小刀具后刀面与已加工表面间的摩擦,减小磨损,还可使切削刃钝圆半径减小,提高刃口锋利程度,改善表面加工质量。但后角过大,将削弱切削刃的强度,减小散热体积使散热条件恶化,降低刀具耐用度。实验证明,合理的后角主要取决于切削厚度。其选择原则如下: 1)工件的强度、硬度较高时,为增加切削刃的强度,应选较小后角。工件材料的塑性、韧性较大时,为减小刀具后刀面的摩擦,可取较大的后角。加工脆性材料时,切削力集中在刃口附近,应取较小的后角。 2)粗加工或断续切削时,为了强化切削刃,应选较小的后角。精加工或连续切削时,刀具的磨损主要发生在刀具后刀面,应选用较大的后角。 3)当工艺系统刚性较差,容易出现振动时,应适当减小后角。在一般条件下,为了提高刀具耐用度,可增大后角,但为了降低重磨费用,对重磨刀具可适当减小后角。 为了使制造、刃磨方便,一般副后角等于主后角。下表1给出了硬质合金车刀合理后角的参考值。 表1 硬质合金车刀合理前角、后角的参考值

影响切削力和切削温度的因素

影响切削力和切削温度的因素 影响因素 被影响的因素力温度 工件材料强度、硬 度 材料的强度、硬度越高,则屈服强度越高,切削 力越大。 材料的强度、硬度越高,温度越高。 塑性、韧 性 在强度、硬度相近的情况下,材料的塑性、韧性 越大,则刀具前面上的平均摩擦系数越大,切削 力也就越大。脆性材料,切削时一般形成崩碎切 屑,切屑与前面的接触长度短,摩擦小,故切削 力较小。 导热系数导热系数越低,温度越高 切削用量背吃刀量 和进给量 进给量f 增大时,切削力有所增加;(程度小) 背吃刀量a p增大时,切削刃上的切削负荷也随之 增大,即切削变形抗力和刀具前面上的摩擦力均 成正比的增加。(程度大) 从切削力和切削功率角度考虑,加大进给量比加 大背吃刀量有利。 切削温度与切削用量的关系式为: ) (C K v f a c z c y x p θ θ θ θ θ θ= 三个影响指数zθ>yθ>xθ,说明切削 速度对切削温度的影响最大,背吃刀量对切削 温度的影响最小。 切削速度切削速度在5~17m/min区域内增加时,积屑瘤高 度逐渐增加,切削力减小; 切削速度继续在17~27m/min范围内增加,积屑 瘤逐渐消失,切削力增加; 在切削速度大于27m/min时,积屑瘤消失,由于 切削温度上升,摩擦系数减小,切削力下降。一 般切削速度超过90m/min时,切削力无明显变化。 在切削脆性金属工件材料时,因塑性变形很小, 刀屑界面上的摩擦也很小,所以切削速度υc 对 切削力F c无明显的影响。 在实际生产中,如果刀具材料和机床性能许可, 采用高速切削,既能提高生产效率,又能减小切 削力。 刀具几何参数前角前角: γo↑→切削变形↓→切削力↓(塑性材 料) 前角γo↑→塑性变形和摩擦↓→切削温度。 但前角不能太大,否则刀具切削部分的锲角过 小,容热、散热体积减小,切削温度反而上升。 前角超过 20 ~ 18后,对降低切削温度 并无明显作用 负倒棱负倒棱参数大大提高了正前角刀具的刃口强度, 但同时也增加了负倒棱前角(负前角)参加切削的 比例,负前角的绝对值↑→切削变形程度↑→切 削力↑; 基本无影响 主偏角Fp=F D cosKr F f=F D SinKr Kr ↑→Fp ↓, Ff ↑(课本P47图1-52) 主偏角κr↑→切削刃工作接触长度↓,切削宽 度b D↓,散热条件变差,故切削温度↑ 刀尖圆弧 半径 rε↑→切削刃圆弧部分的长度↑→切削变形↑ →切削力↑。此外rε增大,整个主切削刃上各点 主偏角的平均值减小,从而使Fp增大、Ff 减小。 基本无影响 刃倾角λs↓→Fp↑, Ff↓,Fc基本不变

刀具角度及切削三要素习题

切削原理、刀具角度练习题 一、是非题 1、计算车外圆的切削速度时,应按照已加工表面的直径数值进行计算。() 2、铣床的主运动是间歇运动而刨床的主运动是连续运动。() 3、刀具前角的大小,可以是正值,也可以是负值,而后角不能是负值。() 4、刀具的主偏角具有影响切削力、刀尖强度、刀具散热及主切削刃平均负荷的作用。() 5、车槽时的切削深度(背吃刀量)等于所切槽的宽度。() 6、金属的切削过程也是形成切屑和已加工表面的过程。() 7、精加工相对于粗加工而言,刀具应选择较大的前角和较小的后角。() 8、积屑瘤对切削加工总是有害的,应尽量避免。() 9、刃倾角的作用是控制切屑的流动方向并影响刀头的强度,所以粗加工应选负值。() 10、切削加工中,常见机床的主运动一般只有一个。() 11、工艺系统刚性较差时(如车削细长轴),刀具应选用较大的主偏角。() 二、选择题 1、扩孔钻扩孔时的背吃刀量(切削深度)等于() A扩孔前孔的直径 B扩孔钻直径的1/2 C扩孔钻直径 D扩孔钻直径与扩孔前孔径之差的1/2 2、在切削平面内测量的角度有() A前角和后角 B主偏角和副偏角 C刃倾角 D工作角度 3、切削用量中对切削热影响最大的是() A切削速度 B进给量 C切削深度 D三者都一样 4、影响切削层公称厚度的主要因素是() A切削速度和进给量 B切削深度和进给量 C进给量和主偏角 D进给量和刃倾角 5、通过切削刃选定点的基面是() A垂直于主运动速度方向的平面 B与切削速度平行的平面 C与加工表面相切的平面 D工件在加工位置向下的投影面 6、刀具磨钝的标准是规定控制() A刀尖磨损量 B后刀面磨损高度 C前刀面月牙凹的深度 D后刀面磨损宽度 7、金属切削过程中的剪切滑移区是() A第Ⅰ变形区 B第Ⅱ变形区 C第Ⅲ变形区 D第Ⅳ变形区 8、确定刀具标注角度的参考系选用的三个主要基准平面是() A切削表面、已加工表面和待加工表面 B前刀面、后刀面和副后刀面 B基面、切削平面和正交平面 D水平面、切向面和轴向面 9、刀具上能减小工件已加工表面粗糙度值的几何要素是() A增大前角 B增大刃倾角 C减小后角 D减小副偏角 10、当刀具产生了积屑瘤时,会使刀具的() A前角减小 B前角增大 C后角减小 D后角增大 11、有色金属外圆精加工适合采用() A磨削 B车削 C铣削 D镗削 12、车刀刀尖高于工件旋转中心时,刀具的工作角度() A前角增大,后角减小 B前角减小、后角增大

金属切削刀具角度

金属切削刀具角度 核心提示:金属切削刀具的种类很多,车刀是最为常见、最为典型的。其余各种刀具都可以看作是由车刀的切削部分演变来的。下面以车刀为例说明刀具的切削部分的结构要素和几 金属切削刀具的种类很多,车刀是最为常见、最为典型的。其余各种刀具都可以看作是由车刀的切削部分演变来的。下面以车刀为例说明刀具的切削部分的结构要素和几何角度。 1.车刀的组成 外圆车刀由3个刀面、2条切削刃和1个刀尖组成,如图11 -3所示。 外圆车刀 图11 -3 外圆车刀 (1)前刀面前刀面是指刀具上切屑流过的表面(Ar)。它可以是平面,也可以是曲面,作用是保证切屑顺利地流出。 (2)后刀面刀具上与过渡表面相对的是主后刀面(Aa),与已加工表面相对的是副后刀面(A'a)。它的作用是减少刀具与工件的摩擦,避免擦伤已加工表面。 (3)切削刃前刀面与主后刀面相交形成的交线称为主切削刃(S),它完成主要的切削工作。前刀面与副后刀面相交形成的是副切削刃( S'),它完成部分的切削工作,并最终形成已加工表面。 (4)刀尖主、副切削刃的连接部位。它一般都做成圆弧状,以保证刀尖的强度和耐磨性。 2.车刀切削部分的主要角度 为了确定车刀的各刀面和切削刃的空间位置,需要选定一些坐标平面作为参考系,如图11 -4所示。 (1)刀具静止参考系用于定义刀具设计、制造、刃磨和测量时几何参数的参考系,称为刀具静止参考系。

车刀的主要平面 图11 -4 车刀的主要平面 ①基面:过切削刃选定点,垂直于该点假定主运动方向的平面(Pr); ②切削平面:过切削刃选定点,与切削刃相切,并垂直于基面的平面,分为主切削平面(Ps)和副切削平面(P’s); ③正交平面:过切削刃选定点,并同时垂直于基面和切削平面的平面(Po); ④假定工作平面:过切削刃选定点,垂直于基面并平行于假定进给运动方向的平面(Pf)。 (2)刀具角度的基本定义如图11 -5所示。 车刀的标注角度 图11-5 车刀的标注角度

刀具后刀面磨损量对切削力及加工表面粗糙度的影响

4 李亚非.G C 杯形砂轮修整碟形金刚石砂轮实验研究.金刚石与磨料磨具工程,2003(10):28~30 5 阎秋生,田中宪司,庄司克雄.小直径C BN 砂轮的磨削特 性研究———砂轮修整方法及砂轮要素参数选择.制造技术与机床,1999,9 6 庄司克雄.陶瓷结合剂金刚石砂轮的修整研究Ⅲ(1).金 刚石与磨料磨具工程,1993(1) 第一作者:于晓娟,硕士研究生,北京理工大学机械与车辆工程学院,100081北京市 收稿日期:2004年10月 刀具后刀面磨损量对切削力及加工表面粗糙度的影响 吴泽群 刘亚俊 汤 勇 陈 平 华南理工大学 摘 要:通过切削试验探索了在相同的工件材料、刀具材料、切削参数(切削深度、进给量)和不同的刀具磨损状态(后刀面磨损量)下,刀具后刀面磨损量(VB )对切削过程中的切削力及工件表面粗糙度的影响,并对这些影响的产生机理进行了讨论。 关键词:后刀面磨损量, 切削力, 表面粗糙度 E ffect of Tool Flank Wear on Cutting Force and Surface R oughness Wu Z equn Liu Y ajun T ang Y ong et al Abstract :The effect of the tool flank wear (VB )on the cutting force and the sur face roughness is studied ,basing on the ex 2periments with the same w orkpiece materials ,same tool materials ,same cutting parameters (depth of cut ,feed rate )and different tool conditions (focusing on different tool flank wears ).The mechanism production of these effects is als o discussed. K eyw ords :tool flank wear , cutting force , sur face roughness 1 引言 切削力是描述切削过程的一个基本参数。近年来,随着加工过程自动控制技术的发展,切削力已成为适应和控制切削过程的一个重要反馈参数。切削力的变化直接决定着切削热的产生、分布,并影响刀具的磨损状况和使用寿命,进而影响零件被加工表面的加工精度和已加工表面质量。 影响切削力的因素有很多,诸如车床的转速、切削深度、进给量、后刀面磨损量等。刀具的磨损量不仅对切削力的大小有影响,而且在金属的切削过程中,刀具的磨损与破损是影响加工零件精度和表面质量的重要因素,严重的刀具磨损还会引起切削颤振,损坏机床、刀具、工件等。 国内外对切削力影响因素的研究大多数都着眼于车床转速、切削深度等参数的选择,对刀具磨损对切削力影响的研究相对较少,而且有关刀具磨损对工件表面质量影响的研究也不多,因此,研究刀具磨损对切削力和表面粗糙度的影响具有一定的现实意义。 2 切削试验 211 试验条件 (1)试验设备:C M6140车床; 刀具材料:硬质合金Y W ; 被切削材料:45钢;(2)测量仪器:K istler 9441测力仪、K istler 5019A 多通道放大器、TR200粗糙度仪 。 图1 试验系统 212 试验参数的选择 刀具后刀面磨损量VB 是刀具磨损的重要指标之一。在一定范围内选择VB 的六个值,分别为0(未磨损的)、011mm 、012mm 、013mm 、014mm 、015mm 。 图2 后刀面磨损量VB 7 32005年第39卷№5

刀具习题及答案

《金属切削原理与刀具》试题(1) 一、填空题(每题2分,共20分) 1.刀具材料的种类很多,常用的金属材料有 、 、 ;非金属材料有 、 等。 2.刀具的几何角度中,常用的角度有 、 、 、 、 和 六个。 3.切削用量要素包括 、 、 三个。 4.由于工件材料和切削条件的不同,所以切削类型有 、 、 和 四种。 5.刀具的磨损有正常磨损的非正常磨损两种。其中正常磨损有 、 和 三种。 6.工具钢刀具切削温度超过 时,金相组织发生变化,硬度明显下降,失去切削能力而使刀具磨损称 为 。 7.加工脆性材料时,刀具切削力集中在 附近,宜取 和 。 8.刀具切削部分材料的性能,必须具有 、 、 和 。 9.防止积削瘤形成,切削速度可采用 或 。 10.写出下列材料的常用牌号:碳素工具钢 、 、 ;合金工具钢 、 ;高速工具 钢 、 。 二、判断题:(在题末括号内作记号:“√”表示对,“×”表示错)(每题1分,共20分) √1.钨钴类硬质合金(YG )因其韧性、磨削性能和导热性好,主要用于加工脆性材料,有色金属及非金属。 √2.刀具寿命的长短、切削效率的高低与刀具材料切削性能的优劣有关。 √3.安装在刀架上的外圆车刀切削刃高于工件中心时,使切削时的前角增大,后角减小。 ×4.刀具磨钝标准VB 表中,高速钢刀具的VB 值均大于硬质合金刀具的VB 值,所以高速钢刀具是耐磨损 的。 √5.刀具几何参数、刀具材料和刀具结构是研究金属切削刀具的三项基本内容。 √6.由于硬质合金的抗弯强度较低,冲击韧度差,所取前角应小于高速钢刀具的合理前角。 √7.切屑形成过程是金属切削层在刀具作用力的挤压下,沿着与待加工面近似成45°夹角滑移的过程。 ×8.积屑瘤的产生在精加工时要设法避免,但对粗加工有一定的好处。 ×9.切屑在形成过程中往往塑性和韧性提高,脆性降低,使断屑形成了内在的有利条件。 √10.一般在切削脆性金属材料和切削厚度较小的塑性金属材料时,所发生的磨损往往在刀具的主后刀面 上。 √11.刀具主切削刃上磨出分屑槽目的是改善切削条件,提高刀具寿命,可以增加切削用量,提高生产效 率。 √12.进给力f F 是纵向进给方向的力,又称轴向力。 √13.刀具的磨钝出现在切削过程中,是刀具在高温高压下与工件及切屑产生强烈摩擦,失去正常切削能 力的现象。 √14.所谓前刀面磨损就是形成月牙洼的磨损,一般在切削速度较高,切削厚度较大情况下,加工塑性金 属材料时引起的。 √15.刀具材料的硬度越高,强度和韧性越低。 √16.粗加工磨钝标准是按正常磨损阶段终了时的磨损值来制订的。 √17.切削铸铁等脆性材料时,切削层首先产生塑性变形,然后产生崩裂的不规则粒状切屑,称为崩碎切 屑。 √18.立方氮化硼是一种超硬材料,其硬度略低于人造金刚石,但不能以正常的切削速度切削淬火等硬度 较高的材料。 √19.加工硬化能提高已加工表面的硬度、强度和耐磨性,在某些零件中可改善使用性能。 ×20.当粗加工、强力切削或承冲击载荷时,要使刀具寿命延长,必须减少刀具摩擦,所以后角应取大些。 三、选择题(将正确答案填在空格内)(每题2分,共30分)

刀具主要几何角度及选择

--- ---- 嶺Sr吵叶#-------------------------- 刀具主要几何角度及选择 金属切削刀具切削部分的结构要素、几何角度与斧头等刀具有许多共同的特征。如图1,各种多齿刀具或复杂刀具,就其一个刀齿而言,都相当于一把斧头的刀头。现以熟悉的车刀为例说明刀具主要几何角度。 图 1 刀具的切削部分 1?车刀切削部分的组成 车刀切削部分由前刀面、主后刀面、副后刀面、主切削刃、副切削刃和刀尖组成(如图2)

TJJt 左厨刀而 图2 硬质合金外园车刀 (1)前刀面刀具上切屑流过的表面 (2)主后刀面刀具上与工件上的加工表面相对着并且相互作用的表面,称为主后刀面 (3)副后刀面刀具上与工件上的已加工表面相对着并且相互作用的表面,称为副后刀面 (4)主切削刃刀具上前刀面与主后刀面的交线称为主切削刃 (5)副切削刃刀具上前刀面与副后刀面的交线称为副切削刃

= ”*-F” F = - = - FF ” - - F r””*”彳 F = * = -”-* = ”= -F- F== - . H- (6) 刀尖主切削刃与副切削刃的交点称为刀尖。刀尖实际是一小段曲线或直线,称修圆刀 尖和倒角刀尖。 2?车刀切削部分的主要角度 (1 )测量车刀切削角度的辅助平面 赧定主运动方向 运动方向 基百Pr

= ”*-F” F = - = - FF ” - - F r””*”彳 F = * = -”-* = ”= -F- F== - . H-

= ”*-F” F = - = - FF ”- - F r”””” F = * = -”-* = ”=-F- F== - . H-

金属切削刀具角度教学设计

“金属切削刀具角度”教学设计 所属学科、专业:机械设计制造及其自动化专业 所属课程:机械制造技术基础 适用对象:机械设计制造及其自动化、材料成型专业本科生 主讲人:王海霞 所属单位:山东科技大学机电学院 一、教学背景 《金属切削刀具角度》属于《机械制造技术基础》课程中的基础知识,同时也是重点和难点知识。刀具角度不仅直接决定刀具结构,同时还会影响金属切削过程中的变形程度、切削力、切削温度、刀具磨损以及工件加工精度等内容,进而影响整个生产过程。因此学好这部分内容,既可以加深学生对刀具结构的认识,又为将来学习金属切削过程等后续知识打好基础。 该知识点的学习,一方面要求学生熟练掌握基本概念和方法,另一方面还需要借助空间抽象思维理解各角度所在的参考平面位置。在教学过程中,学生往往因为不能在思维中正确理解空间位置,而导致概念不清,知识点掌握不牢。本微课程将从引导学生空间结构入手,加深概念认识和方法学习,对刀具角度的教学进行改进。 二、教学目标 通过学习本微课程,对学生要求如下: 1.掌握基面、切削平面、主剖面三个参考平面的概念 2.正确理解三个参考平面的空间位置 3.掌握前角、后角、主偏角、副偏角、刃倾角五个基本角度的概念 4.掌握金属切削刀具角度分析的方法和过程 三、教学方法和教学内容

1.教学方法 (1)引导式讲授内容:对课程中的概念采用引导式讲授,由浅入深逐渐引出,鼓励学生自己提出概念,并在该过程中加深对概念的认识和理解。 (2)多种教育手段的应用:通过学生最熟悉的外圆车刀结构,借助教具模型及PPT动画演示,配合板书内容,让学生有直观、深刻的认识和理解,加深对课程内容的掌握。 2.教学内容及过程 四、教学总结

实验一_刀具几何角度的测量

实验一 刀具几何角度的测量 一、实验目的: 1.学习测量车刀几何角度的方法及仪器使用。 2.加深对车刀几何角度的定义和理解。 二、实验内容和要求 1.使用车刀量角台,测量给定外圆车刀的前角γo 、后角α 0 、主偏角K r 和副偏角'r K ,并将测量结果记入实验报告;了解刃倾角λs 定义和作用。 2.每人测两把车刀,切断刀和外圆各一把。 ⒊ 根据测量结果,绘制车刀简图,并回答问题。 三、仪器及工具 图1 BR-CLY 车刀量角仪 87 摇 臂 轴定位螺钉序号 名 称 车 刀 量 角 台 序号 名 称 底 盘支 脚小 刻 度 盘工 作 台导 条小 指 针指 针转 动 轴螺 钉 螺 钉 轴大 刻 度 盘大 指 针升 降 螺 母滑 体立 柱定 位 块

2、所配车刀规格: 配四把车刀:400车刀(车外圆、平端面、倒角)、900车刀(精车刀、车外圆、平端面)、750车刀(精车刀、车外圆、平端面)、切断刀(切断、切槽)。精度:7~8级左右 四、车刀量角台结构介绍与测量方法 l.量角台的主要测量参数及其范围 车刀量角台能够测量主剖面和法剖面内的前角、后角、主偏角、副偏角及刃倾角。 测量范围:前角测量范围0-45度后角测量范围0-30度 刃倾角测量范围0-45度主(副偏测量范围0-45度。 外形尺寸(㎜) 185×250×240 2.车刀量角仪的使用方法(以40°外圆车刀为例) (1)测量主偏角:主偏角是在基面上测量的主切削刃与车刀进给方向之间的夹角。测量时,车刀放在工作台上,用刀台的侧面和底面定位。此时刀台底面表示基面,刀台侧面表示车刀轴线,量刀板正面表示车刀进给方向。以顺时针方向旋转矩形工作台,同时推动车刀沿刀台侧面(紧贴)前进,使主切削刃与量刀板正面密合。此时工作台指针指向盘形工作台上的刻度值即为主偏角。(如图所示)

车刀角度对车削加工质量的影响文档

车刀角度对切削加工的影响(以车削为例)大前角刃口锋利,切屑变小,切削力小,切削轻快。但易产生崩刃。 后角作用主要是减少后刀面和过渡表面之间的摩擦。增大后角可减少摩擦, 提高已加工表面质量和刀具使用寿 命,并使切削刃锋利。但是后角过大, 楔角减小,降低切削刃的强度,减少 散热体积,磨损反而加剧,降低刀具 的耐用度。 主偏角影响切削层的形状,切削刃的工作长度和单位切削刃上的负荷。减少κr,主切削刃单位长度上的负荷减少,刀具磨损小,耐用度提高,使已加工表面粗糙度减小。较小的主偏角容易形成长而连续的螺旋屑,不利于断屑,因此对切屑控制严格的自动化加工,宜取较大的主偏角。 副偏角影响已加工表面的粗糙度和刀尖强度。减少κr′,减少表面的粗糙度的数值,还可提高刀具强度,改善散热条件。过小,会使副切削刃与已加工面的摩擦增加,引起震动,降低表面质量和刀具耐用度。

副偏角的大小主要根据已加工表面粗糙度要求和刀具强度来选择,不引起振动的情况下,尽量取小值。 车刀的角度对加工质量及效率的影响 车刀的主要标注角度有以下5个: 1.前角 2.主后角 3.主偏角 4.副偏角 5.刃倾角 根据经验主偏角和副偏角构成刀尖角度,这个角度要根据粗精加工而定,粗加工时由于主要目的是去除大量的余量,所以这个角度可以适当的大一些,以适应大的进给量;精加工时,余量较少,要保证好的表面质量,所以刀尖角度要小,断屑槽要开的深一些,以免切屑流经已加工表面划伤工件表面。还有刃倾角,负的刃倾角可以保护切削刃,承受大的进给量,反之则可以提高表面质量。 车刀前角对刀具切削性能影响的研究 关于前角大小要根据加工工艺和工件材料来选择! 1.前角有正前角和负前角之分(还有一种是0度前角多用于石墨加工)

刀具试题及答案

刀具试题及答案 一、填空题 1.刀具材料的种类很多,常用的金属材料有碳素工具钢、合金工具钢、高速钢、非金属材料有陶瓷、金刚石等。 2.刀具的几何角度中,常用角度有前角r。、主后角a。、楔角β。、主偏角Kr、副偏角Kr'、刀尖角εr和刃倾角λs七个。 3.切削用量要素包括Vc(切削速度)、f(进给量)、a sp(背吃刀量)三个。 4.由于工件材料和切削条件不同,所有切削屑类型有带状切屑、节状切屑、粒 状切屑、崩碎切屑四种。 5.刀具的磨损有正常磨损和非正常磨损两种,其中正常磨损有前面磨损、后面 磨损、前后面同时磨损和便捷磨损。 6.高速钢刀具切削温度超过620℃时,金相组织发生变化,硬度明显下降,失 去切削能力而使刀具磨损称为相变磨损。 7.加工脆性材料时,刀具切削力集中在刀尖附近,宜取较小后角和较小前角。 8.刀具切削部分材料的性能必须具有高硬度、高耐磨性、高耐热性和大的导热 系数。 9.楔角是前面与主后面的夹角。 10.防止切屑瘤产生,切削速度可采用高速。 11.YT类硬质合金的主要化学成分是Co、WC、TiC,其中TiC含量越多,硬质合金硬度越高,耐热性越好,但脆性越大。 12.在金属切削过程中在中低速加工塑料材料时易形成积屑瘤,它将对切削过程带来一定的影响,故在精加工时应尽量避免。 13.外圆车削时,在刀具6个标准角度中,对切削温度影响较大的角度是前角r。和主偏角Kr。 14.在工艺系统刚性好的情况下,刀具的磨钝标准应规定得较大,精加工时应规定较小的磨钝标准。 15.常用的切削液有水溶液、油性切削液和固体润滑剂三大类。采用硬质合金刀具时,由于热硬性较好,故一般不使用切削液。 16.标准角度参考系中三个坐标平面是指几面Pr、正焦平面Po和切削平面Ps,它们之间的关系为互相垂直。 17.一般在精加工时,对加工表面要求高时,刀尖圆弧半径宜取较小。

刀具几何角度的选择刀具切削部分的几何角度

刀具几何角度的选择刀具切削部分的几何角度刀具几何角度的选择刀具切削部分的几何角度,对于不锈钢切削加工的生产率、刀具耐用度、被加工表面粗糙度、切削力以及加工硬化等方面都有很大的影响,合理选择和改进刀具几何参数是保证加工质量、提高效率、降低成本的有效途径。 (1)车刀前角γ0的选择前角的大小决定刀刃的锋利与强度。增大前角可以减小切屑的变形,从而减小切削力和切削功率,降低切削温度,提高刀具耐用度。但是增大前角会使楔角减小,降低刀刃强度,造成崩刃,使刀具耐用度下降。车削不锈钢时,在不降低刀具强度的条件下,应把前角适当取大一些。在刀具前角大时其塑性变形小,切削力和切削热降低,减轻加工硬化趋势,提高刀具耐用度,一般刀具前角宜取12?,20?。 (2)车刀后角α0的选择在切削过程中,后角可以减小后刀面与切削表面的摩擦。若后角过大,则楔角减小,使散热条件恶化,刀具刃口强度下降,降低刀具耐用度;若后角过小,摩擦严重,则会使刃口变钝,增大切削力,增高切削温度,加剧刀具磨损。在一般情况下,后角变化不大,但必须有一个合理的数值,以利于提高刀具的耐用度。车削不锈钢时,由于不锈钢的弹性和塑性都比普通碳素钢大,所以刀具后角过小会使切断表面与车刀后角的接触面积增大,摩擦产生的高温区集中于车刀后角,加快车刀磨损,降低被加工表面光洁度,所以车削不锈钢时的车刀后角要比车削普通碳钢时稍大一些,但后角过大 又会降低刀刃强度,直接影响车刀的耐用度,因此,一般情况下车刀后角宜取6?,10?。 (3)车刀主偏角Kr的选择当切削深度ap和进给量f不变时,减小主偏角Kr可使散热条件得到改善,减少刀具损坏,使刀具切入、切出平稳。但主偏角减小又会

刀具几何角度对加工的影响

刀具几何角度对加工的影响 前角 γ0 在正交平面Po内,前刀面与基面的之间夹角1.使刀刃锋利,便于切削加工和切屑流动 2.影响刀具的强度 1.粗加工:小值 精加工:大值 2.加工塑性材料或强度、硬度较低:大值 加工脆性材料或强度、硬度较高:小值 3刀具材料韧性好,如高速钢:大值 刀具材料脆性大,如硬质合金:小值前角越大,刀具越锋利,但强度降低,易磨损和崩刃。前角一般为5°~20°。 后角 α0 在正交平面Po内,主后刀面与切削平面之间夹角1.影响主后刀面与工件之间的摩擦 2.影响刀具的强度 与前角的选择相同后角越大,车削时刀具与工件之间的摩擦越小,但强度降低,易磨损和崩刃。后角一般为6°~12°。 主偏角 Kr 在基面Pr内,主切削刃与进给运动方向在其上的投影之间夹角1.影响切削加工条件和刀具的寿命 2.影响径向力的大小,如图2-10(b)所示 Fp径=cos KrFD切水(切削力在水平面内的分力)1.粗加工:小值 精加工:大值 2.刚性差,易变形,如细长轴(90°):大值 刚性好,不易变形:小值 1. 主偏角越小,切削加工条件越好,刀具的寿命越长 2.车刀常用的主偏角有45°、60°、75°90°,其中75°和90°最常用 副偏 角 Krˊ在基面Pr内,副切削刃与进给运动反方向在其上的投影之间夹角1.主要影响加工表面的粗糙度,如图2-10(c)所示 2.影响副切削刃与已加工表面之间的摩擦和刀具的强度1.粗加工:大值(与副?偏角选择相反) 精加工:小值 1. 副偏角越小,残留面积和振动越小,加工表面的粗糙度越低,表面质量越高。但过小会增加刀具与工件的摩擦,另外,刀具的强度降低 2.副偏角一般为5°~15° 刃倾角 λs 切削平面Ps内,主切削刃在其上的投影与基面之间夹角1.主要控制切屑的流动方向

实验一_刀具几何角度的测量

实验一刀具几何角度的测量 一、实验目的: 1.学习测量车刀几何角度的方法及仪器使用。2.加深对车刀几何角度的定义和理解。二、实验容和要求 1.使用车刀量角台,测量给定外圆车刀的前角 γo 、后角α0、主偏角K r 和副 偏角'r K ,并将测量结果记入实验报告;了解刃倾角λs 定义和作用。 2.每人测两把车刀,切断刀和外圆各一把。⒊ 根据测量结果,绘制车刀简图,并回答问题。三、仪器及工具 1、BR-CLY 车刀量角仪(如图1) 图1 BR-CLY 车刀量角仪 78 8 7 摇 臂 轴定位螺钉序号 名 称 车 刀 量 角 台 序号 名 称 底 盘支 脚小 刻 度 盘工 作 台导 条小 指 针指 针转 动 轴螺 钉 螺 钉 轴大 刻 度 盘大 指 针升 降 螺 母滑 体立 柱定 位 块

2、所配车刀规格: 配四把车刀:400车刀(车外圆、平端面、倒角)、900车刀(精车刀、车外圆、平端面)、750车刀(精车刀、车外圆、平端面)、切断刀(切断、切槽)。精度:7~8级左右 四、车刀量角台结构介绍与测量方法 l.量角台的主要测量参数及其围 车刀量角台能够测量主剖面和法剖面的前角、后角、主偏角、副偏角及刃倾角。 测量围:前角测量围0-45度后角测量围0-30度 刃倾角测量围0-45度主(副偏测量围0-45度。 外形尺寸(㎜) 185×250×240 2.车刀量角仪的使用方法(以40°外圆车刀为例) (1)测量主偏角:主偏角是在基面上测量的主切削刃与车刀进 给方向之间的夹角。测量时,车刀放在工作台上,用刀台的侧面 和底面定位。此时刀台底面表示基面,刀台侧面表示车刀轴线, 量刀板正面表示车刀进给方向。以顺时针方向旋转矩形工作台, 同时推动车刀沿刀台侧面(紧贴)前进,使主切削刃与量刀板正 面密合。此时工作台指针指向盘形工作台上的刻度值即为主偏 角。(如图所示)

相关文档
最新文档