CNDQ 系列水电解制氢装置安装使用说明书

CNDQ 系列水电解制氢装置安装使用说明书
CNDQ 系列水电解制氢装置安装使用说明书

CNDQ 系列水电解制氢装置安装使用说明书

(微机控制)

目录

第一章概述

1.水电解制氢装置工作原理 (1)

2.水电解制氢装置用途与技术参数 (1)

3.水电解制氢装置用途与技术参数 (2)

4.水电解制氢装置工艺流程 (3)

第二章安装

1.制氢站 (4)

2.工艺部分 (5)

3.控制部分 (6)

4.整流部分 (7)

5.配电装置 (7)

第三章操作规程

1.工艺系统开机前的准备 (8)

2.整流装置开机前的准备 (9)

3.自控开机前的准备 (10)

4.稀碱试车 (10)

5.浓碱正式运行 (12)

第四章设备维护安全事项与故障排除

1.设备维护 (12)

2.安全注意事项 (13)

3.故障及排除方法 (14)

附录一 ZDQ系列水电解制氢装置带控制点的工艺流程图

附录二 KOH水溶液温度比重对照表 (18)

附录三用户自备件清单 (19)

附录四系统控制参数整定值参考 (21)

附录五报警连锁一览表 (22)

185

第一章概述

1.水电解制氢装置工作原理

水电解制氢的原理是由浸没在电解液中的一对电极中间隔以防止气体渗透的隔膜而构成的水电解池,当通以一定的直流电时,水就发生分解,在阴极析出氢气,阳极析出氧气。其反应式如下:

阴极:2H2O+2e→H2↑+2OH-

阳极: 2OH--2e→H2O+1/2O2↑

总反应: 2H2O→2H2↑+O2↑

产生的氢气进入干燥部分,由干燥剂吸附氢气携带的水分,达到用户对氢气湿度的要求。

本装置干燥部分采用原料氢气再生,在一干燥塔再生的同时,另一干燥塔继续进行工作。2.水电解制氢装置的用途与技术参数

表1制氢装置主要技术参数表

2.1 设备的用途

CNDQ系列水电解制氢干燥装置是中国船舶重工集团公司第七一八研究所新研制

成功并独家生产的全自动操作的制氢干燥设备,其主要技术指标达到或超过九十年代末世界

186

先进水平,适用于化工、冶金、电子、航天等对氢气质量要求高的部门,是目前国内最先进的并可替代进口的制氢设备。

2.2 主要技术参数

CNDQ5~10/3.2型水电解制氢干燥装置的主要技术参数如表1

本装置采用微机控制,对本装置的主要的主要参数:压力、温度、氢氧液位差可进行自动调节;对干燥器的再生时间及再生温度进行自动控制。对装置的工作压力、温度、氢液位、氧液位、氢气纯度能集中显示;在干燥器再生开始及结束事,有自动声光报警。若氢阀后压力、冷却水压力、气源压力、氢氧液位上下限、氢氧纯度产生一定的偏差事能自动声光报警;若装置的主要参数压力、温度、氢氧液位、碱液循环量、气源压力偏离正常值太大,又不能及时处理事,该装置能自动声光报警停车;为了进一步提高本装置的安全运行系数,装置的主要参数压力,设置了双重独立系统,当系统压力控制失灵,装置的运行状态达到危险值时,该独立系统可使装置自动声光报警并停车。原料水补充有自动和手动两种方式。

3 水电解制氢装置结构

本装置由框架一、整流柜、控制柜、配电装置、计算机管理系统、框架二、框架三等几部分组成。

3.1 框架一

框架一由电解槽、氢、氧分离器、氢洗涤器、循环泵、干燥器、冷却器、汽水分离器等组成,电解槽为压滤式双极性结构,一端下部有进液管,另一端上部有氢气、氧气及碱液出口管,中间极板为正极,两端极板为负极。

3.2整流柜

整流柜由整流变压器,整流装置组成,用于供给电解所需直流电源。使用方法详见“可控硅整流装置使用说明书”。

3.3控制柜及计算机管理系统

控制柜由下位机、电磁阀、安全栅、测量仪表及控制仪表组成,计算机管理系统主要由上位机及打印机组成。能够实现自动控制、自动检测、自动存罐。显示、故障报警、连锁、自动开机与停机等功能。

3.4 配电装置

配电装置一般由配电柜和动力柜组成,用于对制氢系统所有动力装置的供电,对循环泵,加水泵、风机等动力设备的启停进行控制。

3.5 框架二

框架二为氢气分配装置,与制氢装置、储氢罐及发电机供氢管道相连接。

187

3.6框架三

框架三用于碱液的配制和储存、原料水的储存以及为制氢装置提供原料水及碱液。

4 水电解制氢装置工艺流程

水电解制氢装置工艺流程详见附录一工艺流程图。

4.2 电解液循环系统

从电解槽出来夹带氢气和氧气的碱液在氢分离器和氧分离器中,在重力作用下分别与氢气、氧气分离,经蛇管冷却后,电解液通过氢、氧分离器底部的连通管经过过滤器进入循环泵,然后进入电解槽形成了电解液循环系统。

4.3 补充系统

4.3.1 补充原料水

水箱中的水通过加水泵经过止回阀H1、球阀Q5被注入氢洗涤器,先供冷却洗涤,然后通过溢流管流入氢分离器,经循环泵送入电解槽,不断地补充电解消耗的原料水。

4.3.2 补充碱液

水电解过程中,碱起到增加电导作用,理论上不消耗碱,正常运行中一般不需补充碱,如确需补充碱时,可通过加水泵经过止回阀H2、球阀Q1直接泵入碱液循环系统中。

注意:在补碱液时,应关闭补水阀Q1,避免碱液加入氢洗涤器内。

4.4 冷却水系统

冷却水共分四路

第一路:进入整流柜以冷却可控硅整流元件。

第二路:通过冷却水调节阀分别进入氢、氧分离器内部蛇管,以冷却循环碱液,从而达到控制系统工作温度的目的。

第三路:通过球阀Q11进入气体冷却器内部蛇管,以冷却氢气,此冷却水为常流水,由Q11调节流量大小。

4.5 氮气吹扫系统

通过J1,J7向系统内充氮气,用于系统的气密试验与开机前的氮气吹扫。当使用氮气时用软管与氮气源临时连接,不用金属管道与氮气管道气源固定连接。

4.6 排污系统

排污管道共分三处

第一处:框架一的排污口(排污阀Q12)。

第二处:通过球阀Q7、Q8排出气水分离器中的水。

第三处:为框架三排污口。

188

第二章安装

1 制氢站

1.1 制氢站的设计应符合GB50177-93《氢氧站设计规范》。

1.2 制氢装置的安装:

制氢间:放置框架一和框架二。

整流控制间:放置控制柜、整流柜、配电装置、微机等。

辅助间:放置框架三;

房间的数量、设备布局,使用单位或设计院可根据当地具体情况,参照《氢氧站设计规范》作相应改变。

1.3 制氢间的要求

制氢间应为单层不可燃材料建筑。制氢间应设置必要的泄压面积,泄压面积与厂房的比值(m2/m3)一般采用0.05-0.10。门窗及轻质墙体可作为泄压面积,泄压面积应布置合理,并应靠近爆炸部位,不应面对人员集中的地方和交通要道。制氢站的防雷接地和电器防爆的要求按照《氢氧站设计规范》的规定执行。制氢间室温不应低于15℃。

制氢间高度不低于5米,门窗向外开。制氢间顶棚应设适当数量的通风孔,通风孔直径不小于200mm,外设防雨帽,下缘与顶棚平齐并设置拉线活门以利于冬季保温,通风孔应设在顶棚最高处。

为了便于安装维修,制氢间应设行车,起重能力应大于框架一的重量。

制氢间的地板应耐碱,并设有排污下水道,便于污水排放。

制氢间应设有供系统吹扫试压用的氮气管道以及自来水管和水池。

2 工艺部分

2.1 水电解制氢装置参照工艺流程图安装。各技术参数及要求见表1。

2.2 框架一和框架三之间的管路一般应沿地沟敷设,框架一和框架二管路宜架空设置,各管路的长度尽可能短,并减少弯曲,以减少阻力。

2.3 整流柜与电解槽的连接电缆应沿地沟敷设并与各管路地沟分别设置;控制电缆应架空敷设,若不能架空敷设,控制电缆与动力电缆应沿不同地沟敷设或采取屏蔽措施。电缆地沟应考虑排水。

2.4 氢气、氧气放空管出口应分别在制氢间两侧,距离大于10m,高出房脊1.5m以上。管口应考虑防雨,氢放空口应装阻火器。

2.5 控制柜与框架一之间距离不能过远。控制柜与框架一实际距离不大于20米。

2.6 安装框架一、框架三的基础应高出地面一定高度,详见各设备的基础图。

189

190

2.7 主要设备及安装尺寸

2.7.1 框架一重为W 吨,外形尺寸长×宽×高=2400×1800×2200mm,安装时将电解槽进碱液端地脚螺栓卸下,另一端固定, 以利于伸缩。气液处理器与独立封闭地线的连接至少有两处,接地电阻不大于4Ω,地线的截面积不小于160mm 2。框架一基础地脚安装尺寸如图1,其中W 数据如表2。 表2

2.7.2 框架三重量为270kg,外形尺寸为2000X1400X1200,其地脚螺栓孔安装尺寸如图2:

3 控制部分

3.1 供电供气要求

控制柜所需电源总功率不小于7KW,三相四线制供电。进柜供电电缆,详见相应的控制柜外部接线图。

图3图4控制柜选用KG-221型,外形尺寸为长×宽×高=1000×900×2100mm,其地脚螺栓孔尺寸如图3:

控制柜可不设基础,直接置于线缆地沟之上,并要有良好的接地,接地电阻小于4Ω。

3.3

控制柜各外接管线按照控制柜外部电气接线图连接。外接电气管线均从控制柜底部进线。

3.4 控制柜与框架一之间的电线、电缆敷设一定要注意弱电和强电分开铺设,以免相互干扰。

3.5 控制柜与框架三之间的水泵电源线以及控制柜与整流柜之间的信号电缆可预埋穿线管。

3.6 微机应尽量靠近控制柜摆放,它们之间的通信电缆可沿地沟敷设或架空敷设。

4 整流部分

4.1 整流部分由整流柜组成。

4.2 整流柜的安装

整流柜重量500kg,外形尺寸为1000×900×2100(宽×深×高)mm,其地脚螺栓孔尺寸如图4:

整流柜跨于地沟之上,进出电缆从整流柜底部进入地沟与电解槽连接。

5 配电装置

5.1 配电装置一般由配电柜和动力柜组成。

5.2 配电装置的外形尺寸和基础尺寸及安装要求详见《CNDQ系列水电解制氢装置设计资料》。

5.3 配电装置的外接管线

配电装置的外接管线均从柜体底部进入地沟与其他柜体的相应端子连接。

第三章操作规程

1 工艺系统开机前的准备

1.1 制氢系统的清洗:

水电解制氢设备在正式投入运行前应对系统进行清洗,以去除存留在各部件内部的机械杂质。

1.1.1 将水箱、碱箱清洗干净,置框架三所有阀门为关闭状态。

1.1.2 打开Ⅲ-Q1,向碱箱内注满原料水后,关闭Ⅲ-Q1。

1.1.3 打开Ⅲ-Q4、Q15、J3、J4,关闭Q13、Q9,依靠碱箱内水位高度自流入系统,打开J2

191

及循环泵排气阀,待流出水后,即表明水泵内已充满水,关J2及循环泵排气阀,打开J1,启动循环泵,慢慢打开J12,碱箱中之原料水打入系统,待J1流出水后,关闭J1,当液位升至氢、氧分离器液位计中部时,关闭J12, 停泵,关闭Ⅲ-Q4、Q15(循环泵使用方法,详见其使用说明书)。

1.1.4 打开Q13、J2,待气排净后,关闭J2,启动循环泵,打开J12至最大,冲洗系统一小时。

1.1.5 关闭J12,停循环泵。关闭Q13,打开Q9及Ⅲ-Q5和Ⅲ-Q6,启动循环泵,慢慢打开Q14,将污水打入碱箱内排掉,之后将碱箱清洗干净。或者打开J3、J4、Q12,将污水排入地沟。

1.1.6 按上述方法反复进行2~3次,直至排出液清洁为止。

1.2 气密检验

设备安装完毕后,需对制氢系统进行全面的气密检验。

1.2.1 按1.1.3中叙述方法将原料水打入制氢系统至分离器液位计中部。

1.2.2 将氮气源与J1、J7连接,关闭制氢干燥系统与外部连接的所有阀门,打开系统内所有阀门,通过J1、J7向系统内送气并使系统压力缓缓升至系统工作压力,并关闭J1、J7,检查所有阀门、接头、法兰及管路焊口部位有无漏气以和漏液现象。待确认不漏后,保压12小时,泄漏量平均每小时不超过0.5%P为合格(P为系统工作压力见表1)。

1.2.3 慢慢打开J2及循环泵排气阀,将气排净后关闭J2及循环泵排气阀,启动循环泵,将系统内原料水打循环,清洗系统一小时,然后通过氢氧旁通阀J3、J4将制氢系统压力卸至常压,通过J7将干燥系统压力卸至1.0MPa。之后按照1.1.5将水放掉。

1.3 电解液的配制

在准备工作完成后,整套装置首先要用稀碱(15%KOH)试车,对系统进行清洗。稀碱运行后把稀碱排空,然后充入浓碱(30%KOH,千分之二的五氧化二钒)进行正式运行。配制碱液的方法如下:

配制各型号所需电解液及KOH数量如表3:

表3:

打开Ⅲ-Q1,根据所配电解液的体积,往碱箱中注入适当体积的原料水,关闭Ⅲ-Q1。打开Ⅲ-Q4、Ⅲ-Q5、Q15,此时其它阀门处于关闭位置,打开循环泵出口的J2及循环泵排气阀排

192

气,在流出液体后关闭J2及循环泵排气阀,启动循环泵,慢慢打开Q14,使循环量最大。把碱箱盖打开,将氢氧化钾慢慢地倒入碱箱中,待其完全溶解后,用比重计测量配制电解液的比重,使之达到要求。(配制浓碱时,在刚完全溶解的溶液中加入千分之二的五氧化二钒)当溶液冷却至50℃以下时,可通过循环泵把配制好的碱液打入系统内部。打开Ⅲ-Q4、Q15、J3、J4;关闭Ⅲ-Q5、Q14,Q13、J12。检查阀门位置无误后,打开J2排气,再流出碱液后关闭J2,然后启动循环泵,慢慢打开J12,把碱液打入电解槽和氢、氧分离器,当液位升至分离器液位计四分之一处时,关闭J12,停泵。

如碱箱中有剩余少量碱液,可通过补碱系统将剩余碱液泵入碱液循环系统中。

碱箱中的碱液不得长期存放,一般不超过1个月。

1.4 氮气吹扫,将制氢系统与外部连接的所有阀门关闭,然后打开J1和J7向装置内充入氮气使系统压力升至1MPa,关闭J1、J7,通过J3、J4及J7,将系统压力减压至0.1~0.2MPa。重复操作2~3次。

1.5 氢中氧、氧中氢两分析仪器的调试,详见其使用说明书。

1.6 检查各阀门的状态,打开系统冷却水进出口阀,整流柜的冷却水阀门,所有压力表截止阀以及Q1、Q2、Q3、Q4、Q5、Q13。关闭Q6、Q9、Q12、Q14、Q15、J3、J4、J5、J6、J12以及所有排污阀、排气阀。

1.7检查各极框之间,正负极间有无短路或有金属导体,发现后必须排除。

2 整流装置开机前的准备

2.1 整流装置的检查见《可控硅整流装置使用说明书》。

2.2 仔细检查整流变压器各接头及整流柜各回路,严防短路。

2.3 将整流柜“自动/手动”转换开关转到“手动”档,将“稳压/稳流”转换开关转至“稳压”档。

3 自控开机前的准备

3.1 气动部分

3.1.1 用洁净的压缩空气吹扫仪表气源及自动阀气源管路。

3.1.2 对气源管路进行检漏,特别是讯号管路不能有漏点。

3.1.3 接通气源,看气源压力是否在正常值范围,把气源压力的下限报警值整定在0.5MPa,把供给电气转换器的空气过滤减压阀的压力整定在0.14MPa,把供给气动球阀的空气过滤减压阀压力整定在0.4MPa。

3.2 电气部分

3.2.1 用万用表检查各回路有否短路故障,检查各熔断器是否正常;检查各指示灯有无损坏;

193

检查气液处理器的接地电阻是否小于4Ω。

2.2.2 循环泵开关置于"自动"位置,加水泵开关置于"手动"位置。

2.2.3 接通总电源。

2.2.4 新装置的碱液在未进分离器之前,调整各仪表的零位。

2.2.5 检查氢氧分离器液位是否在适当的位置。

2.2.6 把系统压力开关、氢阀后压力开关的参数整定到规定数值。

2.2.7 把氧槽温联锁整定在92℃。

2.2.8 检查氢中氧分析仪一次表中的干燥剂、硼酸片及稳流瓶中的水是否加好。

2.3 上位机的操作详见《制氢及干燥装置计算机监控系统使用说明书》。

4 稀碱试车

在上述准备工作完成后,便可进行稀碱试车。目的是为了进一步清洗电解槽,对控制系统进行故障排除与控制参数设定与调整

4.1 启动循环泵

通过上位机启动循环泵,调节J12阀调整循环量,制氢装置系统碱液循环量参考表5:制氢装置系统碱液循环量参考值表5

4.2 点击上位机上“开机”命令。

4.3 开启整流柜

4.3.1 手动开启整流柜

接通主电源,按“触发启动”,按顺时针方向旋转“电压给定”,注意观察氢、氧分离器液位,防止液位上升太快和液位偏差过大。当输出电压达到额定值时,停止调节输出电压。随着槽温升高,电流随之上升,当电流达到额定值时,将“电压给定”逆时针调至零位,按“触发停止”,然后把“稳压/稳流”开关转至“稳流”档,按“触发启动”按钮,调“电流给定”至额定电流。(详细操作见以整流柜说明书)

4.2.2 整流柜的自动操作

将整流柜“自动/手动”转换开关转到“自动”档,按“触发启动”。当自动运行时,整流柜输出电流可在上位机中手动调节,也可由上位机自动控制增加电流,直至额定值。

4.3 对系统控制参数根据设备运行情况进行整定。

4.4 在系统运行时,系统压力和槽温可由上位机自动给定;也可由键盘输入数值给定。

4.5 气体纯度分析

194

系统运行稳定后,打开J5、J6可进行气体纯度分析。详细操作方法见《氧分析仪使用说明书》和《氢分析仪使用说明书》。

4.6 停机

在槽温达到额定工作温度,槽压达到额定工作压力两小时后开始停车。点击上位机上“停机”,先停整流柜,然后进行泄压,使系统压力降为零。冷却水调节阀开支最大,30分钟后,关闭循环泵。按1.4对系统进行氮气吹扫1~2次。切断控制柜、整流柜的电源、气源、水源。

4.7 按1.1.5将系统内稀碱排净,关闭框架一与外部连接的所有阀门。

4.8 清洗过滤器,拆下过滤器盖,取出滤芯用自来水冲洗干净,再用原料水清洗一遍。装入过滤器,装好法兰盖,确认不漏即可使用。

表6 制氢装置控制系统参数设定参考值

4.9 稀碱运行时各主要参数均受到监控,保证装置安全运行。表6中列出了各项参数的报警联锁点参考值。

4.10 当装置发生故障时,可通过J5、J6手动泄压,此过程不可过快,泄压时注意氢、氧分离器液位变化,应尽量使两分离器液位平衡。

5 浓碱正式运行

5.1 将配制好的浓碱按1.3打入系统中。

5.2 按1.4进行氮气置换2~3次。

5.3 检查冷却水、压缩空气以及原料水是否正常,检查分离器液位是否正常。

5.4 接通配电装置中控制柜、整流柜电源,启动上位机。

5.5 按1.6检查各阀门状态。

5.6 控制柜上循环泵开关置于"自动"位置,加水泵开关置于"手动"位置。

5.7 将整流柜“自动/手动”转换开关转到“自动”档,将“稳压/稳流”转换开关置于“稳流”位置

5.8 启动循环泵,调整碱液流量至规定值。

195

5.9 点击上位机上“开机”命令。

5.10 接通整流柜主电源,按“触发启动”。

5.11 按4.4和4.5进行操作。

5.12 系统运行平稳后,将“加水泵”转换开关和“氢贮罐/放空/自动”置于“自动”位置。

5.12 当气体的纯度达到要求后氢气即进入干燥器进行干燥除湿。

干燥器首次使用时,必须进行预再生。再生气进口温度为250~350℃,再生加热终止温度为180℃,自然冷却至常温。正常情况下被再生一次的干燥器可认为再生好,能够投入干燥工作。用露点仪检验氢气湿度,是判断干燥器是否再生充分最可靠的办法。

5.13 氢气露点达到要求后即可充罐,充罐自动进行。

5.12 停机按4.6进行。

5.13 遇到紧急情况,首先切断整流柜电源,然后通过J5、J6泄压,此过程不可过快,泄压时注意氢、氧分离器液位变化,应尽量使两分离器液位平衡。

第四章设备维护安全事项与故障的排除

1 设备维护

1.1 在正常运行状态下,操作人员经常观察运行情况,正确操作,及时记录各参数及异常情况,一般每1-2小时记录一次,遇到异常情况应及时停机处理。

1.2 每2个月测一次碱液比重,如氢氧化钾浓度低于25%,则应补充氢氧化钾。

1.3 注意碱液循环量不能过大或过小,通过J12调节循环量,使其保持在额定范围内。

1.4 经常观察分析仪一次仪表的气体流量和干燥剂是否变色,及时调节流量和调换干燥剂及硼酸片(详见分析仪说明书)。

1.5 经常观察水箱内有无原料水以及冷却水流量是否正常。定期分析原料水的电导率,应满足使用要求。

1.6当氢、氧分离器温度差大于10℃(位于分离器下部),或槽温与分离器温度差30℃以上时,也应清洗过滤器。

1.7 每隔一年应对全套装置检修一次(不拆电解槽)。

1.8 电解槽大修期不小于5年,大修时更换所有隔膜和密封垫片。

1.9 电加热元件为易损件,当发现损坏时应及时更换,更换后用氮气试压和吹扫。

1.10 长期使用后(2年以上〕干燥器内的干燥剂会有所减少,可通过干燥器填料口添满干燥剂,然后以氮气试压及吹扫。

1.11 长期使用后(2年以上)气水分离器和氢气过滤器会因尘粒堵塞造成阻力增加,应更换

196

滤芯。

1.12 阀门在运行一段时间后会发生外漏或内漏,应定期维护,内漏严重的阀门应更换。

1.13 干燥器运行5年以上,若干燥器有效工作时间达不到24h,可考虑更换干燥剂。

1.14 各仪器、仪表维护参见各自的使用说明书。

2 安全注意事项

2.1 制氢装置如闲置时间过长,超过半年以上,开机前应详细检查设备状态;

2.2 制氢间应通风良好,并采取相应的防爆措施,如防爆灯和安装报警器等;

2.3 凡是与氧、氢气接触的管道、阀门均应经过除油清洗处理;

2.4 装置运行时不得进行任何修理工作,如若进行修理应先停车,分析制氢间的氢气浓度是否低于爆炸极限,同时必须通氮气以排除装置和管道中的氢和氧气,分析合格方能焊接;

2.5 制氢间严禁明火、穿钉子鞋,操作人员应穿防静电工作服。严禁金属铁器等物相撞击,以免产生火花;

2.6 制氢间应设有消防器材,按数量、要求就位;制氢间应备有2%硼酸溶液,操作人员应配置防护眼镜和耐碱手套等防护用具;

2.7 严禁氢气、氧气由压力设备及管道内急剧放出,以免造成爆炸或火灾;

2.8 氢气系统运行时,不准敲击,不准带压修理,严禁负压;

2.9 动植物、矿物油脂和油类不得落在与氧气接触的设备上。在操作和维修时,手和衣物不得沾有油脂;

2.10 保持电解槽表面清洁,严防任何金属导体或其它杂物掉到电解槽上,。严禁碱液掉到极板间或极板与拉紧螺栓之间;

2.11 万一出现事故或设备大量漏碱或漏气体时,应立即切断电源并进行通风,分析原因,尽快排除故障;

2.12 用肥皂水或气体防爆检测仪检查氢、氧系统、管道、阀门是否渗漏,严禁使用明火检查;

2.13 制氢间不得存放易燃、易爆物品,禁止无关人员入内。

2.14 注意氢气的含氧量不得高于0.5%,若高于0.5%氢气不得进入干燥部分。

2.15 再生进气温度不得超过350℃,再生加热终止温度不得超过250℃。

2.16 没有氢气流过电加热器时禁止长时间(15s〕开启电加热器,以防烧毁电加热元件。2.17 装置运行时冷却水不得中断。

2.15 各设备、仪表应有良好接地。

3 故障及排除方法

3.1 设备常见故障与排除

197

198

199

200

注:在4℃时水的比重为1.0,d415为溶液在15℃时与4℃水的相对比重。

附录三

用户自备清单

制氢装置安装前,用户除自备充足安装中所需的各种规格管路,自控仪表信号管线、气源管线、输电铜排、动力线等外,还必须按每一套制氢装置准备好下列清单所列各种物资器材及备件。

201

附录四:

附录五:

202

注:*LT-0301,LT—3-3原为0-6Kpa,改为—10Kpa.

*LT-0303也控制加水泵,控制点:52%-60%(可根据情况修改)。

203

电解水制氢到底有啥优势

电解水制氢到底有啥优势 尊敬的各位领导,各位专家,各位朋友,大家上午好。非常荣幸能够被邀请来参加2019年氢能发展与技术大会。我下面给大家粗略的介绍一下关于氢能发展,把主要的方面放在电解水方面,氢能可能是我们人类终极的能源,这个观点也被普遍的认可。我今天的报告是“氢能发展及电解水制氢”,主要是集中在目前的现状,我们的挑战以及前景。 第一部分氢能发展的必要性 我们首先讲氢能的发展的必要性。我们知道尤其我们现在的运输、汽车、船舶,我们烧的就是汽油和柴油,烧汽油和柴油,那就排放出了二氧化碳、一氧化碳、氧化氮、氧化硫等等污染物到我们的大气中,造成了污染,对我们人类的可持续发展造成了威胁。我们看看针对这种情况,目前世界各个国家都在发展新能源,我们知道人类未来的能源就是太阳能、风能、水电能、生物能、地热能等等。刚才任秘书长说,我们目前的石油,就是我们说的化石能源,我专门有一个报告关于化石能源的现状,就是说这个化石能源按照目前的燃烧速度的话,包括天然气、石油、碳以及核电,最多能够烧200-300年。所以发展新能源,利用太阳能、风能、电解能、生物能等等产生电能,将是我们未来的终极能源,以氢气或者是液态的氢气、气态的氢气为主要能源的载体是氢能经济的可持续发展的必然。 我们知道这个里边氢气作为一个载体,就要牵扯到电化学能源的存储和储存的技术,它在氢能利用中发挥中心的作用,核心的作用。从太阳能、风能以及水电能,发电以后产生的电能,通过电化学的方法制氢,产生氢气把它储存起来,因为太阳能、风能,这些能都是我们的气候影响的。比如说太阳能,今天没有太阳,产生的电能就少,它这个能源是一种随着气候的波动而变化的能源,所以说这种能源在以前就把它叫做垃圾能源,但是现在由于我们有储能技术,随着技术的发展要充分的利用起来。最重要的一个方法就是把它储起来,储起来我们可以通过电化学的方法,把它产生的电能变成氢气,然后用氢气通过燃料电池产生电,再驱动我们的汽车运输,这种电我们叫是一种可携带的电,而不是可携带的电。比如墙上插头用的电,这叫做有有线电,我们用的叫做没有线的电能,这是非常重要的。 当然我们也可以通过电池和超级电容器把它储存起来,转变成我们的家用。比如说我们手机里边的锂电池等等这些,也可以。但是作为一个能源的最大的未来的储存,还是要制氢。我们看看为什么氢能利用是未来发展的必然趋势? 首先目前世界各个国家都在力图发展氢能来解决能源的安全问题,掌握国际能源领域的制高点,我们可以看到,目前世界各个发达国家,包括发展中国家都在做这个事情。国际能

水电解制氢的最新进展与应用

水电解制氢的最新进展与应用 一、绿色能源氢能及其电解水制氢技术进展 摘要:随着环境污染日益严重,越来越多的研究关注于绿色无污染能源,其中氢能清洁无污染、高效、可再生,是未来最有潜力的能源载体。利用电解水技术制氢是目前最有潜力的技术,也是一种经济有效的技术。绍了氢能的研究现状和水电制氢技术,着重介绍了碱性电解槽、子交换膜电解技术以及固体氧化物水电解技术,对现有技术进行了总结。 1.氢能的研究现状 美国: 1990年,美国能源部(DOE)启动了一系列氢能研究项目。 2001年以来,美国政府制订了《自有车协作计划》、《美国氢能路线图》。 2004年2月,美国能源部出台的“氢态势计划”,并提出2040年美国将实现向氢经济的过渡。 美国能源部、国防部、交通部、国家科学基金、美国宇航局和商务部以及8个国家实验室、2所大学和19 个公司签署了研发合同。 欧盟: 2001 年11 月启动的“清洁能源伙伴计划”,欧盟拨款1850万欧元支持汉堡、伦敦等10个城市的燃料汽车示范项目。 2008年11 月初欧盟、欧洲工业委员会和欧洲研究社团联合制订了2020年氢能与燃料电池发展计划。 日本: 1993年就制订了“新阳光计划”,预计到2020年投资30亿美元用于氢能关键技术的研发。并计划在2020年实现燃料电池汽车500 万辆,建成燃料电池发电系统10000MW。 我国: 2003年11月我国加入了“氢能经济国际合作伙伴(IPHE)”,成为IPH首批成员国之一。《国家中长期科学和技术发展规划纲要(2006-2020年)》和《国家“十一五”科学技术发展规划》中都列入了发展氢能和燃料电池的相关内容。 相对而言,我国在氢能和燃料电池汽车领域的技术研发工作开始得较晚,这方面的标准体系尚未形成,然而通过国内研究单位的协作努力,在材料、基础设施、燃料电池堆、整车集成等方面都已取得阶段性进展,目前已有多家企业与联合国发展计划署和全球环境基金合作,开展燃料电池客车的公交线路试运行。 2 水电解氢能的制备技术进展 发展到现在,已有三种不同种类的电解槽,分别为碱性电解槽#聚合物薄膜电解槽和固体氧化物电解槽。 ①碱性电解槽 碱性电解槽是发展时间最长、技术最为成熟的电解槽,具有操作简单、#成本低的优点,其缺点是效率最低,槽体示意图如图1 所示。国外知名的碱性电解水制 氢公司有挪威留坎公司、格洛菲奥德公司和冰岛雷克雅维克公司等。电解槽一般采 用压滤式复极结构或箱式单极结构,每对电解槽压在1.8~2.0V,循环方式一般采用 混合碱液循环方式。

电解水制氢的原理

电解水制氢的原理

————————————————————————————————作者:————————————————————————————————日期:

电解水制氢的原理 字体大小:大- 中- 小SBEPL发表于09-06-03 06:37 阅读(1274) 评论(0) 日志 复制网址隐藏签名档大字体 第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶 液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程:

水电解制氢设备系列说明书

水电解制氢设备 操 作 使 用 手 册 \ 苏州竞立制氢设备有限公司

1、简述 1.1、氢气的性质和用途: 氢是自然界分布最广的元素之一,它在地球上主要以化合状态存在于化合物中。在大气层中的含量却很低,仅有约1ppm(体积比)。氢是最轻的气体,它的粘度最小,导热系数很高,化学活性、渗透性和扩散性强(扩散系数为0.63cm2/s,约为甲烷的三倍),它是一种强的还原剂,可同许多物质进行不同程度的化学反应,生成各种类型的氢化物。 氢的着火、燃烧、爆炸性能是它的特性。氢含量范围在4-75%(空气环境)、4.65-93.9%(氧气环境)时形成可爆燃气体,遇到明火或温度在585℃以上时可引起燃爆。 压力水电解制出的氢气具有压力高(1.6或3.2MPa)便于输送,纯度高(99.8%以上)可直接用于一般场合,还可以通过纯化(纯度提高到99.999%)和干燥(露点提高到-40~-90℃)的后续加工,可以作为燃料、载气、还原或保护气、冷却介质,广泛应用于国民经济的各行各业。 1.2、水电解制氢原理: 利用电能使某电解质溶液分解为其他物质的单元装置称为电解池。 任何物质在电解过程中,在数量上的变化服从法拉第定律。法拉第定律指出:电解时,在电极上析出物质的数量,与通过溶液的电流强度和通电时间成正比;用相同的电量通过不同的电解质溶液时,各种溶液在两极上析出物质量与它的电化当量成正比,而析出1克当量的任何物质都需要1法拉第单位96500库仑(26.8安培小时)的电量。水电解制氢符合法拉第电解定律,即在标准状态下,阴极析出1克分子的氢气,所需电量为53.6A/h。经过换算,生产1m3氢气(副产品0.5m3氧气)所需电量约2393Ah,原料水消耗0.9kg。 将水电解为氢气和氧气的过程,其电极反应为: 阴极: 2H 2O + 2e →H 2 ↑+ 2OH- 阳极: 2OH-- 2e →H 2O + 1/2O 2 ↑ 总反应: 2H 2O →2H 2 ↑+ O 2 ↑ 由浸没在电解液中的一对电极,中间隔以防止气体渗透的隔膜而构成水电解池,通以一定电压(达到水的分解电压1.23V和热平衡电压1.47V以上)的直流电,水就发生电解。根据用户产量需求,使用多组水电解池组合,减小体积和增加产量,就形成水电解槽的压滤型组合结构。 本公司生产的压力型水电解槽采用左右槽并联型结构,中间极板接直流电源正极,两端极板接直流电源负极,并采用双极性极板和隔膜垫片组成多个电解池,并在槽内下部形成共用的进液口和排污口,上部形成各自的氢碱和氧碱的气液体通道。由电解槽纵向看,A、B系列的氧气出口设计在中心线靠直流铜排一侧(氧铜侧),C、D、E、F系列的氢气出口设计在中心线靠直流铜排一侧(氢铜侧)。 我公司生产的压力型水电解槽,目前标准产品操作压力为1.6MPa和3.2MPa两种。具有结构紧凑,运行安全,使用寿命长的特点,电解液采用强制循环,电解消耗的原料水由柱塞泵自动补充,相关参数实现自动监测和控制。。正常生产时采用30%KOH水溶液作为电解液,槽温控制在85-90℃左右,兼顾隔膜垫片的使用寿命和降低能耗的要求。 水电解制氢的电解需要低电压、大电流的可调直流电源。工业上采用带平衡电抗器的

电解水制氢

水电解制氢 水电解制氢是一种较为方便的制取氢气的方法。在充满电解液的电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。 中文名水电解制氢 运用试剂碱性电解液或纯水 定律法拉第定律 1 其化学反应式如下: ①、碱性条件: 阴极:4H2O+4e-=2H2↑ +4OH- 阳极:4OH--4e-=2H2O+O2↑ 总反应式:2H2O=2H2↑+ O2↑ ②、酸性条件: 阳极:2H2O-4e-=O2↑ +4H+ 阴极:4H++4e-=2H2↑ 反应遵循法拉第定律,气体产量与电流和通电时间成正比。 2 固体聚合物电解质,SPE电解水,最初用于向宇宙飞船或潜水艇供氧,或在实验室作为氢气发生器(可用于气体色谱)。核电大规模发展以后,人们利用SPE技术在用电低谷电解水产生氢,在供电高峰以SPE氢-氧燃料电池向外供电,使之成为能量贮存转换装置通过直接电解纯水产生高纯氢气(不加碱),电解池只电解纯水即可产氢。通电后,电解池阴极产氢气,阳极产氧气,氢气进入氢/水分离器。氧气排入大气。氢/水分离器将氢气和水分离。氢气进入干燥器除湿后,经稳压阀、调节阀调整到额定压力(0.02~0.45Mpa 可调)由出口输出。电解池的产氢压力由传感器控制在0.45Mpa左右,当压力达到设定值时,电解池电源供应切断;压力下降,低于设定值时电源恢复供电。 3 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产 电解水 水(H2O)被直流电电解生成氢气和氧气的过程被称为电解水。电流通过水(H2O)时,在阴极通过还原水形成氢气(H2),在阳极则通过氧化水形成氧气(O2)。氢气生成量大约是氧气的两倍。电解水是取代蒸汽重整制氢的下一代制备氢燃料方法。 中文名 电解水 外文名

电解水制氢的原理

第二节电解水制氢得原理一、氢气得工业制法 在工业上通常采用如下几种方法制取氢气:一就是将水蒸气通过灼热得焦炭(称为碳还原法),得到纯度为75%左右得氢气;二就是将水蒸气通过灼热得铁,得到纯度在97%以下得氢气;三就是由水煤气中提取氢气,得到得氢气纯度也较低;第四种方法就就是电解水法,制得得氢气纯度可高达99%以上,这就是工业上制备氢气得一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。?对用于冷却发电机得氢气得纯度要求较高,因此,都就是采用电解 水得方法制得。?二、电解水制氢原理 所谓电解就就是借助直流电得作用,将溶解在水中得电解质分解成新物质得过程。?1、电解水原理?在一些电解质水溶液中通入直流电时,分解出得物质与原来得电解质完全没有关系,被分解得就是作为溶剂得水,原来得电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。?在电解水时,由于纯水得电离度很小,导电能力低,属于典型得弱电解质,所以需要加入前述电解质,以增加溶液得导电能力, 使水能够顺利地电解成为氢气与氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾就是强电解质,溶于水后即发生如下电离过程:? 于就是,水溶液中就产生了大量得K+与OH—。?(2)金属离子在水溶液中得活泼性不同,可按活泼性大小 顺序排列如下: K〉Na〉Mg>Al>Mn>Zn>Fe>Ni〉Sn>Pb〉H〉Cu〉Hg>Ag>Au?在上面得排列中,前面得金属

比后面得活泼。 (3)在金属活泼性顺序中,越活泼得金属越容易失去电子,否则反之。从电化学理论上瞧,容易得到电子得金属离子得电极电位高,而排在活泼性大小顺序前得金属离子,由于其电极电位低而难以得到电子变成原子。H+得电极电位=—1、71V,而K+得电极电位=—2、66V,所以,在水溶液中同时存在H+与K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。?(4)水就是一种弱电解质,难以电离.而当水中溶有KOH时,在电离得K+周围则围绕着极性得水分子而成为水合钾离子,而且因K+得作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向得水分子一同迁向阴极,这时H+就会首先得到电子而成 为氢气。?2、水得电解方程 在直流电作用于氢氧化钾水溶液时,在阴极与阳极上分别发生下列放电反应,见图8—3. ?图8—3 碱性水溶液得电解(1)阴极反应。电解液中得H+(水电离后产生得)受阴极得吸引而移向阴极,接受电子而析出氢气,其放电 反应为: ?(2)阳极反应。电解液中得OH-受阳极得吸引而移向阳极,最后放出电子而成为水与氧气, 其放电反应为: ?阴阳极合起来得总反应式为:?电解? 所以,在以KOH为电解质得电解过程中,实际上就是水被电解,产生氢气与氧气,而KOH只起运载电荷得作用。?三、电解电压?在电解水时,加在电解池上得直流电压必须大于水得理论分解电压,以便能克服电解池中得各种电阻电压降与电极极化电动势.电极极化电动势就是阴极氢析出时得超电位与阳极氧极出时

水电解制氢装置工作原理结构及工艺流程

水电解制氢装置 工作原理结构及工艺流程 1.水电解制氢装置工作原理 水电解制氢的原理是由浸没在电解液中的一对电极中 间隔以防止气体渗透的隔膜而构成的水电解池 ,当通以一定 的直流电时,水就发生分解,在阴极析出氢气 ,阳极析出氧气。 其反应式如下: 阴 极: 2H 2O +2e →H 2↑+2OH - 阳 极: 2OH - -2e →H 2O +1/2O 2↑ 直流额定电压(V ) 28 56 总反应: 2H 2O →2H 2↑+O 2↑ 产生的氢气进入干燥部分,由干燥剂吸附氢气携带的水 分,达到用户对氢气湿度的要求。 本装置干燥部分采用原料氢气再生,在一干燥塔再生的 同时,另一干燥塔继续进行工作。 2.水电解制氢装置的用途与技术参数

纯水耗量(kg/h) 5 10 主电源动力电源容量40 75 (KVA) 原料水水质要电导率≤5μs/cm 氯离子含量<2mg/l 悬浮求物<1mg/l 3 冷却水用量(m/h) 3 整流柜冷却水出口背压<0.1Mpa 电解槽直流电耗≤4.8KWh/m3H2 碱液浓度26~30%KOH 自控气源压力0.5~0.7Mpa 气源耗量 3.5m3/h 主电源动力电电压N380V50HzC相~220V50Hz 整流柜电源0.5KV380 三相四线50Hz 控制柜电源AC220V50Hz 冷却水温度≤32℃ 冷却水压力0.4~0.6MPa

冷却水水质≤6德国度 氢气出口温度≤40℃ 干燥温控温度250℃~350℃ 干燥加热终止温度180℃ 干燥器再生周期24h 环境温度0~45℃ 表1 制氢装置主要技术参数表 2.1设备的用途 CNDQ系列水电解制氢干燥装置是中国船舶重工集团 公司第七一八研究所新研制 成功并独家生产的全自动操作的制氢干燥设备,其主要技术指标达到或超过九十年代末世界先进水平,适用于化工、冶金、电子、航天等对氢气质量要求高的部门,是目前国内最先进的并可替代进口的制氢设备。 2.2主要技术参数 CNDQ5~10/3.2型水电解制氢干燥装置的主要技术参数 如表1

水电解制氢工序操作规程

水电解制氢工序操作规程 编制: 审核: 批准: 生效日期:2013年10 月

目录 第一节生产的目的及工作原理 一、生产的目的 二、工作原理 (一)电解工作原理.......................................... (二)纯化工作原理.......................................... 第二节质量标准及技术参数 一、原料质量标准 (一)脱盐水质要求:........................................ (二)氢氧化钾.............................................. (三)冷却水................................................ (四)电源.................................................. (五)氮气.................................................. (六)仪表气源.............................................. 二、工艺及设备技术参数 (一)电解槽工艺技术参数.................................... (二)纯化装置工艺技术参数.................................. 三、产品质量标准错误!未定义书签。 第三节工艺流程简介 一、制氢装置工艺流程简介 (一)碱液循环系统.......................................... (二)氢气系统.............................................. (三)氧气系统.............................................. (四)原料水补充系统........................................ (五)冷却水系统............................................ (六)充氮和氮气吹扫系统.................................... (七)排污系统 (八)整流系统 (九)控制系统 二、纯化系统工艺流程简介 (一)工艺流程简图.......................................... (二)工艺流程解释.......................................... 第四节电解液配置岗位操作法 一、制氢系统的操作 (一)开车前的准备 (二)、电解液的配制 (三)稀碱运行(1#电解槽为例,其它电解槽运行同1#电解槽) (四)浓碱运行(以1#电解槽为例,其他电解槽运行同1#) (五)自控部分的调试 (六)装置正常运行工作 (七)停车操作 (八)应急停车操作

电解水制氢的原理

日志 复制网址隐藏签名档大字体 第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶 液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程:

于是,水溶液中就产生了大量的K+和OH-。 (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位=-1.71V,而K+的电极电位=-2.66V,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。 图8-3 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其 放电反应为:

电解水制氢的原理

电解水制氢的原理 一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 于是,水溶液中就产生了大量的K+和OH-。 (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前

水电解制氢作业指导书

水电解制氢作业指导书ZDQ-120/1.5 编制:生产技术部 审批: 编号:DMZG/JL-52 河北东明中硅科技有限公司 2011年2月30日

第一章概述 1 设备的用途 ZQD系列水电解制氢装置是中国船舶重工集团公司第七一八研究所研制成功的自动化操作的制氢设备,其主要技术指标达到或超过世界先进水平,适用于化工、冶金、电子、航天等各种用氢量大、对氢气质量要求高的部门。 2 工作原理 水电解制氢的工作原理是由浸没在电解液中的一对电极,中间隔以防止气体渗透的隔膜而构成的电解池,当通以一定的直流电时,水发生分解,在阴极折出氢气,阳极析出氧气。其反应式如下: 阴极:2H2O+2e→H2↑+2OHˉ 阳极:2OHˉ-2e→H2O+1/2O2↑ 总体反应:2H2O→2H2↑+O2↑ 3 装置构成 水电解制氢装置由电解槽(1001)、气液处理器(1000)、水碱箱系统(1300)、整流系统、控制系统及其它辅助系统等组成。 注:供货范围根据用户具体的合同要求而定。 3.1电解槽(1001) 电解槽为压滤式双极性结构,是制氢装置中的主体设备。电解槽由若干个电解小室组成,每个电解小室由阴极、阳极、隔膜、绝缘垫片及电解液构成。端极板上部设有氢、氧气液出口管,用于导出氢、氧气体,下部设有碱液进口,用于补充电解液;中间正极框为正极,两端极板为负极。整流系统向电解槽提供直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。KOH(或NaOH)在水中的作用在于增加水的电导,本身不参加反应,理论上是不消耗的。 3.2气液处理器(1000) 气液处理器由氢气分离器1002、氧气分离器1003、氢气洗涤器1001、氧气洗涤器1005、氢侧换热器1006、氧侧换热器1007、碱液过滤器1009、碱液循环泵1M11及各类阀门、一次仪表、管路等组成,主要用来分离来自电解槽的氢气与碱液的混合物及氧气与碱液的混合物,经过冷却、分离、洗涤、除雾获取纯净的氢气和氧气。装置除在控制室设有集中显示的仪表外,还装有压力、液位、温度等现场仪表,用来显示设备运行的各主要参数,保证设备安全运行。 3.3水碱箱系统(1300) 水碱箱系统由水箱1301、碱箱1311、加水泵1M21及阀门等组成。水箱用来存储原料水,碱箱用来配制储存碱液。装置运行中,通过加水泵向系统中注入原料水,有时也通过加水泵向系统中适当补充碱液。 3.4 整流系统 整流系统由整流变压器1024和整流柜1022组成。整流变压器用来将高压电转变为适合于可控硅工作的电压,初级绕组接高压电、次级绕组接整流柜。整流柜用来将交流电转变为直流电,通过铜排为电解槽提供直流电。 3.5 控制系统 控制系统包括控制柜1020和上位机。 控制柜由PLC、二次仪表、安全栅、声光报警器及操作按钮、开关等构成。可实现对装置各种参数的自动检测、调节、故障报警与联锁、自动开机与停机等功能。

水电解制氢装置培训讲义(氢气纯化装置)

水电解制氢装置培训讲义 (纯化工艺部分) ?制氢工程部 2015-6-161 培训内容 概述 纯化流程 常见故障及排除方法 2015-6-162

概述 2015-6-163 1、催化脱氧 氢气中含有的氧杂质通常可采用催化转化的方法来去除。 脱氧催化剂大多是由具有高脱氧活性的金属(如钯脱氧的工作原理 脱氧催化剂大多是由具有高脱氧活性的金属(如钯、装置中使用的催化剂为钯金属--2015-6-164 装置中使用的催化剂为钯金属半导体体系,具有脱氧活性高、脱氧深度深、气体处理量大、强度高等特性,常温下即可催化反应发生,而且无需预处理(活化)和再生。脱氧深度可达生。脱氧深度可达1ppm 1ppm及以下。及以下。

2、脱氧器的结构 ?内筒:电加热元件 电缆接入口 a 口(气体入口) ?保温层 进入经电加热元 2015-6-165原料氢气从原料氢气从a a 口进入,经电加热元件加热后进入催化剂床层,氢气和氧气 在催化剂的作用下发生化合反应生成水, 水以气态的形式随氢气从水以气态的形式随氢气从b b 口流出脱氧 器。 3、温度控制 在催化剂床层的上部和下部各装有一个铂电阻。分别用来检测催化剂床层上部和下部的温度。 下部铂电阻检测温度达到设定温度时,会暂停电加热元2015-6-166 如果电加热元件已开启而没有通气,那么电加热元件产生的热量就无法散发出去,并且没有气流的传导,测温元件也不能及时将电加热元件的真实温度传至控制系统停止加热,造成电加热元件自身过热,直至烧断。

干燥器的工作原理 1、变温吸附干燥 变温吸附干燥技术在气体制取工业应用广泛。它是利解吸出来(即吸附剂的再生)。从而达到循环工作的目的。2015-6-167 解来即附剂从到循作 2、分子筛的吸附原理 分子筛是一类具有均匀微孔的硅铝酸盐化合物,其孔般 径相当于一般分子大小,由于微孔表面的分子或原子存在子的氢则不易被吸附而顺利通过微孔从而达到消除水分2015-6-168 子的氢则不易被吸附而顺利通过微孔,从而达到消除水分的目的。 分子筛的吸附作用属物理吸附,过程可逆。

电解制氢工序操作规程2

四川瑞能硅材料有限公司 CDI车间 电解制氢工序操作规程 编制:宋涛 审核: 批准:

生效日期:2010年10 月

目录 第一节生产的目的及工作原理 一、生产的目的 二、工作原理 (一)电解工作原理.......................................... (二)纯化工作原理.......................................... 第二节质量标准及技术参数 一、原料质量标准 (一)脱盐水质要求:........................................ (二)氢氧化钾.............................................. (三)冷却水................................................ (四)电源.................................................. (五)氮气.................................................. (六)仪表气源.............................................. 二、工艺及设备技术参数 (一)电解槽工艺技术参数.................................... (二)纯化装置工艺技术参数.................................. 三、产品质量标准错误!未定义书签。 第三节工艺流程简介 一、制氢装置工艺流程简介 (一)碱液循环系统.......................................... (二)氢气系统.............................................. (三)氧气系统.............................................. (四)原料水补充系统........................................ (五)冷却水系统............................................

水电解制氢设备术语和定义

一般概念 水电解制氢设备(hydrogen production plant by water electrolysis)指采用水电解的方法制取氢气(同时制取氧气)的设备。 常压水电解制氢设备(normal pressure hydrogen production plant by water electrolysis)指工作压力小于0.1Mpa的水电解制氢设备。 低压水电解制氢设备(low pressure hydrogen production plant by water electrolysis)指工作压力大于或等于0.1Mpa到小于1.6Mpa的水电解制氢设备。 中压水电解制氢设备(medium pressure hydrogen production plant by water electrolysis)指工作压力大于或等于1.6Mpa到小于10Mpa的水电解制氢设备。 氢气系统(hydrogen processing system)指发生、处理氢气的设备及管路系统。 氧气系统(oxygen processing system)指发生、处理氧气的设备及管路系统。 电解用水(feed water required by electrolysis)指纯度指标符合电解制氢用水要求的原料水。 电解用水系统(feed water supplying system)指制备、储存、输送电解用水的设备及管路系统。 碱液系统[lye(alkline solution) circulation system]指配制、储存、输送碱液的设备及管路系统。 冷却水系统(cooling water system)指储存、输送、处理冷却用水的设备及管理系统。 小室电压(cell voltage)水电解时,水电解小室阴、阳两极间的直流电压。 槽电压(operating voltage)指水电解时,在水电解槽阴、阳两端子间测得的直流电压。 单位制氢直流电耗(direct current power consumption per cubic meter hydrogen)指在标准状态下每产生一立方米氢气,水电解槽所消耗的电能。 标准状态(normal condition)气体在温度为0℃,压力为101.3Kpa条件下的气体状态。 爆炸下限(lower explosive limit)易燃易爆气体、蒸汽或薄雾在空气/氧气中形成爆炸气体混合物的最低浓度。 爆炸上限(upper explosive limit)易燃易爆气体、蒸汽或薄雾在空气/氧气中形成爆炸气体混合物的最高浓度。

电解水制氢的原理

-SBEP发表 09-06-03 06:37 阅(1274) 评(0字体大小 - 日 复制网址隐藏签名档大字 第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 。OH-和K+于是,水溶液中就产生了大量的. (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位=,而K+的电极电位=,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。 图8-3 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其放电反应为:(2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为: 阴阳极合起来的总反应式为: 电解

电解水制氢的原理

第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶 液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 于是,水溶液中就产生了大量的K+和OH-。

(2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位=,而K+的电极电位=,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先 得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。 图8-3 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其 放电反应为: (2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为: 阴阳极合起来的总反应式为: 电解 所以,在以KOH为电解质的电解过程中,实际上是水被电解,产生氢气和氧气,而KOH只起运载电荷的 作用。

电解水制氢

电解水制氢 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 一、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 于是,水溶液中就产生了大量的K+和OH-。 (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下:K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化

学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位 =-1.71V,而K+的电极电位=-2.66V,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性 方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就 会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图1。 图1 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其放电反应为: (2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为: 阴阳极合起来的总反应式为: 电解

水电解制氢装置工艺流程DOC

第三节水电解制氢装置工艺流程 1. 水电解制氢装置的组成 本装置由电解槽、气液处理器、整流装置、控制柜(计算机管理系统)、加水泵、碱箱、水箱等几大部分组成。 2. 工艺流程简介 2.1 气体系统 当电解槽接通直流电源,电解电流上升到一定数值时,电解槽内的水被电解成氢气和氧气。来自电解槽内各电解小室阴极侧的氢气和碱液,借助循环泵的扬程和气体升力,进入氢分离洗涤器的分离段(制氢量≥80m3/h 的先进入碱液换热器,然后进入分离器),在重力的作用下氢气和碱液分离。分离后的气体进入洗涤段,对气体进行冷却、洗涤(制氢量≥175m3/h的无洗涤)和除雾,然后进入贮罐待用(对CNDQ型制氢装置,气体再经过干燥处理才进入贮罐)。

氧气分离过程基本相同。氧气放空或进入贮罐待用。 2.2 电解液循环系统 电解液循环的目的在于向电极区域补充电解消耗的纯水,带走电解过程中产生的氢气、氧气和热量,增加电极区域电解液的搅拌,减少浓差极化电压,降低碱液中的含气度,降低小室电压,减少能耗等,以使电解槽在稳定条件下工作。 碱液循环量的大小影响槽内小室电压和气体纯度。对于一个特定的电解槽,应有一个合适的循环量。一般槽内电解液更换次数每小时2~4次。在常压电解系统中,通常用自然循环,而在压力电解系统中,因电解装置体积小,管道细,气液流通阻力大,加上电流密度较大,要求电解液更换的次数比较多,采用自然循环难于达到,一般采用强制循环。 碱液在氢分离器和氧分离器中,靠重力作用与氢、氧气体分离后,通过氢氧分离器的连通管汇总,再经碱液过滤器除去机械杂质,然后由碱液循环泵把碱液送入电解槽,形成完整的电解液循环系统。 2.3 气体排空(氮气置换)系统 水电解制氢装置设有充氮口,用于系统的气密检查与开机前的氮气置换。 制氢系统开车后,氢气纯度达到要求后才能被送到贮罐(或净化设备),在未达到要求纯度以前的氢气可通过调节阀后的气体放空阀放空。 2.4 原料水补充系统 电解过程中,装置内的原料水一直不停地在消耗,因此,为保证水电解的连续进行,需定期向制氢装置内补充原料水。 水箱中的水通过加水泵分别打入氢、氧洗涤器,然后通过溢流管,注入分离器下部的液相部分和循环碱液一并进入电解小室进行连续电解,同时使电解液中碱的浓度保持在最佳浓度范围。

相关文档
最新文档