数值分析第一次作业答案

数值分析第一次作业答案
数值分析第一次作业答案

作业

1.用如下数值表构造不超过3次的插值多项式

2. P55 11题.给出概率积分?

-=

x

x

dx

e

y 0

2

2

π

的数据表

用2次插值计算,试问:

(1) 当x = 0.472时,积分值等于多少? (2) 当x 为何值时,积分值等于0.5? 解:(1) 取x 0 = 0.47, x 1 = 0.48, x 2 = 0.49

8

0.4955530040.04093346-80.1809899240.355496540.5116683

0.5027498

0.4937452=+=----?

+----?

+----?==

---

-+--

-

-+----

≈)

48.049.0)(47.049.0()48.0472.0)(47.0472.0()

49.048.0)(47.048.0()49.0472.0)(47.0472.0()49.0472.0)(48.047.0()49.0472.0)(48.0472.0()

472.0()

)(()

)(())(())(())(())(()472.0(2

1

20

2

1

02

2

1

1

2

01

2

1

2

10

y L

x

x x

x x

x

y x x x x x x y x x x x x x x x x x x x y

(2)

9

0.4769359350.05272367-80.4362204360.093439170.50274980.5116683

0.49374520.5116683

0.50274980.49374520.49 0.51166830.50274980.49374520.50274980.51166830.49374520.48 0.51166830.49374520.50274980.49374520.51166830.50274980.47=+=----?

+----?+----?

==

-

---+--

-

-

+

-

-

--

≈)

)(()

5.0)(5.0())(()5.0)(5.0())(()

5.0)(5.0()

5.0()

)(

()

)(())(()

)(()

)(

()

)(()5.0(2

1

2

2

1

02

2

1

1

2

01

2

1

2

10

L

y

y

y y y

y x

y y y

y y y x

y

y

y

y y

y x

y y y y y y x

3. 证明方程e x +10x -2=0在区间[0,1]内有一个根,如果使用二分法求该区间内的根,且误差不超过10-6,试问需要二分区间[0,1]多少次?

4. 设x t =451.01为准确值,x a =451.023为x t 的近似值,试求出x a 有效数字的位数及相对误差 作业答案

1.解:N 2(x ) = f (0)+f [0,1](x -0)+ f [0,1,2](x -0) (x -1) 1+1×(x -0) +3×(x -0) (x -1)=3x 2-2x +1 为求得P 3(x ),根据插值条件知,P 3(x )应具有下面的形式 P 3(x )=N 2(x )+k (x -0) (x -1) (x -2),这样的P 3(x )自然满足:

P 3(x i )= f (x i )

由P 3’(1 )=3

P 3’(1 )= N 2’(1 )+k (1-0) (1-2) =N 2’(1 )-k = 4-k=3

∴ k =1

∴ P 3(x )=N 2(x )+ (x -0) (x -1) (x -2)=x 3+1 3. 证明 令f (x )=e x +10x -2,

∵ f (0)=-1<0,f (1)=e+8> 0

∴ f (x )= e x +10x -2 =0在[0,1]有根。又

f '(x )= e x +10 >0(x ∈[0,1]),故f (x )=0在区间[0,1]内有唯一实根。 给定误差限10-6,有

12

ln 10ln 612

ln ln )ln(-=

---≥

ε

a b k

只要取k =19次.

4. 解: |x a -x t |=|451.023-451.01|=0.013<0.05=0.5×10-1

x a =451.023=0.451023×103 ,3-l =-1,∴l =4 ∴x a 有4位有效数字

%

0029.001

.451013.0a ==-=

t

t

x x x e r

取r ε=

)

1(1

10

*21--n α

x

x

e r ε

ε=

≤*

*称为相对误差限。

清华大学数值分析A第一次作业

7、设y0=28,按递推公式 y n=y n?1? 1 100 783,n=1,2,… 计算y100,若取≈27.982,试问计算y100将有多大误差? 答:y100=y99?1 100783=y98?2 100 783=?=y0?100 100 783=28?783 若取783≈27.982,则y100≈28?27.982=0.018,只有2位有效数字,y100的最大误差位0.001 10、设f x=ln?(x? x2?1),它等价于f x=?ln?(x+ x2?1)。分别计算f30,开方和对数取6位有效数字。试问哪一个公式计算结果可靠?为什么? 答: x2?1≈29.9833 则对于f x=ln x?2?1,f30≈?4.09235 对于f x=?ln x+2?1,f30≈?4.09407 而f30= ln?(30?2?1) ,约为?4.09407,则f x=?ln?(x+ x2?1)计算结果更可靠。这是因为在公式f x=ln?(x? x2?1)中,存在两相近数相减(x? x2?1)的情况,导致算法数值不稳定。 11、求方程x2+62x+1=0的两个根,使它们具有四位有效数字。 答:x12=?62±622?4 2 =?31±312?1 则 x1=?31?312?1≈?31?30.98=?61.98 x2=?31+312?1= 1 31+312?1 ≈? 1 ≈?0.01613

12.(1)、计算101.1?101,要求具有4位有效数字 答:101.1?101= 101.1+101≈0.1 10.05+10.05 ≈0.004975 14、试导出计算积分I n=x n 4x+1dx 1 的一个递推公式,并讨论所得公式是否计算稳定。 答:I n=x n 4x+1dx 1 0= 1 4 4x+1x n?1?1 4 x n?1 4x+1 dx= 1 1 4 x n?1 1 dx?1 4 x n?1 4x+1 dx 1 = 1 4n ? 1 4 I n?1,n=1,2… I0= 1 dx= ln5 1 记εn为I n的误差,则由递推公式可得 εn=?1 εn?1=?=(? 1 )nε0 当n增大时,εn是减小的,故递推公式是计算稳定的。

北航数值分析大作业第二题

数值分析第二次大作业 史立峰 SY1505327

一、 方案 (1)利用循环结构将sin(0.50.2)() 1.5cos( 1.2)() {i j i j ij i j i j a +≠+==(i,j=1,2,……,10)进行赋值,得到需要变换的 矩阵A ; (2)然后,对矩阵A 利用Householder 矩阵进行相似变换,把A 化为上三角矩阵A (n-1)。 对A 拟上三角化,得到拟上三角矩阵A (n-1),具体算法如下: 记A(1)=A ,并记A(r)的第r 列至第n 列的元素为()n r r j n i a r ij ,,1,;,,2,1) ( +==。 对于2,,2,1-=n r 执行 1. 若 ()n r r i a r ir ,,3,2) ( ++=全为零,则令A(r+1) =A(r),转5;否则转2。 2. 计算 () ∑+== n r i r ir r a d 1 2 )( ()( )r r r r r r r r r r d c a d a c ==-=++则取,0sgn ) (,1)(,1若 )(,12r r r r r r a c c h +-= 3. 令 () n T r nr r r r r r r r r R a a c a u ∈-=++) ()(,2)(,1,,,,0,,0 。 4. 计算 r r T r r h u A p /)(= r r r r h u A q /)(= r r T r r h u p t /= r r r r u t q -=ω T r r T r r r r p u u A A --=+ω)()1( 5. 继续。 (3)使用带双步位移的QR 方法计算矩阵A (n-1)的全部特征值,也是A 的全部特征值,具体算法如下: 1. 给定精度水平0>ε和迭代最大次数L 。 2. 记n n ij n a A A ?-==][) 1()1()1(,令n m k ==,1。

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值分析第一次作业

数值分析第一次作业 班级 学号 姓名 习题2 4、用Newton法求方程f(x)=x^3-2*x^2-4*x-7=0在[3,4]中的根。 代码: function[x_star,k]=Newton1[fname,dfname,x0,ep,Nmax] if nargin<5 Nmax=500; end if nargin<4 ep=1e-5;end x=x0;x0=x+2*ep;k=0; while abs(x0-x)>ep&kep&k

x0=x1; x1=x2; end x_star=x1; if k==Nmax warning('已迭代上限次数');end fun=inline('x^3-2*x^2-4*x-7'); [x_star,k]=Gline(fun,3,4) x2 = 3.5263 x2 = 3.6168 x2 = 3.6327 x2 = 3.6320 x2 = 3.6320 x_star = 3.6320 k = 5 习题3

北航数值分析报告大作业第八题

北京航空航天大学 数值分析大作业八 学院名称自动化 专业方向控制工程 学号 学生姓名许阳 教师孙玉泉 日期2014 年11月26 日

一.题目 关于x , y , t , u , v , w 的方程组(A.3) ???? ?? ?=-+++=-+++=-+++=-+++79 .0sin 5.074.3cos 5.007.1cos sin 5.067.2cos 5.0y w v u t x w v u t y w v u t x w v u t (A.3) 以及关于z , t , u 的二维数表(见表A-1)确定了一个二元函数z =f (x , y )。 表A-1 二维数表 t z u 0 0.4 0.8 1.2 1.6 2 0 -0.5 -0.34 0.14 0.94 2.06 3.5 0.2 -0.42 -0.5 -0.26 0.3 1.18 2.38 0.4 -0.18 -0.5 -0.5 -0.18 0.46 1.42 0.6 0.22 -0.34 -0.58 -0.5 -0.1 0.62 0.8 0.78 -0.02 -0.5 -0.66 -0.5 -0.02 1.0 1.5 0.46 -0.26 -0.66 -0.74 -0.5 1. 试用数值方法求出f (x , y ) 在区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的近似表达式 ∑∑===k i k j s r rs y x c y x p 00 ),( 要求p (x , y )以最小的k 值达到以下的精度 ∑∑==-≤-=10020 7210)],(),([i j i i i i y x p y x f σ 其中j y i x i i 05.05.0,08.0+==。 2. 计算),(),,(* ***j i j i y x p y x f (i =1,2,…,8 ; j =1,2,…,5) 的值,以观察p (x , y ) 逼 近f (x , y )的效果,其中j y i x j i 2.05.0,1.0**+==。

数值分析第一次作业及参考答案

数值计算方法第一次作业及参考答案 1. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1), (1)用Lagrange 插值求二次插值多项式。(2)构造差商表。(3)用Newton 插值求二次插值多项式。 解:(1)Lagrange 插值基函数为 0(1)(2)1 ()(1)(2)(01)(02)2 x x l x x x +-= =-+-+- 同理 1211 ()(2),()(1)36 l x x x l x x x = -=+ 故 2 20 2151 ()()(1)(2)(2)(1) 23631 i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑ (2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为 011215 5(1) [,]4, [,]20(1) 12 f x x f x x ---= =-= =----- 0124(2) [,,]102 f x x x ---= =- 实际演算中可列一张差商表: (3)用对角线上的数据写出插值多项式 2 2()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+ 2. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使 截断误差不超过6 10-,问使用函数表的步长h 应取多少 解: ()40000(), (),[4,4],,,, 1.x k x f x e f x e e x x h x x h x x th t ==≤∈--+=+≤考察点及

(3) 2000 4 43 4 3 () ()[(()]()[()] 3! (1)(1) (1)(1) 3!3! .(4,4). 6 f R x x x h x x x x h t t t e t h th t h e h e ξ ξ =----+ -+ ≤+??-= ≤∈- 则 4 36 ((1)(1) 100.006. t t t h - -+± << Q在点 得 3.求2 () f x x =在[a,b]上的分段线性插值函数() h I x,并估计误差。 解: 22 22 11 1 111 22 11 11 1 () () k k k k h k k k k k k k k k k k k k k k k k k x x x x x x I x x x x x x x x x x x x x x x x x x x x x ++ + +++ ++ ++ + --- =+= --- ?-? -=+- - [] 2 11 22 11 ()()()[()] 11 ()() 44 h h k k k k k k k k R x f x I x x x x x x x x x x x x x h ++ ++ =-=-+- =--≤-= 4.已知单调连续函数() y f x =的如下数据 用插值法计算x约为多少时() 1. f x=(小数点后至少保留4位) 解:作辅助函数()()1, g x f x =-则问题转化为x为多少时,()0. g x=此时可作新 的关于() i g x的函数表。由() f x单调连续知() g x也单调连续,因此可对() g x的数值进行反插。的牛顿型插值多项式为 1()0.110.097345( 2.23)0.451565( 2.23)( 1.10) 0.255894( 2.23)( 1.10)(0.17) x g y y y y y y y - ==-+++++ -++-

北航数值分析计算实习报告一

航空航天大学 《数值分析》计算实习报告 第一大题 学院:自动化科学与电气工程学院 专业:控制科学与工程 学生姓名: 学号: 教师: 电话: 完成日期: 2015年11月6日 航空航天大学 Beijing University of Aeronautics and Astronautics

实习题目: 第一题 设有501501?的实对称矩阵A , ??? ???? ?????????=5011A a b c b c c b c b a 其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1 .0-==???=--=c b i e i i a i i 。矩阵A 的特征值为)501,,2,1(???=i i λ,并且有 ||min ||,501 150121i i s λλλλλ≤≤=≤???≤≤ 1.求1λ,501λ和s λ的值。 2.求A 的与数40 1 5011λλλμ-+=k k 最接近的特征值)39,,2,1(???=k k i λ。 3.求A 的(谱数)条件数2)A (cond 和行列式detA 。 说明: 1.在所用的算法中,凡是要给出精度水平ε的,都取12-10=ε。 2.选择算法时,应使矩阵A 的所有零元素都不储存。 3.打印以下容: (1)全部源程序; (2)特征值),,39,...,2,1(,s 5011=k k i λλλλ以及A det ,)A (cond 2的值。 4.采用e 型输出实型数,并且至少显示12位有效数字。

一、算法设计方案 1、求1λ,501λ和s λ的值。 由于||min ||,501 150121i i s λλλλλ≤≤=≤???≤≤,可知绝对值最大特征值必为1λ和501 λ其中之一,故可用幂法求出绝对值最大的特征值λ,如果λ=0,则1λ=λ,否则 501λ=λ。将矩阵A 进行一下平移: I -A A'λ= (1) 对'A 用幂法求出其绝对值最大的特征值'λ,则A 的另一端点特征值1λ或501λ为'λ+λ。 s λ为按模最小特征值,||min ||501 1i i s λλ≤≤=,可对A 使用反幂法求得。 2、求A 的与数40 1 5011λλλμ-+=k k 最接近的特征值)39,...,2,1(=k k i λ。 计算1)1,2,...,50=(i i λ-k μ,其模值最小的值对应的特征值k λ与k μ最接近。因此对A 进行平移变换: )39,,2,1k -A A k k ==(I μ (2) 对k A 用反幂法求得其模最小的特征值'k λ,则k λ='k λ+k μ。 3、求A 的(谱数)条件数2)(A cond 和行列式detA 。 由矩阵A 为非奇异对称矩阵可得: | | )(min max 2λλ=A cond (3) 其中max λ为按模最大特征值,min λ为按模最小特征值,通过第一问我们求得的λ和s λ可以很容易求得A 的条件数。 在进行反幂法求解时,要对A 进行LU 分解得到。因L 为单位下三角阵,行 列式为1,U 为上三角阵,行列式为主对角线乘积,所以A 的行列式等于U 的行列式,为U 的主对角线的乘积。

数值分析作业答案part

6.4.设??? ? ? ??=5010010a b b a A ,0det ≠A ,用a ,b 表示解线性方程组f Ax =的雅可比迭代与 高斯—塞德尔迭代收敛的充分必要条件。 解 雅可比迭代法的迭代矩阵 ? ??? ??? ? ??----=???? ? ??----????? ??=-050100100100000001010101 a b b a a b b a B J , ?? ? ?? -=-1003||2ab B I J λλλ,10||3)(ab B J = ρ。 雅可比迭代法收敛的充分必要条件是3 100 ||

北航数值分析第一次大作业(高斯gauss lu分解)

一、问题分析及算法描述 编写程序,分别用列主元的Gauss 消去法和LU 分解法求解下面线型代数方程组AX=b 的解,其中A 为N ×N 矩阵,N=50,其中第i(i ≥1)行、第j(i ≥1)列元素 a ij =1 i+j ?1, 右端向量b 的第i(i ≥1)个分量为 b i = 10 i+j ?1N j=1. 列主元素Gauss 消去过程中,要用到两种初等行变换。第一种,交换两行的位置;第二种,用一个数乘某一行加到另一行上。在第k 次消元之前,先对增广矩阵 A (k),b (k) 作第一种行变换,使得a ik (k) 中绝对值最大的元素交换到第k 行的主对角线位置上,然后再使用第二种行变换进行消元。如此往复,最后得到一个上三角系数矩阵,并回代求解解向量。由于每次消元前选取了列主元素,因此与顺序Guass 消元法相比,可提高数值计算的稳定性,且其计算量与顺序Guass 消元法相同。列主元的Gauss 消去法要求系数矩阵A 非奇异。 LU 分解法,即通过一系列初等行变换将系数矩阵A 分解成一个下三角矩阵L 与一个上三角矩阵U 的乘积,进一步通过求解两个三角矩阵得出解向量。若L 为单位下三角矩阵,U 是上三角矩阵,则称为Doolittle 分解;若L 为下三角矩阵,U 是单位上三角矩阵,则称为Crout 分解。若系数矩阵A 的前n-1阶顺序主子式不为零,则Doolittle\Crout 分解具有唯一性。若在每步行变换中选取主元,可提高数值计算稳定性。本算例中采用选主元的Doolittle 分解。 通过分析可知,本算例中待求解线型方程组系数矩阵为非奇异矩阵,且其前n-1阶顺序主子式不为零。方程组的解向量为x = 10,10,?,10 T 。满足列主元高斯消去法以及LU 分解法的基本使用条件。为了验证上述两种方法对本算例的适用性,笔者利用Microsoft Visual C++6.0编写了该算例的列主元高斯消去法以及LU 分解法的程序代码,并进行了运算求解。

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

数值分析第一次作业

问题1:20.给定数据如下表: 试求三次样条插值S(x),并满足条件 (1)S`(0.25)=1.0000,S`(0.53)=0.6868; (2)S ’’(0.25)=S ’’(0.53)=0。 分析:本问题是已知五个点,由这五个点求一三次样条插值函数。边界条件有两种,(1)是 已知一阶倒数,(2)是已知自然边界条件。 对于第一种边界(已知边界的一阶倒数值),可写出下面的矩阵方程。 ????????????????=???????? ?? ??? ???????????????????4321043210343 22 110d M M M M M 2000200 00 02 002 2d d d d λμμλμλμλ 其中μj = j 1-j 1-j h h h +,λi= j 1-j j h h h +,dj=6f[x j-1,x j ,x j+1], μn =1,λ0=1 对于第一种边界条件d 0= 0h 6(f[x 0,x 1]-f 0`),d n =1 -n h 6 (f`n-f `[x n-1,x n ]) 解:由matlab 计算得: 由此得矩阵形式的线性方程组为: ? ?????????????=???????????????????????? ?????? 2.1150-2.4286-3.2667-4.3143-5.5200-M M M M M 25714.0000 120 4286.0000 04000.02 6000.0006429.023571.00 012 432 10 解得 M 0=-2.0286;M 1=-1.4627;M 2= -1.0333; M 3= -0.8058; M 4=-0.6546 S(x)= ??? ????∈-+-+-∈-+-+-∈-+-+-∈-+-+-]53.0,45.0[x 5.40x 9.1087x 35.03956.8.450-x 1.3637-x .5301.67881- ]45.0,39.0[x 9.30x 11.188x 54.010.418793.0-x 2.2384 -x .450(2.87040-]39.0,30.0[x 03.0x 6.9544x 9.30 6.107503.0-x 1.9136-x .3902.708779 -]30.0,25.0[x 5.20x 10.9662x 0.3010.01695.20-x 4.8758-x .3006.76209-333 33 33 3),()()()(),()()()),()()()(),()()()( Matlab 程序代码如下:

北航数值分析课程第一次大作业讲解

《数值分析A》计算实习题目第一题 一.算法设计方案: 1.矩阵A的存储与检索 将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] . 由于C语言中数组角标都是从0开始的,所以在数组MatrixC[5][501]中检索A的带内元素a ij的方法是: A的带内元素a ij=C中的元素c i-j+2,j 2.求解λ1,λ501,λs ①首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。λmin即为λs; 如果λmax>0,则λ501=λmax;如果λmax<0,则λ1=λmax。 ②使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求出对应的按摸最大的特征值λ,max, 如果λmax>0,则λ1=λ,max+p;如果λmax<0,则λ501=λ,max+p。 3.求解A的与数μk=λ1+k(λ501-λ1)/40的最接近的特征值λik (k=1,2,…,39)。 使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λik。 4.求解A的(谱范数)条件数cond(A)2和行列式d etA。 ①cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值。 ②矩阵A的行列式可先对矩阵A进行LU分解后,detA等于U所有

对角线上元素的乘积。 二.源程序(VS2010环境下,C++语言) #include #include #include #include #include #include #include #define E 1.0e-12 /*定义全局变量相对误差限*/ int max2(int a,int b) /*求两个整型数最大值的子程序*/ { if(a>b) return a; else return b; } int min2(int a,int b) /*求两个整型数最小值的子程序*/ { if(a>b) return b; else return a; } int max3(int a,int b,int c) /*求三整型数最大值的子程序*/ { int t; if(a>b) t=a; else t=b; if(t

BUAA数值分析大作业三

北京航空航天大学2020届研究生 《数值分析》实验作业 第九题 院系:xx学院 学号: 姓名: 2020年11月

Q9:方程组A.4 一、 算法设计方案 (一)总体思路 1.题目要求∑∑=== k i k j s r rs y x c y x p 00 ),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。 ),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。 2.),(* * j i y x f 与1使用相同方法求得,),(* * j i y x p 由计算得出的p(x,y)直接带入),(* * j i y x 求得。

1. ),(i i y x 与),(i i y x f 的数表的获得 对区域D ={ (x,y)|1≤x ≤1.24,1.0≤y ≤1.16}上的f (x , y )值可通过xi=1+0.008i ,yj=1+0.008j ,得到),(i i y x 共31×21组。将每组带入A4方程组,即可获得五个二元函数组,通过简单牛顿迭代法求解这五个二元数组可获得z1~z5有关x,y 的表达式。再将 ),(i i y x 分别带入z1~z5表达式即可获得f(x,y)值。 2.乘积型最小二乘曲面拟合 2.1使用乘积型最小二乘拟合,根据k 值不用,有基函数矩阵如下: ????? ??=k i i k x x x x B 0000 , ????? ??=k j j k y y y y G 0000 数表矩阵如下: ???? ? ? ?=),(),(),(),(0000j i i j y x f y x f y x f y x f U 记C=[rs c ],则系数rs c 的表达式矩阵为: 11-)(-=G G UG B B B C T T T )( 通过求解如下线性方程,即可得到系数矩阵C 。 UG B G G C B B T T T =)()( 2.2计算),(),,(* ***j i j i y x p y x f (i =1,2,…,31 ; j =1,2,…,21) 的值 ),(**j i y x f 的计算与),(j i y x f 相同。将),(**j i y x 代入原方程组,求解响应) ,(* *ij ij u t 进行分片双二次插值求得),(**j i y x f 。),(* *j i y x p 的计算则可以直接将),(**j i y x 代入所求p(x,y)。 二、 源程序 ********* 第三次数值分析大作业Q9************ integer::i, j, K1, L1, n, m dimension X(31), Y(21), T(6), U(6), Z(6, 6), UX(11, 21), TY(11, 21), FXY(11, 21), C(6, 6) dimension z1(31, 21), z2(31, 21), z3(31, 21), z4(31, 21), z5(31, 21) dimension X1(8), Y1(5), FXY1(8, 5), PXY1(8, 5), UX1(8, 5), TY1(8, 5)

北航数值分析第二次大作业--QR分解

《数值分析A》

一、算法设计方案 整个程序主要分为四个函数,主函数,拟上三角化函数,QR分解函数以及使用双步位移求解矩阵特征值、特征向量的函数。因为在最后一个函数中也存在QR分解,所以我没有采用参考书上把矩阵M进行的QR分解与矩阵Ak的迭代合并的方法,而是在该函数中调用了QR分解函数,这样增强了代码的复用性,减少了程序长度;但由于时间关系,对阵中方法的运算速度没有进行深入研究。 1.为了减少QR分解法应用时的迭代次数,首先对给定矩阵进行拟上三角化处理。 2.对经过拟上三角化处理的矩阵进行QR分解。 3.注意到计算特征值与特征向量的过程首先要应用前面两个函数,于是在拟上三角化矩阵的基础上对QR分解函数进行了调用。计算过程中,没有采用goto语句,而是根据流程图采用其他循环方式完成了设计,通过对迭代过程的合并,简化了程序的循环次数,最后在计算特征向量的时候采用了列主元高斯消去法。

二、源程序代码 #include #include #include int i,j,k,l,m; //定义外部变量double d,h,b,c,t,s; double A[10][10],AA[10][10],R[10][10],Q[10][10],RQ[10][10]; double X[10][10],Y[10][10],Qt[10][10],M[10][10]; double U[10],P[10],T[10],W[10],Re[10]={0},Im[10]={0}; double epsilon=1e-12; void main() { void Quasiuppertriangular(double A[][10]); void QRdecomposition(double A[][10]); void DoublestepsQR(double A[][10]); int i,j; for(i=0;i<10;i++) { for(j=0;j<10;j++) { A[i][j]=sin(0.5*(i+1)+0.2*(j+1)); Q[i][j]=0; AA[i][j]=A[i][j]; } A[i][i]=1.5*cos(2.2*(i+1)); AA[i][i]=A[i][i];

数值分析作业答案(第5章)

5.1.设A 是对称矩阵且011≠a ,经过一步高斯消去法后,A 约化为 ?? ????21 110 A a a T 证明2A 是对称矩阵。 证明 由消元公式及A 的对称性,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 对称。 5.2.设n ij a A )(=是对称正定矩阵,经过高斯消去法一步后,A 约化为 ?? ????21 110 A a a T 其中1)2(2)(-=n ij a A 。证明: (1).A 的对角元素;,,2,1,0n i a ii => (2).2A 是对称正定矩阵。 证明 (1).因为A 对称正定,所以 n i e Ae a i i ii ,,2,1,0),( =>=, 其中T i e )0,,0,1,0,,0( =为第i 个单位向量。 (2).由A 的对称性及消元公式,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 也对称。 又由A L A a a T 121110=????? ?,其中

??? ?????- =? ????? ? ?????????--=-111 1 11111 21101 1011n n I a a a a a a L , 可见1L 非奇异,因而对任意0≠x ,由A 的正定性,有 ,0),(),(,011111>=≠x AL x L x AL L x x L T T T T 故T AL L 11正定。 由,000110211 111121111 1?? ? ?? ?=????????-??????=-A a I a a A a a AL L n T T T 而011>a ,故知2A 正定

北航数值分析大作业第二次

《数值分析》计算实习作业 (第二题)

算法设计方案: 1、对矩阵A 赋值,取计算精度ε=1×10-12; 2、对矩阵A 进行拟上三角化,得到A (n-1),并输出A (n-1); 对矩阵A 的拟上三角化,通过直接调用子函数inftrianglize(A)来实现;拟上三角化得到的矩阵A (n-1)输出至文件solution.txt 中。 3、对A (n-1)进行QR 分解并输出Q 、R 及RQ 矩阵; QR 分解通过直接调用子函数QRdescom(A,Q,R, n)实现。 4、运用QR 方法求所有的特征值,并输出; (1)初始时令m=n ,在m>2的条件下执行; (2)判断如果|A mm-1|<ε,则得到一个特征值,m=m-1,转(4);否则转(3); (3)判断如果|A m-1m-2|<ε,则得到两个特征值,m=m-2,转(4); (4)判断如果m ≤2,转(6);否则转(5); (5)执行相似迭代,转(2); k k T k k k k k k k k k k Q A Q A R Q M I D A D tr A M ==+-=+1)2)det(( (6)求出最后的一个或两个特征值; (7)输出全部的特征值至文件solution.txt 中。 5、输出QR 分解法迭代结束之后的A (n-1)至文件solution.txt 中; 6、通过反幂法求出所有实特征值的特征向量并输出。 首先令B=(A-λi I),其中λi 是实特征值;反幂法通过调用子函数Bpowmethod(B,x1)实现,最终λi 对应的特征向量就是x1;最后将所有的实特征值的特征向量输出。

数值分析作业答案.doc

第2章 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange 插值基底。 (3)用Newton 基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为:2 210)(x a x a a x P ++=, 所以:64 211111 1111122 2 211 200 -=-==x x x x x x A 3 76144 211111114241 13110111)() ()(22 221120 022 2 22 11 120 00-=-= ---==x x x x x x x x x f x x x f x x x f a 2 3694211111114411 31101111)(1)(1 )(122 221120 02 2 22112 001=--= --==x x x x x x x x f x x f x x f a 6 5654 2 1 1111114 2 1 3 11011111) (1)(1)(122 2 21120 022 11 00 2=--= ---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:26 52337)(x x x P ++-= (2)用Lagrange 插值基底 )21)(11() 2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l )21)(11() 2)(1())(())(()(2101201------=----=x x x x x x x x x x x l ) 12)(12() 1)(1())(())(()(1202102+-+-=----= x x x x x x x x x x x l

第一次作业及答案

第一次作业 一、单项选择题 1.需求规律说明(B )。 A.药品的价格上涨会使药品质量提高B.计算机价格下降导致销售量增加 C.丝绸价格提高,游览公园的人数增加D.汽车的价格提高,小汽车的销售量减少 E.羽毛球的价格下降,球拍的销售量增加 2.当羽毛球拍的价格下降时,对羽毛球的需求量将(C )。A.减少B.不变 C. 增加D.视具体情况而定E.以上都有可能 3.其他条件不变,牛奶价格下降将导致牛奶的(D )。 A.需求下降B.需求增加C.需求量下降D.需求量增加E.无法确定 4.当出租车租金上涨后,对公共汽车服务的(A )。 A.需求增加B.需求量增加C.需求减少D.需求量减少E.无法确定 5.以下几种情况中,(B )项是需求规律的例外。 A.某商品价格上升,另一商品需求量也上升B.某商品价格上升,需求量也上升 C.消费者收入增加,对某商品的需求增加

6.消费者偏好改变,对某商品的消费量随着消费者收入的增加而减少,则该商品是( D )。 A.替代品B.互补品C.正常品D.低档品E.无法确定 7.供求规律说明(D )。 A.生产技术提高会使商品的供给量增加 B.政策鼓励某商品的生产,因而该商品的供给量增加 C.消费者更喜欢某商品,使该商品的价格上升 D.某商品价格上升将导致对该商品的供给量增加 E.以上都对 8. 假如生产某种商品所需原料的价格上升了,这种商品的( B )。A.需求曲线将向左移动B.供给曲线向左移动C.供给曲线将向右移动 9. 政府为了扶持农业,对农产品规定高于均衡价格的支持价格。政府要维持支持价格,应 该采取下面的相应措施( C )。 A.增加对农产品的税收B.实行农产品配给制C.收购过剩的农产品 10. 政府把价格限制在均衡价格以下可能导致( A )。 A.黑市交易B.大量积压C.买者买到了希望购买的商品 11. 当需求的增加幅度远大于供给增加幅度的时候,( B )。

数值分析作业答案

第2章 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange 插值基底。 (3)用Newton 基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为:2 210)(x a x a a x P ++=, 所以:64 211111 1111122 2 211 200 -=-==x x x x x x A 所以f(x)的二次插值多项式为: 2 6 52337)(x x x P ++-= (2)用Lagrange 插值基底 Lagrange 插值多项式为: 所以f(x)的二次插值多项式为:226 52337)(x x x L ++-= (3) 用Newton 基底: 均差表如下: Newton 所以f(x)的二次插值多项式为:2 2 6 52337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。 6、在44≤≤-x 上给出x e x f =)(的等距节点函数表,若用二次插值求e x 的近似 值,要使截断误差不超过10-6,问使用函数表的步长h 应取多少? 解:以x i-1,x i ,x i+1为插值节点多项式的截断误差,则有 式中.,11h x x h x x i i +=-=+- 令 634103 9-≤h e 得00658.0≤h 插值点个数

是奇数,故实际可采用的函数值表步长 8、13)(47+++=x x x x f ,求]2,,2,2[710Λf 及]2,,2,2[810Λf 。 解:由均差的性质可知,均差与导数有如下关系: 所以有:1! 7! 7!7)(]2,,2,2[)7(7 1 === ξf f Λ 15、证明两点三次Hermite 插值余项是 并由此求出分段三次Hermite 插值的误差限。 证明:利用[x k ,x k+1]上两点三次Hermite 插值条件 知)()()(33x H x f x R -=有二重零点x k 和k+1。设 确定函数k(x): 当k x x =或x k+1时k(x)取任何有限值均可; 当1,+≠k k x x x 时,),(1+∈k k x x x ,构造关于变量t 的函数 显然有 在[x k ,x][x,x k+1]上对g(x)使用Rolle 定理,存在),(1x x k ∈η及),(12+∈k x x η使得 在),(1ηk x ,),(21ηη,),(12+k x η上对)(x g '使用Rolle 定理,存在),(11ηηk k x ∈, ),(212ηηη∈k 和),(123+∈k k x ηη使得 再依次对)(t g ''和)(t g '''使用Rolle 定理,知至少存在),(1+∈k k x x ξ使得 而!4)()()()4()4()4(t k t f t g -=,将ξ代入,得到 推导过程表明ξ依赖于1,+k k x x 及x 综合以上过程有:!4/)())(()(212)4(3+--=k k x x x x f x R ξ 确定误差限: 记)(x I h 为f(x)在[a,b]上基于等距节点的分段三次Hermite 插值函数。 n a b h n k kh a x k -==+=),,1,0(,Λ 在区间[x k ,x k+1]上有 而最值)(,16 1)1(max )()(max 4 4221 02121 sh x x h h s s x x x x k s k k x x x l k +== -=--≤≤+≤≤+ 进而得误差估计:)(max 3841)()()4(4 x f h x I x f b x a h ≤≤≤ - 16、求一个次数不高于4次的多项式)(x p ,使它满足0)0()0(='=p p ,

相关文档
最新文档