电容用法的经典电路

电容用法的经典电路
电容用法的经典电路

电容用法的经典电路

电容,无源元件,应用于放大电路、电源电路等,实现旁路、去藕、滤波和储能、分压等作用

一.应用于电源电路,实现旁路、去藕、滤波和储能的作用

①旁路

旁路电容:用于导通或者吸收某元件或者一组元件中交流成分的一种电容。通常交直流中的交流部分被去除,而允许直流部分通过加有旁路电容的元件。旁路电容的目的就是要抑制这种交流成分,抑制这种电压噪声。旁路电容的另外一种说法就是滤波电容。

最常看到旁路电容的身影的地方就是直接将电源和地连在一起的旁路电容。简单的使用会允许VCC里头的AC成分直接导通到“地”GND。电容的作用也像蓄流一样,当电压因某种原因下降时充电电容溢出部分电流来填充VCC里面的坑坑洼洼的地方。电容量的大小就决定了它能填充多大的坑洼(电压降),电容量越大能够填充抚平的坑洼也越大。

对于同一个电路来说,旁路电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除。

旁路电容的主要功能是产生一个交流分路,从而消去进入易感区的那些不需要的能量,即当混有高频和低频的信号经过放大器被放大时,要求通过某一级时只允许低频信号输入到下一级,而不需要高频信号进入,则在该级的输入端加一个适当大小的接地电容,使较高频率的信号很容易通过此电容被旁路掉(这是因为电容对高频阻抗小),而低频信号由于电容对它的阻抗较大而被输送到下一级放大。旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的低电位抬高和噪声。

②去耦:在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。去藕电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗的泄防通道。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u 等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

③滤波:电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过,电容越小高频越容易通过。具体用在滤波中,大电容(1000μF)滤低频,小电容(20pF)滤高频。它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。

④储能:储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端

二.应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用:

1.耦合:晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。

2.振荡/同步:包括RC、LC 振荡器及晶体的负载电容都属于这一范畴

3.时间函数:这就是常见的R、C 串联构成的积分电路。当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性通过下面的公式描述:i = (V / R)e - (t / CR);

难点14 含电容电路的分析策略

难点14 含电容电路的分析策略 将电容器置于直流电路,创设复杂情景,是高考命题惯用的设计策略,借以突出对考生综合能力的考查,适应高考选拔性需要.应引起足够关注. ●难点磁场 1.(★★★★)在如图14-1电路中,电键S 1、S 2、S 3、S 4均闭合.C 是极板水平放置的平行板电容器,板间悬浮着一油滴P ,断开哪一个电键后P 会向下运动 A.S 1 B.S 2 C.S 3 D.S 4 图14—1 图14—2 2.(★★★)(2000年春)图14-2所示,是一个由电池、电阻R 与平行板电容器组成的串联电路.在增大电容器两极板间距离的过程中 A.电阻R 中没有电流 B.电容器的电容变小 C.电阻R 中有从a 流向b 的电流 D.电阻R 中有从b 流向a 的电流 ●案例探究 [例1](★★★★★)如图14-3所示的电路中,4个电阻的阻值均为R ,E 为直流电源,其内阻可以不计,没有标明哪一极是正极.平行板电容器两极板间的距离为d .在平行极板电容器的两个平行极板之间有一个质量为m ,电量为q 的带电小球.当电键K 闭合时,带电小球静止在两极板间的中点O 上.现把电键打开,带电小球便往平行极板电容器的某个极板运动,并与此极板碰 撞,设在碰撞时没有机械能损失,但带电小球的电量发生变化.碰后小球带有与该极板相同性质的电荷,而且所带的电量恰好刚能使它运动到平行极板电容器的另一极板.求小球与电容器某个极板碰撞后所带的电荷. 命题意图:考查推理判断能力及分析综合能力,B 级要求. 错解分析:不能深刻把握该物理过程的本质,无法找到破题的切入点(K 断开→U 3变化→q 所受力F 变化→q 运动状态变化),得出正确的解题思路. 解题方法与技巧: 由电路图可以看出,因R 4支路上无电流,电容器两极板间电压,无论K 是否闭合始终等于电阻R 3上的电压U 3,当K 闭合时,设此两极板间电压为U ,电源的电动势为E ,由分压关系可得U =U 3= 3 2E ① 小球处于静止,由平衡条件得 d qU =mg ② 图14-3

滤波电容的选择

滤波电容起平滑电压的作用;容值大小与输入桥式整流的输入电压无关;一般是越大越好。但要明白它取值的原理:滤波电容的取值与后级电路的突变电流有关。 打个比方:电容就好比一个水桶,输入往这个水桶中倒水,输出(后级电路)从这个水桶中抽水。如果恒定的抽水,只要倒入的水量大于抽水量,那么水桶将永远是满的,所以这个水桶可以不需要(当然这是理想情况)。假如某时刻需要抽出大量的水,大于输入的量,你会怎么办? 你可以准备一个较大的水桶,在这个时刻到来之前,将这个水桶的水灌满;等到了抽水的时刻,水桶中已经有足够的水抽取,就不会出现缺水的情况。 滤波电容就好比这个较大的水桶! 至于它的具体值,你将后级电路的突变电流与电容充、放电系数联系起来考虑,相信你能领悟出合适的计算方法。 滤波电容的作用和大小是怎样的? 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂 滤波电容在电路中作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 容的容抗为1/ωC欧姆(类似电阻,如果是非电类大学以上学历就把它当作电容器的电阻看吧),ω为角频率,ω=2πf,f为频率。容抗与自身容量C和频率ω(或者说f)有关,当C一定时,频率越高,容抗越小,对电流的阻碍作用就越小;频率越低,容抗越大。……人们所说的“电容通高频阻低频,通交流阻直流”是在不同情况下说的,也可以说是在不同容量C的情况下说的,都是正确的。 到此就不必再多说了吧,分析1/ωC就行了。 电路中的电容滤波问题解析

去耦电容、旁路电容、滤波电容的选择和区别

区别去耦电容 去除在期间切换时从?高配到配电?网中 的RF能量量 储能作?用,供局部化的直流电源,减 少跨板浪涌电流 在VCC 引脚通常并联?一个去耦电容, 电容同交隔直将交流分量量从这个电容 接地 有源器?件在开关时产?生的?高频开关噪声江燕电源线传播, 去耦电容就是提供?一个局部的直流给有源器?件,减少开关 噪声在板上的传播并且能将噪声引导到地。 如果主要是为了了增加电源和地的交流耦合,减少交流信号 对电源的影响,就可以称为去耦电容; 旁路路电容 从元件或电缆中转移出不不想要的共模 RF 能量量。这主要是通 过产?生 AC 旁路路消除?无意的能量量进?入敏?感的部分,另外还可 以提供基带滤波功能(带宽受限)。 在电路路中,如果电容起的主要作?用是给交流信号提供低阻抗的通 路路,就称为旁路路电容; 电?子电路路中,去耦电容和旁路路电容都是起到抗?干扰的作?用,电容所处 的位置不不同,称呼就不不?一样了了。对于同?一个电路路来说,旁路路(bypass) 电容是把输?入信号中的?高频噪声作为滤除对象,把前级携带的?高频杂 波滤除,?而去耦 (decoupling)电容也称退耦电容,是把输出信号的?干 扰作为滤除对象。 滤波电容选择 经过整流桥以后的是脉动直流,波动 ?方位很?大,后?面?一般?用?大?小两个电容 ?大电容?用来稳定输出,因为电容两端 电压不不能突变,可以使输出平滑,?小 电容?用来滤除?高频?干扰,使输出电压 纯净,电容越?小,谐振频率越?高,可 滤除的?干扰频率越?高 容量量的选择 ?大电容,负载越重,吸收电流的能?力力越强,这 个?大电容的容量量就要越?大 ?小电容,凭经验,?一般104 即可 1、电容对地滤波,需要?一个较?小的电容并联对地, 对?高频信号提供了了?一个对地通路路。 2、电源滤波中电容对地脚要尽可能靠近地。 3、理理论上说电源滤波?用电容越?大越好,?一般?大电容滤低频波,?小 电容滤?高频波。 4、可靠的做法是将?一?大?一?小两个电容并联,?一般要求相差两个 数量量级以上,以获得更更?大的滤波频段. 滤波电容电源和地直接连接去耦电容 1.为本集成电路路蓄能电容 2.滤除该期间产?生的?高频噪声,切断其通过供电回路路进?行行传播的通路路 3.防?止电源携带的噪声对电路路构成?干扰 滤波电容的选?用原则在电源设计中,滤波电容的选取原则是: C≥2.5T/R 其中: C 为滤波电容,单位为UF; T 为频率, 单位为Hz,R 为负载电阻,单位为Ω 当然,这只是?一般的选?用原则,在实际的应?用中,如条件(空间和成本)允许,都选取C≥5T/R. PCB制版电容的选择?一般的10PF 左右的电容?用来滤除?高频的?干扰信号,0.1UF 左右的?用来滤除低频的纹波?干扰,还可以起到稳压的作?用。滤波电容具体选择什什么容值要取决于你PCB 上主要的?工作频率和可能对系统造成影响的谐波频率,可以查?一下相关?厂商的电容资料料或者参考?厂商提供的资料料库软件,根据具体的需要选择。 如果你PCB 上主要?工作频率?比较低的话,加两个电容就可以了了,?一个虑除纹波,?一个虑除?高频信号。如果会出现?比较?大的瞬时电流,建议再加?一个?比较?大的钽电容。 实?用点的,?一般数字电路路去耦0.1uF 即可,?用于10M 以下;20M 以上?用1到10 个uF,去除?高频噪声好些,?大概按C=1/f 。旁路路?一般就?比较的?小了了,?一般根据谐振频率?一般为0.1 或0.01uF

高中物理含电容器电路的分析方法学法指导

含电容器电路的分析方法 山西 石有山 一、连接方式 1. 串接:如图1所示,R 和C 串接在电源两端,K 闭合,电路稳定后,R 相当于导线,C 上的电压大小等于电源电动势大小. 2. 并接:如图2所示,R 和C 并接,C 上电压永远等于R 上的电压. 3. 跨接:如图3所示,K 闭合,电路稳定后,两支路中有恒定电流,电容器两极板间电压等于跨接的两点间的电势差,即||U N M ?-?= 二、典型例题 1. 静态分析:稳定状态下,电容器在直流电路中起阻断电流作用,电容器两极间存在电势差,电容器容纳一定的电量,并满足Q=CU . 2. 动态分析:当直流电路中的电流和电势分布发生变化影响到电容器支路两端时,电容器的带电量将随之改变(在耐压范围内),即电容器发生充、放电现象,并满足△O=C △U . 例1、如图4电路中电源E=12V ,r=1Ω,定值电阻R 1=3Ω,R 2=2Ω,R 3=5Ω,C 1=4μF ,C 2=1μF ,当电路闭合且稳定后各电容器的带电量为多少?当K 断开时,通过R 1、R 2的电量各为多少?

解析:静态分析:R 3相当于导线,C 2与R 1、R 2串联起来的部分并联,C 1和R 2并联. V 10)R R (I U ,V 4IR U ,A 2r R R E I 212C 21C 21=+====++= C 100.1U C Q ,C 101.6U C Q 52C 225C111--?==?==,且C 1的下极板,C 2的右极板带正电. 动态分析:断开K 后,C 1通过R 3、R 2放电,C 2通过R 3、R 2和R 1放电,最后电压都为0,电容上电量也都为0. 故通过R 2的电量为Q=Q 1+Q 2=2.6x10- 5C ,通过R 1的电量为Q 2=C 100.15-?. 例2、如图5所示的电路中,电源电动势为E ,内阻不计,电容器的电容为C ,R 2=R 3=R 4=R 5=R ,R 1为滑动变阻器,其阻值可在0~2R 范围内变化,则当滑动头从最左端向最右端滑动的过程中,通过R 5的电量是多少? 解析:动态分析:本题电容器的接法为跨接,且电阻R 1连续变化,C 上电压为连续变化,不妨设电源负极为零电势点.则有2 E N =? 当P 置于R 1的最左端时2 E U ,E M N M ==? 当P 置于R 1中间某位置时0U ,2 E M N M ==? 当P 置于R 1的最右端时6 E U ,3E M N M -==? 当滑动头P 从最左端向最右端滑动的过程中,电容器上下极板电势差改变为 3 E 22E 6E U =--=? 则通过R 5的电量CE 3 2U C Q =?=?

高三必备-含电容的电路分析

闭合电路欧姆定律(含电容器电路的分析与计算) (1)只有当电容器充、放电时,电容器支路中才会有电流,当电路稳定时,电容器对电路的作用是断路. (2)电路稳定时,与电容器串联的电阻为等势体,电容器的电压为与之并联的电阻电压.1如图所示,E=10 V, r=1Ω, R1=R3=5 Ω, R2=4Ω,C=100μF。当S断开时,电容器中带电粒子恰好处于静止状态。求: (1)S闭合后,带电粒子加速度的大小和方向; (2)S闭合后流过R3的总电荷量 11.如图2-7-26所示,E=10 V,r=1 Ω,R1=R3=5 Ω,R2=4 Ω,C=100 μF.当S断开时,电容器中带电粒子恰好处于静止状态.求: 图2-7-26 (1)S闭合后,带电粒子加速度的大小和方向; (2)S闭合后流过R3的总电荷量. 解析:(1)开始带电粒子恰好处于静止状态,必有qE=mg且q E竖直向上.S闭合后,qE=mg的平衡关系被打破.S断开,带电粒子恰好处于静止状态,设电容器两极板间距离为d, 有U C= R2 R1+R2+r E=4 V,qU C/d=mg. S闭合后,U′C=R2 R2+r E=8 V 设带电粒子加速度为a, 则qU′C/d-mg=ma,解得a=g,方向竖直向上. (2)S闭合后,流过R3的总电荷量等于电容器上电荷的增加量,所以ΔQ=C(U′C-U C)=4×10-4C. 答案:(1)g方向向上(2)4×10-4C 4.如图7-2-18所示电路中,开关S闭合一段时间后,下列说法中正确的是() 图7-2-18 A.将滑片N向右滑动时,电容器放电 B.将滑片N向右滑动时,电容器继续充电 C.将滑片M向上滑动时,电容器放电 D.将滑片M向上滑动时,电容器继续充电 解析:选A.由题图可知将滑片N向右滑动时,电路总电阻减小,总电流增大,路端电压减小,电阻R1两端电压增大,电容器两端电压减小,电容器所带电荷量减少,则电容器放电,故A正确,B错误;若将滑片M上下滑动,电容器两端电压不变,电容器所带电荷量不变,故C、D错误. 7.(2010·高考安徽卷)如图7-2-21所示,M、N是平行板电容器的两个极板,R0为定值电阻,R1、R2为可调电阻,用绝缘细线将质量为m、带正电的小球悬于电容器内部.闭合电键

去耦电容的选择、容值计算和布局布线

去耦电容的容值计算和布局布线 有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播, 和将噪声引导到地。 去耦电容的容值计算 去耦的初衷是:不论I C对电流波动的规定和要求如何都要使电压限值维持在规定的允许误差范围之内。 使用表达式: C⊿U=I⊿t 由此可计算出一个I C所要求的去耦电容的电容量C。 ⊿U是实际电源总线电压所允许的降低,单位为V。 I是以A(安培)为单位的最大要求电流; ⊿t是这个要求所维持的时间。 x i l i n x公司推荐的去耦电容容值计算方法: 推荐使用远大于1/m乘以等效开路电容的电容值。 此处m是在I C的电源插针上所允许的电源总线电压变化的最大百分数,一般I C 的数据手册都会给出具体的参数值。 等效开路电容定义为: C=P/(f U^2) 式中: P——I C所耗散的总瓦数; U——I C的最大D C供电电压; f——I C的时钟频率。

一旦决定了等效开关电容,再用远大于1/m的值与它相乘来找出I C所要求的总去耦电容值。然后还要把结果再与连接到相同电源总线电源插针的总数相 除,最后求得安装在每个连接到电源总线的所有电源插针附近的电容值。 去耦电容选择不同容值组合的原因: 在去耦电容的设计上,通常采用几个不同容值(通常相差二到三个数量级,如0.1u F与10u F),基本的出发点是分散串联谐振以获得一个较宽频率范 围内的较低阻抗。 电容谐振频率的解释: 由于焊盘和引脚的原因,每个电容都存在等效串联电感(E S L),因此自身会形成一个串联谐振电路,L C串联谐振电路存在一个谐振频率,随着电力的频 率不同,电容的特性也随之变化,在工作频率低于谐振频率时,电容总体呈容性,在工作频率高于谐振频率时,电容总体呈感性,此时去耦电容就失去了去耦的效 果,如下图所示。因此,要提高串联谐振频率,就要尽可能降低电容的等效串联电感。 电容的容值选择一般取决于电容的谐振频率。 不同封装的电容有不同的谐振频率,下表列出了不同容值不同封装的电容的谐振频率:

退耦电容的并联组合

同容值电容的并联与反谐振(Anti-Resonance) 容值不同的电容具有不同的谐振点。图11画出了两个电容阻抗随频率变化的曲线。 图11 两个不同电容的阻抗曲线 左边谐振点之前,两个电容都呈容性,右边谐振点后,两个电容都呈感性。在两个谐振点之间,阻抗曲线交叉,在交叉点处,左边曲线代表的电容呈感性,而右边曲线代表的电容呈容性,此时相当于LC并联电路。对于LC并联电路来说,当L和C上的电抗相等时,发生并联谐振。因此,两条曲线的交叉点处会发生并联谐振,这就是反谐振效应,该频率点为反谐振点。

图12 不同容值电容并联后阻抗曲线 两个容值不同的电容并联后,阻抗曲线如图12所示。从图12中我们可以得出两个结论: a 不同容值的电容并联,其阻抗特性曲线的底部要比图10阻抗曲线的底部平坦得多(虽然存在反谐振点,有一个阻抗尖峰),因而能更有效地在很宽的频率范围内减小阻抗。 b 在反谐振(Anti-Resonance)点处,并联电容的阻抗值无限大,高于两个电容任何一个单独作用时的阻抗。并联谐振或反谐振现象是使用并联去耦方法的不足之处。 在并联电容去耦的电路中,虽然大多数频率值的噪声或信号都能在电源系统中找到低阻抗回流路径,但是对于那些频率值接近反谐振点的,由于电源系统表现出的高阻抗,使得这部分噪声或信号能量无法在电源分配系统中找到回流路径,最终会从PCB上发射出去(空气也是一种介质,波阻抗只有几百欧姆),从而在反谐振频率点处产生严重的EMI问题。因此,并联电容去耦的电源分配系统一个重要的问题就是:合理的选择电容,尽可能的压低反谐振点处的阻抗。 相同容值电容的并联 使用很多电容并联能有效地减小阻抗。63个0.0316 uF的小电容(每个电容ESL为1 nH)并联的效果相当于一个具有0.159 nH ESL的1.9908 uF电容。

含电容器动态电路

含电容器电路的分析与计算 【案例剖析】(2014·银川高二检测)如图所示,电源电动势E=9V,内电阻r=0.5Ω,电阻R1=5.0Ω、R2=3.5Ω、R3=6.0Ω、R4=3.0Ω,电容C=2.0μF。当开关K由与a接触到与b接触通过R3的电荷量是多少? 【自我小测】 1.(多选)(2014·南岸区高二检测)如图所示,R是光敏电阻,当它受到的光照强度增大时(光敏电阻值减小)( ) A.灯泡L变暗 B.光敏电阻R上的电压增大 C.电压表V的读数减小 D.电容器C的带电量增大 2.(多选)(2014·黄石高二检测)如图所示电路,电源内阻不计。为使电容器的带

电量增大,可采取以下哪些方法( ) A.增大R1 B.增大R2 C.增大R3 D.减小R1 【补偿训练】如图所示,E=10V,R1=4Ω,R2=6Ω,C=30μF。电池内阻可忽略。 (1)闭合开关S,求稳定后通过R1的电流。 (2)然后将开关S断开,求此后流过R1的总电量。 【名师指津】含电容器电路的分析与计算技巧 分析和计算含有电容器的直流电路时,注意把握以下五个方面: (1)电路稳定时电容器在电路中就相当于一个阻值无限大的元件,在电容器处的电路看作是断路,画等效电路时,可以先把它去掉。 (2)若要求解电容器所带电荷量时,可在相应的位置补上,求出电容器两端的电压,根据Q=CU计算。 (3)电路稳定时电容器所在支路上电阻两端无电压,该电阻相当于导线。 (4)当电容器与电阻并联后接入电路时,电容器两端的电压与并联电阻两端的电压相等。 (5)电路中的电流、电压变化时,将会引起电容器的充、放电,如果电容器两端的

含电容器电路的分析与计算201501

含电容器电路的分析与计算 1、关键是准确地判断并求出电容器的两端的电压,其具体方法是: (1)确定电容器和哪个电阻并联,该电阻两端电压即为电容器两端电压. (2)当电容器和某一电阻串联后接在某一电路两端时,此电路两端电压即为电容器两端电压. (3)对于较复杂电路,需要将电容器两端的电势与基准点的电势比较后才能确定电容器两端的电压. 2、分析和计算含有电容器的直流电路时,注意以下几个方面: (1)电路稳定时电容器在电路中就相当于一个阻值无限大的元件,在电容器处电路看做是断路,画等效电路时,可以先把它去掉. (2)若要求电容器所带电荷量时,可在相应的位置补上,求出电容器两端的电压,根据Q =CU计算. (3)电路稳定时电容器所在支路上电阻两端无电压,该电阻相当于导线. (4)当电容器与电阻并联后接入电路时,电容器两端的电压与并联电阻两端的电压相等. (5)电路中的电流、电压变化时,将会引起电容器的充放电,如果电容器两端的电压升高,电容器将充电,反之电容器放电.通过与电容器串联的电阻的电量等于电容器带电量的变化量. 3、含电容器电路问题的分析方法 (1)应用电路的有关规律分析出电容器两极板间的电压及其变化情况. (2)根据平行板电容器的相关知识进行分析求解. 练习 1.如图所示电路中,开关S闭合一段时间后,下列说法中正确的是 A.将滑片N向右滑动时,电容器放电 B.将滑片N向右滑动时,电容器继续充电 C.将滑片M向上滑动时,电容器放电 D.将滑片M向上滑动时,电容器继续充电 2.如图所示,M、N是平行板电容器的两个极板,R0为定值电阻,R1、 R2为可调电阻,用绝缘细线将质量为m、带正电的小球悬于电容器 内部.闭合开关S,小球静止时受到悬线的拉力为F.调节R1、R2, 关于F的大小判断正确的是

旁路、耦合、退耦电容的选取

旁路、退耦、耦合电容的选取 高手和前辈们总是告诉我们这样的经验法则:“在电路板的电源接入端放置一个1~10μF 的电容,滤除低频噪声;在电路板上的电源与地线之间放置一个0.01~0.1μF 的电容,滤除高频噪声。”在书店里能够得到的大多数的高速PCB 设计、高速数字电路设计的经典教程中也不厌其烦的引用该首选法则(老外俗称Rule of Thumb )。但是为什么要这样使用呢?各位看官,如果你是电路设计高手,你可以去干点别的更重要的事情了,因为以下的内容仅是针对我等入门级甚至是门外级菜鸟。 做电路的人都知道需要在芯片附近放一些小电容,至于放多大?放多少?怎么放?将该问题讲清楚的文章很多,只是比较零散的分布于一些前辈的大作中。鄙人试着采用拾人牙慧的方法将几个问题放在一起讨论,希望能加深对该问题的理解;如果很不幸,这些对你的学习和工作正好稍有帮助,那我不胜荣幸的屁颠屁颠的了。(以上有些话欠砍,在此申明以上不是我所写) 什么是旁路? 旁路(Bypass ),在电路中为了改变某条支路的频率特性,使得它在某些频段内存在适当的阻值,而在另一些频段内则处于近似短路的状态,于是便产生了旁路电容的概念。旁路电容之所以为旁路电容,是因为它旁边还存在着一条主路, 而并不是某些电容天生就是用来做旁路电容的,也就是说什 么种类的电容都可以用来做旁路电容,关键在于电容容值的 大小合适与否。旁路电容并不是电解电容或是陶瓷电容的专 利。之所以低频电路中多数旁路电容都采用电解电容原因在 于陶瓷电容容值难以达到所需要的大小。 使用旁路电容的目的就是使旁路电容针对特定频率以上 的信号相对于主路来说是短路的。如图形式:要求旁路电容需要取值的大小; 已知:1、旁路电容要将流经电阻R 的频率高于f 的交流信号近似短路。求旁路电容的大小? Ic Ir

专题:含有电容器的直流电路分析

专题:含有电容器的直流电路分析 电容器是一个储存电能的元件。在直流电路中,当电容器充放电时,电路里有充放电电流,一旦电路达到稳定状态,电容器在电路中就相当于一个阻值无限大(只考虑电容器是理想的不漏电的情况)的元件,在电容器处电路看做是断路,简化电路时可去掉它。简化后若要求电容器所带电荷量时,可在相应的位置补上。 解决含电容器的直流电路问题的一般方法: (1)通过初末两个稳定的状态来了解中间不稳定的变化过程。 (2)只有当电容器充、放电时,电容器支路中才会有电流,当电路稳定时,电容器对电路的作用是断路。 (3)电路稳定时,与电容器串联的电阻为等势体,电容器的电压为与之并联的电阻两端的电压。 (4)在计算电容器的带电荷量变化时,如果变化前后极板带电的电性相同,那么通过所连导线的电荷量等于始末状态电容器电荷量之差;如果变化前后极板带电的电性相反,那么通过所连导线的电荷量等于始末状态电容器电荷量之和。 [典例1](2013·宁波模拟)如图1所示,R1、R2、R3、R4均为可变电阻,C1、C2均为电容器,电源的电动势为E,内阻r≠0。若改变四个电阻中的一个阻值,则() 图1 A.减小R1,C1、C2所带的电量都增加 B.增大R2,C1、C2所带的电量都增加 C.增大R3,C1、C2所带的电量都增加 D.减小R4,C1、C2所带的电量都增加 [解析]R1上没有电流流过,R1是等势体,故减小R1,C1两端电压不变,C2两端电压不变,C1、C2所带的电量都不变,选项A错误;增大R2,C1、C2两端电压都增大,C1、C2所带的电量都增加,选项B正确;增大R3,C1两端电压减小,C2两端电压增大,C1所带的电量减小,C2所带的电量增加,选项C错误;减小R4,C1、C2两端电压都增大,C1、C2所带的电量都增加,选项D正确。 [答案]BD [典例2] (2012·江西省重点中学联考)如图2所示电路中,4个电阻阻值均为R,电键S 闭合时,有质量为m、带电量为q的小球静止于水平放置的平行板电容器的正中间。现断开电键S,则下列说法正确的是()

去耦电容的选取

高速电路板上使用最多的是什么东西?去耦电容! 关键词:去耦(decouple)、旁路(Bypass)、等效串联电感(ESL)、等效串联电阻(ESR)、高速电路设计、电源完整性(PI)、信号完整性(SI) 高手和前辈们总是告诉我们这样的经验法则:“在电路板的电源接入端放置一个1~10μF的电容,滤除低频噪声;在电路板上每个器件的电源与地线之间放置一个0.01~0.1μF的电容,滤除高频噪声。”在书店里能够得到的大多数的高速PCB设计、高速数字电路设计的经典教程中也不厌其烦的引用该首选法则(老外俗称Rule of Thumb)。但是为什么要这样使用呢?各位看官,如果你是电路设计高手,你可以去干点别的更重要的事情了,因为以下的内容仅是针对我等入门级甚至是门外级菜鸟。 做电路的人都知道需要在芯片附近放一些小电容,至于放多大?放多少?怎么放?将该问题讲清除的文章很多,只是比较零散的分布于一些前辈的大作中。鄙人试着采用拾人牙慧的方法将几个问题放在一起讨论,希望能加深对该问题的理解;如果很不幸,这些对你的学习和工作正好稍有帮助,那我不胜荣幸的屁颠屁颠的了。 首先就我的理解介绍两个常用的简单概念。

什么是旁路?旁路(Bypass),是指给信号中的某些有害部分提供一条低阻抗的通路。电源中高频干扰是典型的无用成分,需要将其在进入目标芯片之前提前干掉,一般我们采用电容到达该目的。用于该目的的电容就是所谓的旁路电容(Bypass Capacitor),它利用了电容的频率阻抗特性(理想电容的频率特性随频率的升高,阻抗降低,这个地球人都知道),可以看出旁路电容主要针对高频干扰(高是相对的,一般认为20MHz以上为高频干扰,20MHz以下为低频纹波)。 什么是退耦?退耦(Decouple),最早用于多级电路中,为保证前后级间传递信号而不互相影响各级静态工作点的而采取的措施。在电源中退耦表示,当芯片内部进行开关动作或输出发生变化时,需要瞬时从电源线上抽取较大电流,该瞬时的大电流可能导致电源线上电压的降低,从而引起对自身和其他器件的干扰。为了减少这种干扰,需要在芯片附近设置一个储电的“小水池”以提供这种瞬时的大电流能力。 在电源电路中,旁路和退耦都是为了减少电源噪声。旁路主要是为了减少电源上的噪声对器件本身的干扰(自我保护);退耦是为了减少器件产生的噪声对电源的干扰(家丑不外扬)。有人说退耦是针对低频、旁路是针对高频,我认为这样说是不准确的,高速芯片内部开关操作可能高达上GHz,由此引起对电源线的干扰明显已经不属于

含电容的电路分析

闭合电路欧姆定律(含电容器电路的分析与计算) 1. 如图所示,E = 10 V, r = 1 Q , R i = R 3= 5 Q, R 2 = 4 Q, C = 100疔。当S 断开时,电容器中 带电粒子恰好处于静止状态。求: (1) S 闭合后,带电粒子加速度的大小和方向; (2) S 闭合后流过R 3的总电荷量 2. 如图 2 — 7— 26 所示,E = 10 V , r = 1 Q , R 1 = R 3= 5 Q , R 2= 4 Q , C = 100 卩 F.当 S 断 开时,电容器中带电粒子恰好处于静止状态?求: (1)S 闭合后,带电粒子加速度的大小和方向; ⑵S 闭合后流过R 3的总电荷量. 答案:(1)g 方向向上 (2)4 x 10 —4 C 3?如图7— 2 — 18所示电路中,开关 S 闭合一段时间后,下列说法中正确的是 ( ) Hi s < > L J 图 7 — 2 — 18 A ?将滑片N 向右滑动时,电容器放电 B .将滑片N 向右滑动时,电容器继续充电 C ?将滑片M 向上滑动时,电容器放电 D .将滑片M 向上滑动时,电容器继续充电 解析:选A.由题图可知将滑片 N 向右滑动时,电路总电阻减小,总电流增大,路端电压减 小,电阻R 1两端电压增大,电容器两端电压减小, 电容器所带电荷量减少, 则电容器放电, 故A 正确,B 错误;若将滑片 M 上下滑动,电容器两端电压不变,电容器所带电荷量不变, 故C 、D 错误. 4. (2010高考安徽卷)如图7 — 2— 21所示,M 、N 是平行板电容器的两个极板, R o 为定值 电阻,R 1、R 2为可调电阻,用绝缘细线将质量为 m 、带正电的小球悬于电容器内部?闭合 电键S ,小球静止时受到悬线的拉力为 F ?调节R 1、R 2,关于F 的大小判断正确的是( 图 2 — 7 — 26

电容器动态分析专题训练含答案

电容器动态分析练习题 一.选择题(共10小题) 1.(2016?天津)如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下级板都接地.在两极板间有一固定在P点的点电荷,以E表示两极板间的电场强度,E P表示点电荷在P点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则() A.θ增大,E增大B.θ增大,E P不变C.θ减小,E P增大D.θ减小,E不变2.(2016?新疆)如图所示的平行板电容器,B板固定,要减小电容器的电容,其中较合理的办法是() A.A板右移 B.A板上移 C.插入电解质D.增加极板上的电荷量 3.(2016?校级模拟)如图所示,先接通S使电容器充电,然后断开S.当增大两极板间距离时,电容器所带电荷量Q、电容C、两板间电势差U,电容器两极板间场强E的变化情况是() A.Q变小,C不变,U不变,E变小B.Q变小,C变小,U不变,E不变 C.Q不变,C变小,U变大,E不变D.Q不变,C变小,U变小,E变小4.(2016?模拟)传感器是把非电学量转换成电学量的一种元件.如图所示,乙、丙是两种常见的电容式传感器,现将乙、丙两种传感器分别接到图甲的电路中进行实验(电流从电流

表正接线柱流入时指针向右偏),下列实验现象中正确的是() A.当乙传感器接入电路实验时,若F变小,则电流表指针向右偏转 B.当乙传感器接入电路实验时,若F变大,则电流表指针向右偏转 C.当丙传感器接入电路实验时,若导电溶液深度h变大,则电流表指针向左偏转 D.当丙传感器接入电路实验时,若导电溶液深度h变小,则电流表指针向左偏转5.(2016?一模)如图所示,一带电小球悬挂在竖直放置的平行板电容器,当开关S闭合,小球静止时,悬线与竖直方向的夹角为θ.则() A.当开关S断开时,若减小平行板间的距离,则夹角θ增大 B.当开关S断开时,若增大平行板间的距离,则夹角θ增大 C.当开关S闭合时,若减小平行板间的距离,则夹角θ增大 D.当开关S闭合时,若减小平行板间的距离,则夹角θ减小 6.(2016?诏安县校级模拟)如图所示,平行板电容器已经充电,静电计的金属球与电容器的一个极板连接,外壳与另一个极板连接,静电计指针的偏转指示电容器两极板间的电势差.实验中保持极板上的电荷量Q不变.设电容器两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ.下列关于实验现象的描述正确的是() A.保持S不变,增大d,则θ变大 B.保持S不变,减小d,则θ不变 C.保持d不变,减小S,则θ变小 D.保持S、d不变,在两板间插入电介质,则θ变大 7.(2016?模拟)如图所示为研究影响平行板电容器电容大小因素的实验装置.设两极板的正对面积为S,极板间的距离为d,静电计指针偏角为θ,平行板电容器的电容为C.实验中极板所带电荷量可视为不变,则下列关于实验的分析正确的是() A.保持d不变,减小S,则C变小,θ变大

物理3-1第二章含电容器电路经典习题

含电容器电路经典习题 例1:如图所示滑动变阻器R1=1Ω,R2=2Ω,R3=6Ω,E=2V,r = 1Ω, 1) 断开S1,合上S2 时电容器电量是多少 2) 再合上S1,稳定后电容上带电量改变多少 3) 若要求再断开S1时电容C上电量不变,那么当初R1 应调节为多少 例2:如图,电源电动势为14,不计内阻,R1=12Ω,R3=3Ω, R4=4Ω,10F 当电容器上带电量为4×10- 10 C,电阻箱R2的阻值多大 1、如图所示,E=10 V, r =1Ω, R 1=R3=5 Ω, R 2=4Ω, 粒子恰好处于静止状态。求: (1)S 闭合后,带电粒子加速度的大小和方向; (2)S 闭合后流过R3 的总电荷量。 2、电动势为E、内电阻为r 的电源与粗细均匀的电阻丝相 联,L,电阻为R,C 为平行板电容器,其相对面积为动触头向 右滑的过程中,电流计中有电流通过,最大电流为I m,求P 滑 动时,所允许的最大速度是多少 C=100μF。当S 断开时,电容器中带 电 R3S S R1 C R 2 E r 组成如图所示的电路。电阻丝长度 为 S,两板间的距离为 d. 在滑为什么若电流计允许 通过的 3、如图所示,将一电动势E=,内阻r= Ω的电源和粗细均匀的电阻丝相 连, 电阻比长度L=,电阻R=99Ω,电容C=μF,当滑动触头P 以4×10—3m/s 的速度向右滑动时,下列说法中正确的是( A . 电容器C充电,流过电流计G的电流方向为a→ G→ b B . 电容器C放电,流过电流计G的电流方向为b→ G→ a C . D .4 、电 容器 每秒钟电容器两极板的电压减少量为 4× 10—3mA 、内阻为r 的电源与电阻R1、R2、滑动变阻 器R1处于某位置时,A、B 间的带电油 流过电流计的电流是 如图所示,电动势为 AB及电流表组成电 路, R3、平行 板 C=500μ F,求: R2为变阻箱,电容 C =2×10-

退耦电容原理--具体接法--运放自激原理

退耦电容原理 所谓退耦,既防止前后电路网络电流大小变化时,在供电电路中所形成的电流冲动对网络的正常工作产生影响。换言之,退耦电路能够有效的消除电路网络之间的寄生耦合。 退耦滤波电容的取值通常为47~200μF,退耦压差越大时,电容的取值应越大。所谓退耦压差指前后电路网络工作电压之差。 如下图为典型的RC退耦电路,R起到降压作用: 大家看到图中,在一个大容量的电解电容C1旁边又并联了一个容量很小的无极性电容C2 原因很简单,因为在高频情况下工作的电解电容与小容量电容相比,无论在介质损耗还是寄生电感等方面都有显著的差别(由于电解电容的接触电阻和等效电感的影响,当工作频高于谐振频率时,电解电容相当于一个电感线圈,不再起电容作用)。在不少典型电路,如电源退耦电路,自动增益控制电路及各种误差控制电路中,均采用了

大容量电解电容旁边并联一只小电容的电路结构,这样大容量电解电容肩负着低频交变信号的退耦,滤波,平滑之作用;而小容量电容则以自身固有之优势,消除电路网络中的中,高频寄生耦合。在这些电路中的这一大一小的电容均称之为退耦电容。 Re: 大电容由于容量大,所以体积一般也比较大,且通常使用多层卷绕的方式制作,这就导致了大电容的分布电感比较大(也叫等效串联电感,英文简称ESL)。 电感对高频信号的阻抗是很大的,所以,大电容的高频性能不好。而一些小容量电容则刚刚相反,由于容量小,因此体积可以做得很小(缩短了引线,就减小了ESL,因为一段导线也可以看成是一个电感的),而且常使用平板电容的结构,这样小容量电容就有很小ESL 这样它就具有了很好的高频性能,但由于容量小的缘故,对低频信号的阻抗大。 所以,如果我们为了让低频、高频信号都可以很好的通过,就采用一个大电容再并上一个小电容的方式。 常使用的小电容为 0.1uF的瓷片电容,当频率更高时,还可并联更小的电容,例如几pF,几百pF的。而在数字电路中,一般要给每个芯片的电源引脚上并联一个0.1uF的电容到地(这个电容叫做退耦电容,当然也可以理解为电源滤波电容,越靠近芯片越好),因为在这些地方的信号主要是高频信号,使用较小的电容滤波就可以了。

电感和电容在直流电路中的状态分析

龙源期刊网 https://www.360docs.net/doc/9c16611185.html, 电感和电容在直流电路中的状态分析 作者:张志刚 来源:《新课程·下旬》2017年第07期 摘要:在含有电感和电容的直流电路中,开关闭合前后各部分电路元件的电压、电流变 化比较抽象难懂,通过理论推导、规律总结、举例分析,引导学生学习并掌握该电路稳态和暂态过程的规律和分析方法。 关键词:电感;电容;稳态;暂态过程 电感和电容是电路中两个常用的元件,二者在直流电路中的稳态和暂态过程分析在高中物理学习中经常遇到。电容器是连接电场、电路、磁场、电磁感应、交流电等电学各有关内容的一个桥梁或纽带,掌握其特性及其基本原理,对整体建构电磁学知识体系、提升学生的学科素养和思维能力具有十分重要的意义。含电容的直流电路问题是直流电路中的一种典型问题,具有较强的综合性和代表性。对于确定电容器所带电荷量及其变化、电容器两极板上的电荷运动、含电容器电路的综合问题等典型问题,关键是明确电路结构,确定电容器在电路中的连接方式,准确分析和判断电容器两端的电压及其变化,对于较复杂的电学综合性问题,要具体问题具体分析,运用等效思维进行等效处理是化繁为简的重要策略。而在教材中对“电感和电容对交变电流的影响”中,总结的电感线圈的作用是“通直流、阻交流”。就是说,电感线圈对交流电有阻碍作用,对直流电没有阻碍作用。本人在教学中发现,有些学生往往只局限于稳态时结论的死记,而对暂态过程变化缺乏理解,导致知识的混淆,进而对二者在交流电路中的分析产生障碍。本文就二者在直流电路中的作用做一些分析,不足之处,请读者指正。 首先说明两个概念:稳态和暂态过程。电路中电流达到稳定值的电路状态叫稳态;从一种稳态到另一种稳态所经历的过程叫暂态过程。 一、含有电容电路的状态分析 根据之前学过的内容可知,电容器是储存电能的一个元件,在直流电路中,电容器充放电时电路里产生充放电电流,而当电路达到稳定状态时,电容器就相当于一个阻值无限大的元件(此情况是考虑电容器是不漏电的理想状态)。此时,电容器所在的电路可看作断路,在简化电路时可去掉它。 如图1,在电阻、电容组合的电路中(电源电动势为E,内阻不计),当开关S接1时,电源对电容充电,电容器左板充以正电荷,右板充以负电荷,充电后的电容器产生电压U,此电压与电源电动势作用相反,所以电路中的电流I=(E-U)/R。可见,S接1瞬间,电容器还没来得及充电,U=0,此时电容器处相当于开关闭合,电路中电流最大,电流I=E/R,之后随着U的增大,I逐渐减小,当U增大到E时,电路中电流为0,此时电容器处相当于开关断开。整个暂态过程I-t图像如图2所示,U-t图像如图3所示。电路稳定后S再扳到2时,电容

(九)——电磁感应中的含容电路分析

微讲座(九)——电磁感应中的含容电路分析 一、电磁感应回路中只有电容器元件 这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流. (2013·高考新课标全国卷Ⅰ)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L .导轨上端接有一平行板电容器,电容为C .导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面.在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g .忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系. [解读] (1)设金属棒下滑的速度大小为v ,则感应电动势为E =BL v ① 平行板电容器两极板之间的电势差为U =E ② 设此时电容器极板上积累的电荷量为Q ,按定义有C =Q U ③ 联立①②③式得Q =CBL v .④ (2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为i .金属棒受到的磁场的作用力方向沿导轨向上,大小为F 安=BLi ⑤ 设在时间间隔(t ,t +Δt )内流经金属棒的电荷量为ΔQ ,据定义有i =ΔQ Δt ⑥ ΔQ 也是平行板电容器两极板在时间间隔(t ,t +Δt )内增加的电荷量.由④式得:ΔQ =CBL Δv ⑦ 式中,Δv 为金属棒的速度变化量.据定义有a =Δv Δt ⑧ 金属棒所受到的摩擦力方向斜向上,大小为F f =μF N ⑨ 式中,F N 是金属棒对导轨的正压力的大小, 有F N =mg cos θ⑩ 金属棒在时刻t 的加速度方向沿斜面向下,设其大小为a ,根据牛顿第二定律有mg sin θ-F 安-F f =ma ? 联立⑤至?式得a =m (sin θ-μcos θ)m +B 2L 2C g ? 由?式及题设可知,金属棒做初速度为零的匀加速运动.t 时刻金属棒的速度大小为v =m (sin θ-μcos θ)m +B 2L 2C gt . [答案] (1)Q =CBL v (2)v = m (sin θ-μcos θ)m +B 2L 2C gt [总结提升] (1)电容器的充电电流用I =ΔQ Δt =C ΔU Δt 表示. (2)由本例可以看出:导体棒在恒定外力作用下,产生的电动势均匀增大,电流不变,

滤波电容旁路电容和去耦电容的作用和选择

滤波电容 百科名片 储能电容的安装数字电路的电源线与回流线(地线)之间总要连接很多的电容器通常称为滤波电容。目录 简介选择作用 编辑本段简介 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言 n-35g的主滤波电容 )。 低频滤波电容主要用于是电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 编辑本段选择 滤波电容在开关电源中起著非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。 50赫兹工频电路中使用的普通电解电容器,其脉动电压频率仅为100赫兹,充放电时间是毫秒数量级。为获得更小的脉动系数,所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。而

开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数万赫兹,甚至是数十兆赫兹。这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗- 频率”特性。要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。

相关文档
最新文档