动量方程

动量方程
动量方程

《不可压缩流体恒定流动的动量方程实验》实验报告

动量方程仪实验指导书

动量方程 一、实验目的: 通过以下两种方法验证恒定总流的动量方程 1、射流对水箱的反作用; 2、射流对平板的作用力。 二、实验装置如图一: 图一:实验装置简图 1.实验水箱 2.控制阀门 3.高位水孔 4.低位水孔 5.砝码 6.转动轴承 7.挡板 8.固定插销 9.水平仪 10.喷嘴 11.水泵 12.水箱 13.挡水板 14.实验台支架 15.平衡砣 16.测力砝码 17.力臂 18.平板转轴 19.水箱转轴 三、实验原理: 1、射流对水箱的反作用力 19 18 19

1)原理 理论方法:应用动量定律先求水箱对射流的作用力F 以水箱水面Ⅰ—Ⅰ,出口断面Ⅱ—Ⅱ及箱壁为控制面,对X 轴列动量方程: 21()X x x F F Q V V ρ==-∑ 式中:F —水箱对水流的水平方向作用力,与射流速度方向相同; ρ—水的密度; Q —射流出口流量; 1x V —水箱水面的平均流速在X 轴的投影,取0; 2x V —出口断面的平均流速在X 轴的投影。 则射流对水箱的反作用力F ' 大小为ρQV (理论值),与射流速度方向相反。 上式中:L —射流出口中心至转轴的垂直距离; Q —射流流量; V —射流出口断面的平均流速。 实验方法:首先移动游码使之归零,记游码重量为G 0,至转轴距离为S 0;再移动重锤,使水平仪水平,记重锤重量Gz ,至转轴距离为Sz ;由于重锤重量较大,如仅靠移动重锤位置调平衡有困难,可通过在游码挂钩上悬挂砝码以达到平衡(微调),设所加砝码重量为G 1,至转轴距离为S 0;设水箱中水体的重量为Gx ,水体重心至转轴为Sx 。此状态可称为初始平衡,上述所有力产生的力矩对转轴合力矩为零,故有 0010x x z z G S G S G S G S ?=?+?+? (1) 保持重锤位置不动,使水箱发生射流后,合适的砝码挂在游码挂钩上,移动游码,使水平仪再次水平,记悬挂砝码重量为G 2,此时射流状态砝码的位置S ,设射流对水箱的作用力为F ',力作用点沿射流中轴线,距转轴距离为L ,其它量均保持不变,此状态可称为射流平衡,故有 02x x z z G S F L G S G S G S '?+?=?+?+? (2) (2)—(1),可得 002 10 ()F L G S S G S G S '=-+?-

流体力学动量定实验

流体力学动量定实验

————————————————————————————————作者:————————————————————————————————日期:

动量定理实验 一、概述 动量定理指出:流体微团动量的变化率等于作用在该微团上所有外力的矢量和。即某控制体内的动量在时间dt内的增量等于作用在控制体上所有外力在dt时间内的总冲量。 水射流冲击平板和内半球是用来验证动量定理的一个很好实例,本实验仪则采用水射流冲击平板通过称重系统测出冲击力。 二、实验目的: 1.测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2.测定动量修正系数,以实验分析射流出射角度与动量力的相关性 3.将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。 三、设备性能与主要技术参数 1、该实验装置主要由:流量计、水泵、实验水箱、管嘴、蓄水箱和平衡秤等组成。 2、流量计采用LZS-15(60-600)L/h。 3、水泵为增压泵,最高扬程:10m,最大流量:10L/min,转速2800r/min,输入功率90W。 4、量器为平衡杆秤,上面刻度每小各格为2mm,称上平衡游码为150g。 5、实验水箱由有机玻璃制成,顶部装有称重装置,内部则有实验平板与管嘴,其中管嘴距平板距离为40mm,管嘴的内径为9mm。 6、蓄水箱由PVC板焊制而成。容积:35L。 四、实验原理 1、本实验装置给出计量杠杆为平衡杆称。 2、计算每个状态下的体积流量和质量流量 体积流量QV通过转子流量计直接得出读数,质量流量QM=ρW·QV其中水的密度ρW可根据水温查得。 3、计算每个状态下水射流冲击模型的当地速度u。 由公式u0=Qv/A0 (m/s)计算管嘴出口处的水流速度,其中A0为喷嘴出口截面积(m2)。在地心引力的作用下,水射流离开喷嘴后要减速,当水流射到模板上时,当地

稳定流的动量方程和动量矩方程的推导及应用

稳定流的动量方程和动量矩方程的推导及应用 1 稳定流动量方程 讨论运动流体与固体边界面上的相互作用力,例如:流体在弯曲管道内流动,弯管的受力情况;水力采矿时,高压水枪射流对水枪、对矿床的作用力;火箭飞行过程中,从火箭尾部喷射出的高温高压气体对火箭的反推力等等。这类问题,需应用运动流体的动量方程来分析。 从物理学知,运动物体的动量为: 图1流束动量变化 根据质点系动量定理: 用符号表示动量,即,则 ——流体作定常流动时的动量方程。 图示一弯管,其中的流体作定常流动,在总流中任意取一微小流束1-2,并取过水断面1-1、2-2间的流束段进行研究。 即 对不可压缩流体,则微小流束的动量方程为: 将上式推广到总流中去,则得: 由定常流动总流的连续性方程,有: 因为u在A上分布难以确定,所以用v代换u,有: 式中、——动量修正系数,其实验值为1.02~1.05,工程计算上取==1。 整理可得: ——理想流体定常流动总流的动量方程。其物理意义是:作用在所研究的流体上的外力矢量和等于单位时间内流出与流入的动量之差。 作用在流体上的外力:流束段1-2的重力,两过水断面1-1、2-2上的压力、 , 边界面上所受表面压力的总值。上式也可写为: 其分量式为:

图2 流体作用于弯管上的力 确定流体与固体边界之间的作用力,上述方程是一个重要方程。 2 动量方程的应用 (1)流体作用于弯管上的力 图示一弯管,沿x轴、y轴的动量方程为: 所以 则 的方向为: 流体对弯管的作用力,与是一对作用力和反作用力,大小与相等,方向与相反。 (2)射流作用在固定平面上的冲击力 水射流清洗:船体、铸造清砂、矿车清扫 流体从管嘴喷射出而形成射流。如射流在同一大气压强之下,并忽略自身重力,则作用在流体上的力,只有固定平面对射流的阻力,它与射流对固定平面的冲击力构成一对作用力和反作用力。 图示固定平板与水平面成θ角,流体从喷嘴射出,射流的动量为: x轴方向的动量方程为: 即 射流对平板的冲击力:=- 当θ=900时 如果平板不固定,沿射流方向以速度运动,则射流对移动平板的冲出力为: (3)射流的反推力烟花升空 我们知道,火箭飞行的根本动力是火箭内部的燃料发生爆炸性燃烧,产生大量高温高压的气体,从尾部喷出形成射流,射流对火箭有一反推力,使火箭向前运动。下面我们具体讨论反推力的计算。 图示装有液体的容器测壁开一小孔,流体便从小孔流出形成射流,则射流速度为:

动量方程及其应用分析

辽宁工程技术大学力学与工程学院 流体力学综合训练(二) 题目动量方程式及其应用 班级工力13-3班 赵永振吕周翔顾鹏 姓名 李壮张敬尧陈锦学 指导教师吴迪 成绩 辽宁工程技术大学 力学与工程学院制 1

目录 1动量方程能解决流体中的问题 (1) 1.1用欧拉方法推导动量方程式 (1) 1.2特殊情况下的动量方程 (2) 2动量方程式在实际中的应用 (2) 2.1水力真空喷射泵 (2) 2.2轮船、火箭 (4) 参考文献 (6)

引言:动量方程式是根据牛顿第二定律及N-S 方程推导出来的,是以微分形式 表示的质点运动方程。动量方程式是通过质点系动量变化率的办法计算求解,是求解流体力学问题的又一条途径。该方程式在水利、航天、工业等工程方面都有应用。 一、用欧拉方法表示的动量方程式 1.1用欧拉方法推导动量方程式 在流场中,选择控制体(固定)如图中虚线所示,一部分与固体边界重合,在某一瞬时t,控制体内包含的流体是我们要讨论的质点系,设控制体内任一质点的速度为v, 密度为ρ。在t 瞬时的初动量为t V vdV ][???ρ经过△t ,质点系运动到实线位置,这个质点系在t+△t 瞬时的末动量为: 原来质点系尚留在控制 图1 动量方程式 体中的部分及新流入控 (I )部分通过A1面非 (II )部分通过A2 制体的总动量。 原质点系的流入动量 面流出的动量 ↓ ↓ ↓ ?????????????∑∑?+ ??=-??+?==?+→?A V V t A V t t t dA v v vdV t vdV dA v v t vdV t dt mv d F ) (}][)(]{[1lim )(0ρρρρρ对于控制体的全部控制面: ?? ???????????∑∑?+?? =-??+?== ?+→?A V V t A V t t t dA v v vdV t vdV dA v v t vdV t dt m v d F ) (} ][)(]{[1 lim ) (0ρρρρρ 这就是用欧拉方法表示的动量方程式,这个方程式既适用于控制体固定的情况,也适用于控制体运动的情况。在运动时需将速度v 换成相对速度, 并在控制

流体力学动量定理实验

动量定理实验 一、概述 动量定理指出:流体微团动量的变化率等于作用在该微团上所有外力的矢量和。即某控制体内的动量在时间dt内的增量等于作用在控制体上所有外力在dt时间内的总冲量。 水射流冲击平板和内半球是用来验证动量定理的一个很好实例,本实验仪则采用水射流冲击平板通过称重系统测出冲击力。 二、实验目的: 1.测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2.测定动量修正系数,以实验分析射流出射角度与动量力的相关性 3.将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。 三、设备性能与主要技术参数 1、该实验装置主要由:流量计、水泵、实验水箱、管嘴、蓄水箱和平衡秤等组成。 2、流量计采用LZS-15(60-600)L/h。 3、水泵为增压泵,最高扬程:10m,最大流量:10L/min,转速2800r/min,输入功率90W。 4、量器为平衡杆秤,上面刻度每小各格为2mm,称上平衡游码为150g。 5、实验水箱由有机玻璃制成,顶部装有称重装置,内部则有实验平板与管嘴,其中管嘴距平板距离为40mm,管嘴的内径为9mm。 6、蓄水箱由PVC板焊制而成。容积:35L。 四、实验原理 1、本实验装置给出计量杠杆为平衡杆称。 2、计算每个状态下的体积流量和质量流量 体积流量QV通过转子流量计直接得出读数,质量流量QM=ρW·QV其中水的密度ρW可根据水温查得。 3、计算每个状态下水射流冲击模型的当地速度u。 由公式u0=Qv/A0 (m/s)计算管嘴出口处的水流速度,其中A0为喷嘴出口截面积(m2)。在地心引力的作用下,水射流离开喷嘴后要减速,当水流射到模板上时,当地

用动量定理推导气体压强公式和理想气体状态方程

用动量定理推导气体压强公式和理想气体状态方程 云南省玉溪第一中学周忠华 摘要:容器内气体压强的产生是由于大量气体分子频繁地撞击容器壁而使容器壁受到持续的压力,压强的大小就等于容器壁上单位面积上受到的压力。我们可以选取一定时间内与容器壁某一面积发生碰撞的气体分子作为研究对象,对它们应用动量定理,求出容器壁对这些气体分子的弹力,从而求出气体压强。得到气体的压强公式后,我们可以很自然地推导出质量一定的理想气体的状态方程。 关键词:动量定理、气体压强、理想气体状态方程 普通高中物理(必修加选修)第二册第十二章气体的压强这一节内容,教材为解释气体压强的产生和大小是通过两个演示实验来完成的。第一个实验是在玻璃罩内放一个充气不多的气球,然后用抽气机将罩内的空气逐渐抽离,抽气过程中可以看到气球体积不断膨胀,用这个实例说明气球内的气体确实对球皮产生了由内向外的压强;第二个演示实验是把大量的小滚珠均匀地倒在电子秤盘上,倾倒的过程中可以观察到滚珠对秤盘产生了持续的、均匀的压力,用这个实验来模拟大量的气体分子频繁地撞击容器壁会产生压强。这两个实验的优点是比较直观,学生看后基本上都能定性地感知气体压强的存在和产生的原因,但这两个实验都偏重于直观印象,缺乏充分严密的数学推证,许多学生对教材如此解释压强感到过于简单,说两个实验都不能给出决定气体压强大小的数学公式。为解决这个问题,笔者通过多年的教学实践发现,可以应用高中学生学习过的相关知识,对与容器壁发生碰撞的气体分子用动量定理,推导出容器内的气体压强公式,较好地解决了这个问题,下面我谈谈我的处理方法。 常温常压下的气体分子间隙很大,分子间距达到分子直径数量级

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

用动量定理推导气体压强公式和理想气体状态方程审批稿

用动量定理推导气体压强公式和理想气体状态 方程 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

用动量定理推导气体压强公式和理想气体状态方程 云南省玉溪第一中学周忠华摘要:容器内气体压强的产生是由于大量气体分子频繁地撞击容器壁而使容器壁受到持续的压力,压强的大小就等于容器壁上单位面积上受到的压力。我们可以选取一定时间内与容器壁某一面积发生碰撞的气体分子作为研究对象,对它们应用动量定理,求出容器壁对这些气体分子的弹力,从而求出气体压强。得到气体的压强公式后,我们可以很自然地推导出质量一定的理想气体的状态方程。 关键词:动量定理、气体压强、理想气体状态方程 普通高中物理(必修加选修)第二册第十二章气体的压强这一节内容,教材为解释气体压强的产生和大小是通过两个演示实验来完成的。第一个实验是在玻璃罩内放一个充气不多的气球,然后用抽气机将罩内的空气逐渐抽离,抽气过程中可以看到气球体积不断膨胀,用这个实例说明气球内的气体确实对球皮产生了由内向外的压强;第二个演示实验是把大量的小滚珠均匀地倒在电子秤盘上,倾倒的过程中可以观察到滚珠对秤盘产生了持续的、均匀的压力,用这个实验来模拟大量的气体分子频繁地撞击容器壁会产生压强。这两个实验的优点是比较直观,学生看后基本上都能定性地感知气体压强的存在和产生的原因,但这两个实验都偏重于直观印象,缺乏充分严密的数学推证,许多学生对教材如此解释压强感到过于简单,说两个实验都不能给出决定气体压强大小的数学公式。为解决这个问题,笔者通过多年的教学实践发现,可以应用高中学生学习过的相关知识,对与容器壁发生碰撞的气体分子用动量定理,推导出容器内的气体压强公式,较好地解决了这个问题,下面我谈谈我的处理方法。

自循环动量定律实验

JK-DL 自循环动量定理实验装置指导说明书 目录 一、实验目的 (1) 二、实验外形图 (1) 三、实验原理 (3) 四、实验方法与步骤 (3) 五、实验成果及要求 (4) 六、实验分析与讨论 (4)

湘潭金凯化工装备技术有限公司

JK-DL 自循环动量定律实验指导说明书 一、实验目的: 1.验证不可压缩流体恒定流的动量方程; 2.通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研讨,进一步掌握液体动力学的动量守恒定理; 3.了解活塞式动量定律实验仪原理、构造,进一步启发与培养创造性思维的能力。 二、实验外形图: 本实验的装置如下图所示。 自循环供水装置由离心式水泵和蓄水箱组合而成。水泵的开启、

流量大小的调节均由阀门控制。水流经供水管供给恒压水箱,溢流水经回水管流回蓄水箱。流经管嘴的水流形成射流,冲击带活塞和翼片的抗冲平板,并以与入射角成90°的方向离开抗冲平板。抗冲平板在射流冲力和测压管中的水压力作用下处于平衡状态。活塞形心水深h 可由测压管测得,由此可求得射流的冲击,即动量力F。冲击后的弃水经集水箱汇集后,再经上回水管流出,最后经漏斗和下回水管流回蓄水箱。 为了自动调节测压管内的水位,以使带活塞的平板受力平衡并减小摩擦阻力对活塞的影响,本实验装置应用了自动控制的反馈原理物动磨擦减阻技术。 工作时,在射流冲击力作用下,水流经导水管a向测压管内加水。当射流冲击大于测压管内水柱对活塞的压力时,活塞内移,窄槽c关小,水流外溢减少,使测压管内水位升高,水压力增大。反之,活塞外移,窄槽开大,水流外溢增多,测管内水位降低,水压力减小。在恒定射流冲击下,经短时段的自动调整,即可达到射流冲击力和水压力的平衡状态。这时活塞处在半进半出、窄槽部分开启的位置上,过a流进压管的水量和过c外溢的水量相等。由于平板上设有翼片b,在水流冲击下,平板带动活塞旋转,因而克服了活塞在沿轴向滑移时的静磨擦力。 为验证本装置的灵敏度,只要在实验中的恒定流受力平衡状态下,人为地增减测压管中的液位高度,可发现即使改变量不足总液柱面度的±5‰(约0.5-1mm),活塞在旋转下亦能有效地克服动磨擦力

动量方程验证实验

实验六动量方程验证实验 一、实验目的 1、验证不可压缩流体恒定流的动量方程;进一步理解动量方程的物理意义。 2、通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研究,进一步掌握流体动力学的动量守恒特性; 3、了解活塞式动量方程实验仪原理、构造,进一步启发与培养创造性思维的能力。 二、实验原理 1、设备工作原理 自循环供水装置1由离心式水泵和蓄水箱组合而成。开启水泵和流量大小的调节由流量调节开关3控制。水流经供水管供给恒压水箱。工作水流经管嘴6形成射流,射流冲击到带活塞和翼片的抗冲平板9上,并以与入射角成90°的方向离开抗冲平板。带活塞的抗冲平板在射流冲击力和测压管8中的静水压力作用下处于平衡状态。活塞形心水深h c可由测压管8测知,由此可求得射流的冲击力,即动量力F。冲击后落下的水经集水箱7汇集后,再经排水管10流出,在出口用体积法或称重法测流量。水流经接水器和回水管流回蓄水箱。 为了自动调节测压管内的水位,以使带活塞的平板受力平衡以及减小摩擦阻力对活塞的作用,本实验装置应用了自动控制的反馈原理和动摩擦减阻技术,具有如下结构: 图6-1 图6-2 带活塞和翼片的抗冲平板9和带活塞套的测压管8如图5-1所示,该图是活塞退出活塞套时的分部件示意图。活塞中心设有一细导水管a,进口端位于平板中心,出口端转向90°向下伸出活塞头部。在平板上设有翼片b,活塞套上设有窄槽c。 工作时,在射流冲击力作用下,水流经导水管a向测压管内加水。当射流冲击力大于测压管内水柱对活塞的压力时,活塞内移,窄槽c关小,水流外溢减少,使测压管内水位上升,水压力增大。反之,活塞外移,窄槽开大,水流外溢增多,测压管内水位降低,水压力减小。在恒定射流冲击下,经过短时间的自动调整,即可达到射流冲击力和水压力的平衡状态。这时活塞处在半进半出,窄槽部分开启的位置上,过a流进测压管的水量和过c外溢的水量相等。由于平板上设有翼片b,在水流冲击下,平板带动活塞旋转,因而克服了活塞在沿轴向滑移时的静摩擦力。 为验证本装置的灵敏度,只要在实验中的恒定流受力平衡状态下,人为地增减测压管中的液位高度,可发现即使改变量不足总液柱高度的±5‰(约0.5~1 mm),活塞在旋转下亦能有效地克服动摩擦力而作轴向位移,开大或减小窄槽c,使过高的水位降低或过低的水位提高,恢复到原来的平衡状态。这表明该装置的灵敏度高达0.5%,亦即活塞轴向动摩擦力不足总动量力的5‰。

动量定律测试实验(发学生)

动量定律验证实验 实 验 报 告 班级:__________ 学号:__________ 姓名:__________

一、实验目的 1、通过测定射流对平板的冲击作用力,验证定常流动的动量方程式。 2、了解活塞式动量定律实验仪原理、构造,进一步启发与培养创造性思维的能力。 二、实验装置与原理 1、实验功能 本试验台是一个验证性实验设备,即通过射流的反应作用力验证动量定律。在实验过程中除能实测到一定的实验现象还可定量的测定参数,并记录数据,通过公式运算来验证。 本产品的具体教学实验可完成: 1)、测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2)、将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。通过以上的实验得到一些的测量数据,并可以此来验证恒定流动量方程,由此学生或直观确切的了解该实验的现象从而更好的理解动量定律。 2、实验装置 实验装置简图如图所示 力臂尺 设备配置:恒稳水箱、蓄水箱、防腐水泵、自循环防腐蚀管道系统、阀门构配件、实验管嘴、平衡杠杆、平衡砝码、平衡锤、支点、实验计量水箱、实验平板组件、实验曲面板组件、实验桌等。

3、实验原理 (1)、求水流对平板的作用力 如图所示的水平方向射流,其平均速度为v ,流量为Q ,垂直射向平板。求水流对平板的作用力。 取1-1(喷嘴出口)与2-2(平板)过流断面之间的流体为控制体,列出在水平方向(x 方向)的动量方程式为: )(1122x x x V V Q F ββρ-= (1) 式中:F x — 平板对水流的作用力。 ρ — 水的密度ρ=1000(㎏/m 3); Q — 流量(m/s 3); β1、β2 — 动量修正系数; υ1x — 喷嘴出口平均流速在水平方向投影v v x =1(m/s ); υ2x — 2-2控制面平均流速在水平方向投影υ2x =0; 若取动量修正系数β1=β2=1,则(1)式为 x x QV F 1ρ-= …… (2) 因为,水流对平板的作用力x R 与x F 大小相等,方向相反。因此,平板所受的作用力 QV QV F R x x x ρρ==-=1 (3) (2)、验证动量定理 根据平衡力矩原理验证动量定理。在没有水击冲力对平板作用力的情况下(即为初始状态),调节平衡锤和平衡砝码,使得平衡杠杆处于平衡状态,平衡砝码到转轴的距离为L 1;打开水泵,使得水流通过喷嘴冲击平板,对平板有一定的作用力,调节平衡砝码,使得平衡杠杆在此条件下保持平衡,此时测得平衡砝码到转轴的距离为L 2,冲击点到转轴的垂直距离为h 。 初始状态下:杠杆平衡,其对转轴取矩,得力矩为: 11mgL M = 有水流冲击的状态下:水流对平板的作用力为x R ,其对转轴取矩,得力矩: Qvh h R M x ρ==0 有水流冲击的状态下:平衡砝码到转轴的力矩M 2: 22mgL M = 如果使201M M M =+,则说明测试得出的水对平板的作用力x R 是正确的。但是由于对力臂测试的误差以及仪器本身带来的误差,会导致201M M M ≠+,只要误差在20%以内就认为其是正确的。 三、实验步骤 1、调节平衡锤和平衡砝码,使得平衡杠杆处于平衡状态,平衡砝码到转轴

第17章 动量定理和动量矩定理总结

第17章 动量定理和 动量矩定理

工程力学学习指导 第17章 动量定理和动量矩定理 17.1 教学要求与学习目标 1. 正确理解动量的概念,能够熟练计算质点系、刚体以及刚体系的动量。 2. 认真理解有关动量定理、动量守恒定理以及质心运动定理,掌握这些定理的相互关系。 3. 正确而熟练地应用动量定理、动量守恒定理以及质心运动定理解决质点系动力学两类问题,特别是已知运动求未知约束力的问题。 4. 学习动量矩定理时,首先需要认识到,在动力学普遍定理中,动量定理和动量矩定理属于同一类型的方程,即均为矢量方程。而质点系的动量和动量矩,可以理解为动量组成的系统(即动量系)的基本特征量——动量系的主矢和主矩。两者对时间的变化率等于外力系的基本特征量——力系的主矢和主矩。 5. 认真理解质点系动量矩概念,正确计算系统对任一点的动量矩。 6. 熟悉动量矩定理的建立过程,正确应用动量矩定理求解质点系的两类动力学问题。 7. 于作平面运动的刚体,能够正确建立系统运动微分方程和补充的运动学方程,并应用以上方程求解刚体平面运动的两类动力学问题。 17.2 理 论 要 点 17.2.1 质点系的动量 质点系中所有质点动量的矢量和(即质点系动量的主矢)称为质点系的动量。即 i i i m v p ∑=

质点系的动量是自由矢,是度量质点系整体运动的基本特征量之一。具体计算时可采用其在直角坐标系的投影形式,即 ?? ?? ? ?? ?? ===∑∑∑i iz i z i iy i y i ix i x v m p v m p v m p 质点系的动量还可用质心的速度直接表示:质点系的动量等于质点系的总质量与质心速度的乘积,即 C m v p = 这相当于将质点系的总质量集中于质心一点的动量,所以说质点系的动量描述了其质心的运动。 上述动量表达式对于刚体系也是正确的。 17.2.2 质点系动量定理 质点系动量定理建立了质点系动量的变化率与外力主矢量之间的关系。其微分形式为 (e)(e)R d d i i t ==∑p F F 质点系的动量对时间的变化率等于质点系所受外力系的矢量和。式中(e)i i ∑F 或 (e)R F 为作用在质点系上的外力系主矢。 质点系动量定理的积分形式,也称为质点系的冲量定理,即 2 1 (e)(e)21d t i i t i i t ?==∑∑∫p p F I 质点系动量在某时间间隔内的改变量等于质点系所受外力冲量。此式将广 泛应用于求解碰撞问题。 17.2.2 动量守恒定理 1. 质点系动量守恒定理 当外力主矢恒等于零,即(e)R 0=F 时,质点系的动量为一常矢量。即 112C p p == 式中1C 是常矢量,由运动的初始条件决定。 2. 质点系动量在某轴上的投影守恒 质点系的动量定理实际应用时常采用投影式,即

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

水力学实验报告动量方程验证实验

学院:水利水电学院 专业:水利水电工程 2014年6月2日 一、 实验的目的 1. 测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2. 将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。 二、 实验原理和装置 应用力矩平均原理如图所示:求射流对平板和曲面板的冲击力。 力矩平衡方程: FL =GL 1 F =GL 1L 式中:F —射流作用力;L —作用力力臂;G —砝码重量;L 1—砝码力臂。 恒定总流的动量方程为: ∑F =ρQ (α′2V 2??? ?α′1V 1??? ) 若令α′2=α′1=1,且只考虑其中水平方向作用力,则可求得射流对平板和曲面的作用力公式为: F =ρQV(1?cos α) 式中:Q 为管嘴的流量;V 为管嘴流速;α为射流射向平板或曲面板后的偏转角度。 α=90°时,F 平 =ρQV (F 平为水流对平板的冲击力)。 α=135°时,F =ρQV (1?cos 135°)=1.707ρQV =1.707F 平 。 α=180°时,F =ρQV (1?cos 180°)=2ρQV =2F 平 。 实验设备包括如图所示的装置,并配有α=90°平面板和α=135°及α=180°曲面板,体积法测流量所需的量筒及秒表。 三、 实验步骤,以及有关的计算公式 1. 记录管嘴直径和作用力力臂。 2. 安装平面板,调节平衡锤位置,使杠杆处于水平状态(杠杆支点上的气泡居中)。 3. 启动抽水机,使水箱充水并保持溢流。此时水流从管嘴射出,冲击平板中心,标尺倾斜。 加砝码并调节砝码位置,使杠杆处于水平状态,达到力矩平衡。记录砝码质量和力臂L 1。 4. 用体积法测量流量Q 用以计算F 理。 5. 将平面板更换为曲面板(α=135°及α=180°),测量水流对曲面板的冲击力并重新用体 积法测量流量。

动能定理习题及解答

动能定理习题及解答 P314 13-1:已知圆盘半径r=0.5m, m A =3kg, m B =2kg ,力偶矩M=4?, 绳与盘之间无相对滑动; 求:?由0至2π时,力偶M 与物块重力所作功的总和。 解:W=?π ? ?20d 4+ (m A – m B )g ? 2πr = 109.7J P314 13-4:已知长为l ,质量为m 的均质杆OA 以球铰链O 固定,并以等角速度ω绕铅直线转动,杆与铅直线的交角为θ; 求:杆的动能。 解:此杆绕铅直轴作定轴转动,杆的转动惯量为 J z =θχθχ2 222l 0sin l 3m d sin l m =? 杆的动能为 T = 2 z J 21 ω = θω222sin ml 61 P316 13-11: 已知均质杆AB 的质量m=4kg,长l=600mm,均质圆盘 B 的质量为6kg ,半径r=100mm,作纯滚 动。弹簧刚度k=2N/mm,不计套筒A 及弹 簧的质量。连杆在30o角无初速释放; 求:(1)当AB 杆达水平位置而接触弹簧 时,圆盘与连杆的角速度;(2)弹簧的最大压缩量δmax 。 解:(1)该系统初始静止,动能为0;AB 杆达 水平位置时,B 点是AB 杆的速度瞬心,圆盘的角速度ωB =0,设杆的角速度为ωAB ,由动能定理,得 2230sin 203121l mg ml AB ?=-?ω 解得连杆的角速度 ωAB = 4.95 rad/s (2)AB 杆达水平位置接触弹簧时,系统的动能为T 1,弹簧达到最大压缩量δmax 的瞬时,系统再次静止,动能T 2=0,由

T 2 - T 1 = W 12 得 22610max 2 max 22δδωmg k ml AB +-=- 解得 δmax =87.1mm P316 13-12:已知均质轮B 和C 的质量均为m 2,半径均为r,轮B 上的力偶矩M=常量,物A 的质量为m 1; 求: 物A 由静止上移距离s 时的速度和加速度。 解:该系统初动能为零,设物A 移动距离s 时速度为υ,有 θ?ωυsin 0)2121221(12222 1g sm M r m m -=-???+ 式中 r s =?, r υω= (a) 解得 s m m r gr m M )(sin (2211+-= θ υ (b) 将式(a)(或式(b ))对时间求一阶导数,注意υ=. s ,解得 )(sin 211m m r gr m M a +-= θ P317 13-13: 已知动齿轮半径为r ,质量为m 1, 可看成均质园盘;均质曲柄OA 质量为m 2; 定齿轮半径为R 。OA 上的力偶矩M=常量。 机构位于水平面内,初始静止; 求:曲柄转过?角时的角速度和角加速度。 解:该系统初动能为零,设曲柄转过?角时的角速度为ω,有 ?υωωM m r m r R m A A =-+?++?0)21 2121)(3121(21221222 (a ) 式中 ω ωωυr r R r A A A +==,

动量定理的验证及误差分析

验证动量定理及误差分析 摘要:根据平抛简便快捷的验证动量定理,得出碰后小球总动量总略大于碰前小球总动量的 结论,并进行造成误差原因的分析。 引言:通过本实验可以减少在实验中的误差,提高实验的准确性。 实验装置如图,让一个质量较大的小球从轨道上方滚下来,跟放在轨道末端的另一质量较小的小球发生碰撞(正碰),设两个小球质量分别为m1、m2。轨道光滑,质量为 m1的小球到达末端时的速度v1,质量为m2的被碰小球静止, 碰撞后小球的速度分别为v1‘和v2‘验证两小球碰撞前各自的质量与自己速度的乘机之和是否等于碰后各 自的质量与自己速度的乘机之和。 小球质量可用天平称出,怎样简便的测出碰撞后的速 度呢?两小球碰撞前后速度方向是水平的,因此两小球 碰后速度课利用平抛知识来求得。在实验中,做平抛运 动的小球落到地面,它们的下落高度相同,飞行时间也 就相同,它们的水平距离与小球开始做平抛运动时的水 平速度成正比。 具体步骤如下: 用天平称出两小球质量,按照图示安装实验装置,将斜槽固定在桌边,使槽的末端的切线是水平的,被碰小球放在斜槽前端的边缘处,为了记录小球飞出的水平距离,在地上铺一张白纸,白纸上放复写纸,当小球落在复写纸上时,便在白纸上留下小球落地的痕迹。 先不放上被碰小球,让入射小球从同一高度滚下10次,用尽可能小的圆把所有的小球落点圈在里面,圆心就是小球落点的平均位置。 把被碰小球放在斜槽末端边缘处,让入射小球从原来的高度滚下,使它们发生碰撞,重复10次,用同样的方法标出碰后两小球落点的平均位置。记录数据,算出碰撞前后两小球速度。 令换入射小球的下落高度,重复以上步骤。 重复以上步骤10次,得出10组碰撞前后小球的速度,取平均值。代人动量守恒公式。 结论:碰后的总动量略大于碰前的总动量。 误差分析: 入射球从轨道上滚下时,由于摩擦,入射球做无滑滚动。这时,入射球受到的是静摩擦力作用。在两个小球碰撞的瞬间,入射球球心的速度突然减小,但由于入射球的转动角速度没有突变,这时入射球与轨道之间就变成有滑滚动。这样,入射球受到了与运动方向相同的滑动摩擦力的作用。根据动量定理可知,系统的总动量将增加,这就是出现上述结果的主要原因。被碰球质量越大,两个小球碰撞时,入射球球心的速度减小得越多,由于入射球的

北航流体力学实验报告思考题全解答(雷诺实验、不可压缩流体定常流动量定律实验、能量方程实验)

【北航流体力学实验报告思考题全解答】 (雷诺实验、不可压缩流体定常流动量定律实验、不可压缩 流体定常流动能量方程实验) BUAA搜集 不可压缩流体恒定流能量方程实验 1.测压管水头线和总水头线的变化趋势有何不同为什么 测压管水头线(P-P)沿程可升可降,线坡J P 可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转 换成势能,测压管水头线升高,J P <0。而据能量方程E 1 =E 2 +h w1-2 , h w1-2 为损失能量,是不可逆的,即恒有h w1-2 >0, 故E 2恒小于E 1 ,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失 越大,如图的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化为什么 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有

式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题 测点2、3位于均匀流断面(图),测点高差,H =均为(偶有毛细影响相差),表明均匀流同断 P 面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 不可压缩流体恒定流动量定律实验 1、实测β与公认值(β=~符合与否如不符合,试分析原因。 实测β=与公认值符合良好。(如不符合,其最大可能原因之一是翼轮不转所致。为排除此故障,可用4B铅笔芯涂抹活塞及活塞套表面。) 2、带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿x方向的动量力有无影响为什么 无影响。 因带翼片的平板垂直于x轴,作用在轴心上的力矩T,是由射流冲击平板是,沿yz平面通过翼片造成动量矩的差所致。即 式中 Q——射流的流量; ——入流速度在yz平面上的分速; V yz1 V ——出流速度在yz平面上的分速; yz2 ——入流速度与圆周切线方向的夹角,接近90°; α 1

动量方程实验

动量方程验证实验 一、实验目的 1、测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2、将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。 二、实验原理 应用力矩平衡原理如图一所示:求射流对平板和曲面板的冲击力。 力矩平衡方程:1GL FL =,L GL F 1= 式中:射流作用力?F ;作用力力臂?L ; 砝码重量?G ;砝码力臂?1L 。 图一 力矩平衡原理示意图 恒定总流的动量方程为)(1, 12,2V V Q F ααρ?=Σ 若令1,1, 2==αα,且只考虑其中水平方向作用力,则可求得射流对平板和曲面 的作用力公式为:)cos 1(αρ?=QV F 式中:管嘴的流量?Q ;管嘴流速?V ;?α射流射向平板或曲面板后的偏转角度。 。90=α时,QV F ρ=平。: 平F 水流对平板的冲击力

。135=α时,平。F QV QV F 707.1707.1)135cos 1(==?=ρρ 。180=α时,平F QV QV F 22)180cos 1(==?=ρρ 三、实验设备 实验设备及各部分名称见图二,实验中配有。90=α平面板和。135=α及 。180=α的曲面板,另备大小量筒及秒表各一只。 四、实验步骤 1、记录管嘴直径和作用力力臂。 2、安装平面板,调节平衡锤位置,使杠杆处于水平状态(杠杆支点上的气泡居中) 3、启动抽水机,使水箱充水并保持溢流。此时水流从管嘴射出,冲击平 图二 动量原理实验仪

板中心,标尺倾斜。加砝码并调节砝码位置,使杠杆处于水平状态,达到力矩平衡。记录砝码质量和力臂1L 。 4、用体积法测量流量Q 用以计算理F 。 5、将平面板更换为曲面板)180135(。。及==αα,测量水流对曲面板的冲击力并重新用体积法测量流量。 6、关闭抽水机,将水箱中水排空,砝码从杠杆上取下,结束实验。 五、注意事项 1、量测流量后,量筒内的水必须倒进接水器,以保证水箱循环水充足。 2、测流量时,计时与量筒接水一定要同步进行,以减小流量的量测误差。 3、测流量一般测两次取平均值,以消除误差。 六、实验成果及要求 1、有关常数。 喷管直径d= cm , 作用力力臂L = cm , 实验装置台号: 2、记录及计算(见表一)。 表一:计录及计算表 测次 体积 cm 3 时间 s 流量 cm 3/s 平均流量 cm 3/s 流速 cm/s 冲击板角度α 砝码重量 N ×10-5 力臂L 1 cm 实测冲 击力 F 实 N ×10-5 理论计算冲击力F 理 N ×10-5 3、成果分析:将实测的水流对板的冲击力与由动量方程计算出的水流对板 的冲击力进行比较,计算出其相对误差,并分析产生误差的原因。 七、思考题 1、与实F 理F 有差异,除实验误差外还有什么原因? 2、实验中,平衡锤产生的力矩没有加以考虑,为什么?

动量定律实验

不可压缩流体定常流动量定律实验 班级学号?????????????? 姓名?????????????? 实验日期?????????????? 指导教师?????????????? 北京航空航天大学流体所

不可压缩流体定常流动量定律实验 一、实验目的要求 1.验证不可压缩流体定常流的动量方程; 2.通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研讨,进一步掌握流体动力学的动量守恒定理; 3.了解活塞式动量定律实验仪原理、构造,进一步启发与培养创造性思维的能力。 二、实验装置 本实验装置如下图所示: 动量定律实验装置图 1 自循环供水器 2 实验台 3 可控硅无级调速器 4 水位调节阀 5 恒压水箱 6 管嘴 7 集水箱 8 带活塞的测压管 9 带活塞和翼片的抗冲平板10 上回水管

自循环供水装置1由离心式水泵和蓄水箱组合而成。水泵的开启、流量大小的调节均由调速器3控制。水流经供水管供给恒压水箱5,溢流水经回水管流回蓄水箱。流经管嘴6的水流形成射流,冲击带活塞和翼片的抗冲平板9,并以与入射角成90°的方向离开抗冲平板。抗冲平板在射流冲力和测压管8中的水压力作用下处于平衡状态。活塞形心水深h c可由测压管8测得。由此可求得射流的冲力,即动量力F。冲击后的弃水经集水箱7汇集后,再经上回水管10流出,最后经漏斗和下回水管流回蓄水箱。 为了自动调节测压管内的水位,以使带活塞的平板受力平衡并减小摩擦阻力对活塞的影响,实验装置应用了自动控制的反馈原理和动摩擦减阻技术。其构造如下: 带活塞和翼片的抗冲平板9和带活塞套的测压管8如下左图所示。该图是活塞退出活塞套时的分部件示意图。活塞中心设有一细导水管a,进口端位于平板中心,出口端伸出活塞头部,出口方向与轴向垂直。在平板上设有翼片b,活塞套上设有窄槽c。 工作时,在射流冲击力作用下,水流经导水管a向测压管内加水。当射流冲击力大于测压管内水柱对活塞的压力时,活塞内移,窄槽c关小,水流外溢减少,使测压管内水位升高,水压力增大。反之,活塞外移,窄槽开大,水流外滥增多,

相关文档
最新文档