遥感地质调查技术规定

遥感地质调查技术规定
遥感地质调查技术规定

中国地质调查局

DD 2001-01 1:250000遥感地质调查技术规定

二ОО一年三月二十日

前言

本标准的技术内容是根据国土资源大调查中地质调查工作的需要,按我国目前遥感地质应用的先进水平制定的。

附录A、附录B都是本标准的标准附录。

本标准由中国地质调查局提出并负责起草。

本标准由中国地质调查局负责解释。

本标准主要起草人:曾朝铭、贺尚荣。

参加起草人:刘纪选、黄海、齐泽荣、耿燕婷。

目录

前言

1范围 (1)

2引用标准 (1)

3定义 (1)

4 总则 (2)

5 遥感地质调查设计编制 (3)

6 实地踏勘 (5)

7 遥感地质调查 (5)

8 实地检查验证 (6)

9 遥感地质调查报告编制 (7)

10 质量检查及成果验收 (8)

附录A(标准的附录) 遥感地质调查设计编写提纲 (10)

附录B(标准的附录)遥感地质调查报告编写提纲 (12)

1:250000遥感地质调查技术规定

DD 2001-01

1. 范围

本标准规定了用遥感方法进行1:250000地质调查的内容、程序、方法及主要技术要求。

本标准适用于未开展过1:250000区域地质调查地区的遥感地质调查工作。同比例尺矿产地质调查、环境地质调查及水文地质调查也可参考。

2. 引用标准

下列标准包含的条文,通过本标准引用即构成本标准条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用下列标准时应以最新版本为准。

DZ/T 0001—91 区域地质调查总则(1:50000)

DZ/T 0151—95 区域地质调查中遥感技术规定(1:50000)

GB 15968—1995 遥感影像平面图制作规范

GB 958—89 区域地质图图例(1:50000)

DZ/ T 0179—1997 地质图用色标准及用色原则(1:50000)

3.定义

本标准采用下列定义。

3.1 遥感

利用地物(或天体)对电磁波谱响应的影像信息进行非接触式远距离科学研究或勘查测量。

3.2 遥感地质调查

以遥感资料为信息源,以地质体、地质构造和地质现象对电磁波谱响应的特征影像为依据,通过图像解译提取地质信息、测量地质参数、填绘地质图件和研究地质问题。

3.3 图像

泛指由遥感方法直接获取的,由遥感数据经数学处理、变换产生的各种

介质的相片。

3.4 图像结构

由像元点阵的灰度、色彩等变化频率表征的图像光滑、粗糙现象或均匀、斑状等组合特征。

3.5 图像构造

由一种或几种图像结构有规律地排列组合构成的图案。

3.6 影像

图像中具有特定波谱特征、空间特征或结构、构造的区间。

3.7 遥感解译

在图像中识别和圈定某种影像、赋予特定属性和内涵以及测量特征参数的过程。

3.8 解译标志

图像中可以用来区分相邻物体或确定物体属性的波谱特征和空间特征如:色调、色彩和阴影;结构与构造;形状、大小和高低;地形与地貌;特定的空间位置以及与周围地物的相关关系等。

3.9 特征解译标志

相同的自然地理—地质景观区中,某地质体、地质现象特有的比较稳定的一种解译标志或几种解译标志的组合。

3.10 遥感异常

根据特定的遥感数据圈定的、可能与成矿矿化或围岩蚀变矿物有关的吸收光谱分布区、带。

3.11 影像岩石单位

泛指根据目视解译圈定或用计算机自动分类提取的,可用以表征沉积岩、火山岩、侵入岩和变质岩等同一岩石或几种岩石有规律组合的影像区、带。3.12 重现性

遥感解译的各种地质界线,能否在同等技术条件下重复解译中再现。

4. 总则

4.1 1:250000遥感地质调查的主要任务是:根据1:250000区域地质调查要求,从遥感资料中最大限度地提取区域地质信息;研究各种地质体或地质现象相对时、空分布规律和相互关系,分析地质作用过程及演化特点;编制

1:250000遥感地质图系。

4.2 遥感地质调查以遥感理论为基础,以遥感影像为依据,在现代地质理论和地质填图方法指导下,根据不同自然景观区遥感地质特点进行工作。

4.3 遥感地质调查以使用航天遥感资料为主,航空遥感资料为辅。提倡尽可能使用多平台、多类型、多分辨率和多时相的遥感资料。测区使用的主导性遥感资料类型和时相,应针对测区自然地理—地质景观特点选取。

4.4 遥感地质解译,应采用从已知到未知,从区域到局部,从总体到个别,从定性到定量,循序渐进,不断反馈和逐步深化的方法进行工作。

4.5 遥感地质调查实际材料图中除应表示各种解译点、观测路线、剖面、标本样品采集点等实测资料外,还应在图中如实地区分出直接引用前人的、被遥感解译修改补充了的以及由遥感新解译的地质资料。

4.6 遥感地质找矿预测,应以遥感异常和其它可能与成、控矿相关的可视化遥感找矿信息(线、带、环、色、块等)为主要依据。

4.7 提倡遥感调查在G I S平台上进行工作。

5. 遥感地质调查设计编制

遥感地质调查设计在资料收集、分析,影像地图编制及初步遥感地质解译等工作基础上编写。

5.1 资料收集、分析

5.1.1 应注意收集测区自然地理和气候资料,分析环境特征。

5.1.2 应充分收集与遥感调查任务有关的区域地质、矿产、物探、化探及遥感地质资料,了解测区研究程度及存在的主要区域地质问题。

5.1.3 应尽可能收集可用于建立信息提取训练场和样区等的高质量的自然地理、地质矿产资料和地物波谱资料。

5.1.4 应收集1:250000国家基础地理数据和图件资料。

5.1.5 应掌握测区现有遥感图像数据情况,根据测区自然地理—地质景观特点,确定拟主要(和辅助)使用的遥感图像数据类型、时相、空间分辨率和光谱分辨率以及太阳角等,并根据云、雪覆盖情况优选最佳的图像数据。5.2 遥感影像地图编制

5.2.1 1:250000遥感影像地图,应采用经过优选的在本区自然环境条件下地质信息最丰富的波段直接合成,必要时也可采用经过数学变换处理的图像合

成。

5.2.2 使用多景图像镶嵌制图时,图像的成像时间应比较接近。合成图像各波段间的配准以及相邻图像间同名点配准精度应控制在一个像元之内。相邻图像应进行无缝镶嵌,不同时相图像应进行彩色匹配处理,镶嵌过程中应尽可能减少非接边区图像光谱的非线性变化。

5.2.3 遥感影像地图采用高斯—克吕格投影,图像几何校正采用多项式拟合法,校正控制点可在1:100000地形图中均匀选取,每个图幅(1:100000)应不少于9个点,与地面控制点间的拟合精度应控制在2个像元以内。

5.2.4 图件整饰和注记按GB 15968有关规定执行,图廓外应附镶嵌索引图,注明所用图像种类、波段、各波段设色及各景成像时间。

5.2.5 成图精度:图廓对角线实测值与理论值之差不大于±1mm; 图中地物点相对附近控制点、经纬网或公里格网点平面位置中误差不大于±1mm。

5.2.6 图像数据采用“tif”格式存放。

5.3 初步遥感地质解译

5.3.1 解译内容:

a) 测区不同自然地理景观分区及可解译程度分区;

b) 测区地质解译标志研究;

c) 构造格架解译;

d) 区域岩石解译。

5.3.2 解译方法以目视解译为主,人机交互式解译为辅。

5.3.3 遥感地质解译草图可采用初步解译结果和前人资料综合编制。

5.4 设计编写

5.4.1 设计书必须在初步遥感地质解译基础上编写。

5.4.2 设计书应扼要阐明测区地质特征和不同分区遥感地质特征。

5.4.3 设计重点是针对测区不同分区遥感地质特征,科学地选用遥感图像数据,确定不同对象的信息提取方法技术及精度要求。

5.4.4 设计书编写提纲见附录A。

6. 实地踏勘

6.1 当收集的资料不足以有效地建立测区地质解译标志时,可根据需要进行

实地踏勘。

6.2 踏勘路线应根据测区(不同自然地理—地质景观区)建立解译标志的需要合理地加以部署,路线应力求通行条件最好、穿越的影像岩石单位最多。

6.3 路线上应着重了解各种地质体、地质构造的影像特征,研究地质体划分及确定相邻地质体之间界线的特征解译标志。

6.4 在条件允许时,应收集测区主要成矿类型的矿石及蚀变围岩岩石标本进行室内光谱测试。

7. 遥感地质调查

遥感地质调查主要通过遥感图像详细地质解译实现。

7.1 详细遥感地质解译内容

7.1.1 沉积岩岩石识别,岩石地层单位或影像岩石单位解译。

7.1.2 火山岩岩石及火山机构识别,岩石地层单位、岩相带或影像岩石单位解译。

7.1.3 侵入岩岩石识别,岩体或影像岩石单位解译。

7.1.4 变质岩岩石识别,构造—地(岩)层、构造—岩石单位或影像岩石单位解译。

7.1.5 第四纪沉积物识别,不同成因类型沉积物解译。

7.1.6 构造识别,构造形迹(如:褶皱、断裂、剪切带、推覆体、走滑或伸展构造等)性质及相对时、空关系解译。

7.1.7 环状影像识别,环状影像的属性(如与地质体、地质构造、地质作用或成矿作用等之间的相关关系)解译。

7.1.8 遥感异常及与找矿有关的其它遥感地质信息提取。

7.1.9 其它地学专题信息(如水文地质,环境地质及旅游地质等)的识别与解译。

7.2 详细遥感地质解译方法

7.2.1 详细遥感地质解译应以未经无缝镶嵌处理的遥感数字图像为主,无缝镶嵌的影像地图为辅。

7.2.2 详细遥感地质解译应综合使用目视解译、人机交互式解译及计算机自动识别等方法。

7.2.3 应根据工作区自然环境特点、拟提取的地质信息种类及遥感地质特征,

有针对性地分别进行图像处理方案设计。

7.2.4 图像处理训练场、训练样本的选择,应有较翔实的具有一定代表性和典型性的已知资料为依据。

7.2.5 图像中地质界线的圈定,应以追索法为主,在地形陡变或岩层强烈褶皱地区,可通过编制遥感解译剖面方法予以解析圈定。

7.3 详细遥感地质解译精度

7.3.1 在地质解译过程中,直径大于2500m的闭合地质体,宽度大于500m、长度大于2500m的块状地质体以及长度大于5000m的线状地质体应标定在图上;具有重要地质意义但规模较小的地质体、地质现象,可适当放大表示。

7.3.2 遥感地质解译界线(不含推测部分)重现性,用随机抽样检查的合格率衡量,解译界线的合格率应不低于85%。计算方法为:

合格率=(检查解译结果再现的样品数/检查抽样样品的总数)×100。

7.4遥感地质解译编图

7.4.1遥感地质解译图件可采用1:250000(或1:100000)单色、彩色影像地图或简化的地形图为底图。

7.4.2 主要图件如下:

a) 遥感解译地质图;

b) 遥感异常(含其它可能与成、控矿相关的线、带、环、色、块等遥感地质找矿信息)图;

c) 其它遥感解译地学专题图。

7.4.3遥感解译图只反映遥感解译成果,所解译的各种主题信息,应尽可能详尽地反映在图上。

7.4.4 遥感解译图件可采用图层方式存放。

8. 实地检查验证

8.1 属性不明的解译成果,可根据需要进行实地检查,查明属性和特征;已认定属性的解译成果,可根据需要随机抽样进行实地验证,评价解译可靠程度。

8.2 实地检查可用路线地质方法进行工作,沿线应绘制路线剖面图,进行观察记录,采集必要的标本、样品。

8.3 实地验证可采用定点观测方法进行工作,定点误差应小于250m,点上应

有详细的观测记录,相应的图件和必要的标本、样品。

8.4 实地检查、验证路线及观测点应在实际材料图中标出。

9. 遥感地质调查报告编制

遥感地质调查报告在综合研究及遥感地质编图基础上编写。

9.1综合研究

9.1.1 综合研究应在多元地学信息(遥感,地质,物探,化探等)复合、融合的基础上进行。

9.1.2 应根据区域地质调查技术要求,在详细研究测区地质特点基础上,通过综合解译客观地修订详细遥感地质解译成果的各种填图单位和界线。

9.1.3 应在充分研究区域构造格局的基础上,合理地对测区内断裂、线状影像进行重组,划分等级和确定相对时、空关系。

9.1.4 应针对已确定地质属性的环状影像,择其重点对影像结构、构造特征进行研究,结合物化探资料及所处的地质构造、地貌环境,探索深部地质结构和“环状构造”的地质内涵。

9.1.5 应在充分研究侵入岩体(岩带)影像岩石单位空间分布特点、地形地貌特征以及与之相关的环状影像间包容、穿插、切割特点等基础上,尽可能分解岩体(岩带),划分岩石单位并推定不同岩石单位的相对时序。

9.1.6 应在解译地质图上,通过对横穿区域构造若干图切剖面的综合研究,完善全区地质结构。

9.1.7 应以遥感异常(及其它遥感找矿信息)为基础,通过多元地学信息综合研究,进行找矿远景预测。

9.2 遥感地质编图

9.2.1 综合研究结果应按标准分幅编制下列图件:

a) 1:250000遥感影像地图;

b) 1:250000遥感地质图;

c) 1:250000遥感找矿远景预测图;

d) 其它遥感地学专题图;

e) 实际材料图。

9.2.2 图件编制可采用简化地形图或影像地图为底图。

9.2.3 图件的图示、图例及符号可参照 GB 958有关规定。

9.2.4 遥感地质图件可参照 DZ/ T O179规定着色。

9.2.5 遥感地质图件图框外(及背面),除表示图例、图切剖面和柱状图等外,应尽可能将那些未纳入主图但具有重要意义的解译(详细或综合解译)成果以副图方式表示。

9.3 遥感地质报告编写

9.3.1 遥感地质调查报告中,基础地质、矿产地质等的编写应以综合研究结果为依据。

9.3.2 报告应按图幅编写,多幅图联测区若地质情况相近也可合编一个报告。

9.3.3 报告编写提纲见附录B。

10. 质量检查及成果验收

10.1 质量检查

10.1.1 项目组应对遥感地质解译图中各种界线的解译质量进行100%互检,检查结果以“互检专报”形式报项目承担单位备案。

10.1.2 项目承担单位,应对项目组编制的图件、文字记录等全部资料的总体质量(完整性、科学性)进行检查、评价,“评价意见”应以文字记录在案。

10.1.3 项目主管单位根据“评价意见”进行随机抽查以评定原始资料质量。

10.2 成果验收

成果资料验收由项目主管单位组织实施,主要验收下列内容。

10.2.1 原始资料

a) 遥感解译地质图(1:250000);

b) 记录本(图像处理、地质解译、野外观测、取样记录等);

c) 样品、标本测试、化验、鉴定结果;

d) 遥感图像、数据资料;

e) 1:250000国家基础地理数据、图件;

f) “互检专报”及资料质量“评价意见”。

10.2.2 成果图件资料

a) 遥感影像地图(1:250000);

b) 遥感地质图(1:250000);

c) 遥感成矿预测图(1:250000);

d) 实际材料图;

e) 图件资料光盘。

10.2.3 文字报告。

附录A(标准的附录)

遥感地质调查设计编写提纲

A1 绪言

A1.1设计依据(任务书编号、项目名称、任务目的要求、工作起止日期、总经费、其它)。

A1.2 测区自然地理及交通概况(测区分布图)。

A1.3 测区地质、物探、化探及遥感研究程度(研究程度图)。

A2 测区地质、遥感特征

A2.1 地质、矿产特征及存在的主要地质问题。

A2.2 遥感地质特征及测区可解译程度。

A3 方法技术

A3.1 简述拟使用的遥感图像数据资料特性及选择依据。

A3.2 测区遥感影像地图制作方法技术及精度要求。

A3.3 测区不同解译程度区详细解译(地层、岩石、构造、矿产等)方法技术及精度要求。

A3.4 测区野外地质调查方法技术及精度要求。

A3.5 测区实地检查、验证及地质取样等方法技术及精度要求。

A3.6 综合解译方法技术。

A3.7 测区成果图的主题内容、编制方法技术及精度要求。

A3.8 工作质量控制方法技术。

A4 工作安排

A4.1 不同解译程度区的工作布置方案及依据。

A4.2 实物工作量计划。

A4.3 工作程序、进度及时间计划。

A4.4 人员组织计划。

A4.5 技术装备使用计划。

A4.6 保障措施。

A5 经费预算

A5.1 经费预算编制说明。

A5.2 项目设计预算汇总。

A5.3 项目设计预算。

A6 预期成果

A6.1 预期提供的中期检查资料。

A6.2 预期提供的最终验收资料。

A6.3 预期提供的最终成果。

A7 附图

A7.1 遥感地质解译草图。

A7.2 遥感解译程度分区及工作布置图。附录B(标准的附录)

遥感地质调查报告编写提纲

B1 绪论

测区交通位置,自然地理概况,任务要求及任务完成情况,取得的主要成果及重要发现(附交通位置图、工作量表)。

B2 方法技术

所使用的遥感资料种类、性质及实际应用情况,主题信息提取主要技术方法,矿产预测技术方法;检查、验证情况及工作质量评述,工作中存在的主要方法技术问题。

B3 区域地质

B3.1 区域地层,岩石。

B3.2 区域地质构造(按构造单元分述)。

B4 区域地质矿产及找矿远景预测

B4.1 区域地质矿产。

B4.2 找矿远景预测。

B5 其它遥感地学专题成果

B6 结论及建议

主要成果及结论,存在的主要问题及今后工作建议。

B7 附图

B7.1 1:250000遥感影像地图。

B7.2 1:250000遥感地质图。

B7.3 1:250000遥感找矿远景预测图。

B7.4 其它遥感地学专题图。

B7.5 实际材料图。

遥感技术在地质工作中的应用

遥感技术在地质工作中的应用 王兴运付勇涛 (黑龙江科技学院资源与环境工程学院资源勘查工程08级2班卢少春’) 摘要:1957年,第一颗人造地球卫星升空,标志着人类进入了太空时代,从此人类以崭新的角度开始重新认识自己赖以生存的地球。空间信息技术是本世纪60年代发展起来的一门新兴的科学技术,遥感技术,包括地理信息系统和全球定位系统,则是对地观测的重要手段。 21世纪,遥感技术作为一种基本技术手段已经成为地质调查工作所广泛应用,随着空间遥感技术在光谱和空间分辨率方面的不断提高,又为遥感的地质应用提供了新的发展机会,为地质工作者在矿产勘查、区调工作、生态环境观察等方面提供了便利。 关键词:遥感技术、21世纪、地质工作、观测 Abstract: in 1957, the first man-made earth satellite launch, marks the humanity entered into the space age, from the Angle of human with brand-new started to know yourself to the survival of the earth. Space information technology is developed in the 1960s the century of an emerging science and technology, and remote sensing technique, including the geographic information system, and the global positioning system, it is an important means of on earth observation. In the 21st century, remote sensing technology as a basic technology has become geology survey work, along with the wide application of remote sensing technology in the spectra space with the continuous improvement of the spatial resolution, and the geological application for remote sensing,

遥感与地理信息工程系资料

遥感与地理信息工程系 The Department of Remote Sensing and GIS Engineering (遥感与地理信息工程应用中心) (The Applied Centre of Remote Sensing and GIS Engineering) 遥感与地理信息工程系(遥感与地理信息工程应用中心)的前身是老地理学系的测绘教研室,由缪鸿基教授于1978年创建,1996年扩展为地图学与GIS教研室。2002年成立地理科学与规划学院时,与1989年建立的遥感应用中心合并,建立了遥感与地理信息工程系和遥感与地理信息工程应用中心,一套人马,两块牌子。系为实体,面向教学;中心为虚体,面向科研。 本系(中心)现有人员15人,其中:教授4人,副教授2人,讲师6人,工程师2人,助教1人;具有博士学位7人,硕士学位6人。目前有一个地理信息系统(理科)本科专业、一个地图学与地理信息系统(理科)硕士点和一个地图学与地理信息系统(理科)博士点。500平方米的GIS实验室现有120台IBM高档微机、国内外主流GIS软件、遥感图象处理软件、相应的测绘、光谱分析仪器等。 地学应用是本系(中心)的主要科研方向,承担了多项国家级科研项目和大量的地方应用项目,在许多方向上具较高的学术水平,如:城市发展CA模拟、模糊对象的动态性、城市土地利用变化、海洋遥感、大气污染遥感探测、自适应结构化地图自动概括等。本系教师发表的SCI论文数量位于全国前列。 https://www.360docs.net/doc/9c4317714.html,/lab/introduce.asp https://www.360docs.net/doc/9c4317714.html,/lab/introduce.asp 中心简介: 上海大学遥感与空间信息科学研究中心是依托上海大学通信与信息工程学院成立的一个科研机构,中心于2005年10月正式批准成立(见上大内[2005]254号文件)。中心以自然科学与社会科学交叉、渗透、融合为特色,以遥感与空间信息科学的基础研究和应用基础研究为主要研究领域。 中心的建设目标是:发扬科学与民主精神、加强学风建设,营造一个宽松和谐、学术民主、既有公平竞争又有团结合作,开拓创新、勇于探索的科研教学环境。在多学科共同支撑下通过主持或参与国家重大科研项目,凝聚、锻炼、培养和造就一支有实力、有特色、有竞争力的科研队伍,在遥感与空间信息科学领域的前沿和热点开展前瞻性、原创性的基础研究和应用研究,为遥感与空间信息科学的学科发展提供远期的科研储备和发展平台。 本中心的主要学科研究方向为遥感与地理信息系统。遥感与地理信息系统是空间信息科学的重要组成部分,大力发展以激光对地综合探测为主的空间信息科学是国家“十一五”的重大需求。本学科研究方向在开展遥感与GIS领域的常规研究的同时,在未来三年内将把研究重点放在机(星)载激光雷达和多光谱数据的对地成像综合立体精确探测系统研究上,开展本项研究是国家对大气、陆地和海洋精确立体综合探测的迫切需求,也是遥感技术自身发展进步的要求。对于构建先进的空、天基激光雷达对地立体探测系统至关重要,其研究成果在丰富和扩展遥感数字图像处理的内涵和外延,在空间信息的获取理论和实践上均有较高价值,可满足国家和上海地区社会、经济发展对高质量、深层次空间信息的不断增长需求,服务社会经济建设。 福建省空间信息工程研究中心(SIRC),是福建省国民经济信息化重大工程计划—“数字福建”的技术支撑、人才培养基地和产、学、研联合开放实验室,主要从事地球信息科学与技

1:25万遥感地质调查技术规定(DD2001-01)

目 次 前 言 1范围 (1) 2引用标准 (1) 3定义 (1) 4 总则 (2) 5 遥感地质调查设计编制 (3) 6 实地踏勘 (5) 7 遥感地质调查 (5) 8 实地检查验证 (6) 9 遥感地质调查报告编制 (7) 10 质量检查及成果验收 (8) 附录A(标准的附录) 遥感地质调查设计编写提纲 (10) 附录B(标准的附录) 遥感地质调查报告编写提纲 (12)

1:250000遥感地质调查技术规定 DD 2001-01 1. 范围 本标准规定了用遥感方法进行1:250000地质调查的内容、程序、方法及主要技术要求。 本标准适用于未开展过1:250000区域地质调查地区的遥感地质调查工作。同比例尺矿产地质调查、环境地质调查及水文地质调查也可参考。 2. 引用标准 下列标准包含的条文,通过本标准引用即构成本标准条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用下列标准时应以最新版本为准。 DZ/T 0001—91 区域地质调查总则(1:50000) DZ/T 0151—95 区域地质调查中遥感技术规定(1:50000) GB 15968—1995 遥感影像平面图制作规范 GB 958—89 区域地质图图例(1:50000) DZ/ T 0179—1997 地质图用色标准及用色原则(1:50000) 3.定义 本标准采用下列定义。 3.1 遥感 利用地物(或天体)对电磁波谱响应的影像信息进行非接触式远距离科学研究或勘查测量。 3.2 遥感地质调查 以遥感资料为信息源,以地质体、地质构造和地质现象对电磁波谱响应的特征影像为依据,通过图像解译提取地质信息、测量地质参数、填绘地质图件和研究地质问题。

遥感与地理信息系统课程教学大纲

GDOU-B-11-213《遥感与地理信息系统》课程教学大纲 课程简介 遥感技术及应用是一门具有广泛实用性的专业基础课。该课程在遥感技术理论阐述基础之上,讲述该技术在地质、土地、海洋、农林、城市等资源环境调查、监测等方面的应用。地理信息系统全面系统讲述的其技术体系,突出地理信息系统的基础理论、技术与应用。 课程大纲 一、课程的性质与任务:遥感与地理信息系统是农业资源与环境专业、森林资源保护与游憩专业的必修课程。通过该课程的学习,学生可以掌握遥感的物理基础、认识并能判读航空航天图像和地理信息系统(Geographical Information System)的基本原理,掌握利用现代化技术管理和评价农业及森 林旅游资源的基本技能。总学时70。 二、课程的目的与基本要求: 本课程将从遥感和地理空间信息的基本概念、特点及应用入手,介绍遥感影像的产生、特点、认识和应用,地理信息系统中地理空间信息的获取、数据库建立、信息处理、信息输出和地理信息系统的建立及应用等内容,通过本课程的学习,学生具有以下几个方面的能力: 1、掌握遥感影像产生的基本原理 2、能认识、判读、处理和应用遥感资料 3、掌握地理信息系统的基本原理 4、掌握地理信息系统的空间分析方法 5、掌握地理信息系统的开发方法 三、面向专业:农业资源与环境专业、森林资源保护与游憩专业 四、先修课程:《高等数学》、《地图编绘学》、《测量学》、《计算机高级编程语言》(面向对象的编程语言VB或VC++)、《数据库原理》 五、本课程与其它课程的联系: 本课程要应用到高等数学和计算机编程语言(面向对象的编程语言VB或VC++)及数据库原理

历年中科院遥感所 GIS 地理信息系统概论考博真题

2000年中科院遥感所博士入学考试(GIS) 一、名词解释(每个4分,共20分) 1. 空间拓扑关系 2. 地址匹配 3. 元数据 4. 栅格数据结构 5. 空间数据精度 二、简答题(每个10分,共30分) 1. 简述地理信息系统的组成 2. 数字地形模型(DTM)的构建与应用 3. 叠加分析 三、问答题(任选二,每个25分,共50分) 1. 地理信息系统的发展及趋势 2. 时空动态数据结构研究 3. 结合你的专业,论述GIS应用的关键技术问题 2001年中科院遥感所博士入学考试(GIS) 一、名词解释 1. 地址匹配 2. 地图精度 3. 关系数据库 4. 四叉树 二、简答题 1. GIS的特点及应用 2. GIS的结构及功能 3. 空间分析方法及应用 三、论述题 1. GIS的发展趋势 2. GIS与RS、GPS的集成方法 3. GIS空间分析功能的缺陷及改进方法 2002年中科院遥感所博士入学考试(GIS) 一、名词解释 1. 地理空间 2. 行程编码 3. 地址匹配 4. 拓扑关系 5. 空间数据元数据 二、简答 1. 地理信息系统的组成与功能 2. 数字地形模型的建立方法与特点 3. 地理信息系统互操作

三、问答 1. GIS的发展历程 2. 结合你的专业,谈一谈gis的应用与关键点 2003中科院遥感所GIS部分试题(版本一) 一、名词解释 1. GIS 2. 数据挖掘 3. 空间索引 二、简答题: 1、GIS标准化的意义及作用 2、数据质量标准 三、论述 1、关于长江三峡搬迁的,求几个数据。很麻烦。 2、关于温度梯度的 2003年GIS试题(版本二) 一名词解释 DEM、TIN、平移转换、栅格结构 二、简答 1、GIS的组成 2、空间拓扑分析 3、GIS互操作 三、论述(任选二个) 1、GIS的发展简史和趋势 2、WebGIS的核心模型及其应用 3、结合您的专业,谈谈GIS的应用关键和潜在领域 2005年中国科学院遥感所GIS考博试题 一、简答题 1. 传统数据库管理空间数据的缺陷 2. GIS中TIN的生成步骤 3. 空间信息分析的基本方法有哪些 4. GIS标准化的内容 5.地理信息系统的开发策略 6.谈谈GIS与RS的关系 7. 开放式地理信息系统实现技术 8. 电子地图的特征 9. 空间索引有哪些,特点是什么 二、论述题 1. 印度洋海啸造成重大伤亡。请设计一个海啸预警、检测、评估系统的系统方案。

遥感与地理信息系统答案及评分标准

内蒙古农业大学考试试题答案及评分标准 阅卷时要对照参考答案认真审阅,小分计算应合理准确。对名词解释要看基本要点是否答出,对计算数据要充分考虑由于计算器四舍五入而带来的结果差异。对作图题更应考虑到量测的误差因素。对于与本试题无关的文字与数据既不加分也不扣分。阅卷时正确的文字与数据给以加正分,不作扣分处理。 对每小题的得分、每大题的得分计算及卷面总得分要进行百分之百的审核,对审核出错误的分数要改正过来,并且阅卷者要进行签名。 阅卷时要精力充沛,集中思想,尽量不出差错。使用红色中性笔批阅。 一、名词解释(每小题5分,共20分) 共4个名词解释题,每小题分值为5分,总计20分。根据叙述的完整性与正确性每小题给与1至5分。每小题叙述完整正确得5分,叙述不正确或没叙述不得分。 1.什么是遥感?(5分) 答:遥感是通过不接触被探测的目标,利用传感器获取目标数据通过对数据进行分析,获取被探测目标、区域和现象的有用信息。 2.何为大气窗口? 答:由于大气层的反射、散射和吸收作用,使得太阳辐射的各波段受到衰减的作用轻重不同,因而各波段的透射率也各不相同。我们就把受到大气衰减作用较轻、透射率较高的波段叫大气窗口。 3. 什么是地理信息系统? 答:地理信息系统(Geographic Information System,简称GIS)是一种采集、存储、管理、分析、显示与应用地理信息的计算机系统,是分析和处理海量地理数据的通用技术。 4.什么是拓扑关系? 答:拓扑结构是明确定义空间数据结构关系的一种数学方法,在地理信息系统中不但用于空间数据的编辑和组织,在空间数据的分析与应用中都具有重要意义,包括拓扑邻接、拓扑关联、拓扑包含。 二、选择题(每小题2分,共20分) 本题共10小题,每小题分值为2分,总分值为20分。每小题选择正确得2分,选择错误不得分,模糊不清不得分,多选不得分。 1.以遥感车为遥感平台属于(A.地面遥感) A.地面遥感 B.航天遥感 C.航空遥感D摄影遥感 2.不属于电磁波的波动特性的是(D.辐射量子) A.衍射 B.干涉 C.极化 D.辐射量子 3.下列卫星哪个属于气象卫星(B.NOAA )

遥感与地理信息系统

西南林业大学 课程实习报告 课程名称:遥感与地理信息系统 指导教师:张加龙 实习时间:12.24-12.26 实习内容:昆明市盘龙江下游区 域遥感影像矢量化分析与制图 姓名:张培 学号: 20110455079 专业:林学 提交时间:2013.12.30

一、实验目的 1.了解GIS、RS的基本原理,熟练掌握ArcGIS软件的使用。 2.能使用软件进行图像的矢量化、建库、空间分析、制图等操作。 3.熟悉掌握遥感与地理信息系统的理论知识。 4.熟悉ArcGIS软件的操作,进行遥感图像的矢量化。 二、实习内容 根据盘龙江下游卫星影像图,把卫星影像图进行棚格数据的矢量化,并制成地图谈谈对该区林业建设的看法。 三、实习具体操作步骤 (1)个人数据库的建立 影像图为盘龙江下游卫星影像图。启动ArcCatalog,在E盘新建文件夹下新建个人数据库,要素集以kunming命名,在个人数据库下面以西安WGS1984坐标系为标准,分别新建要点线面的要素类:DLTB、XZDW、point。如图:

线、面的要素类的建立同上面的步骤一样,但是需要更改一下要素类型,线的改成线要素,面的改成面要素就完成了。 (2)卫星图片的矢量化 以卫星影像图当做背景,矢量化图层并建立地类图班数据库,土地分类可参考老师所给的第二次全国土地调查云南省土地分类表为标准。先打开Arcmap,添加影像图为盘龙江下游卫星影像图和kunming下面的点线面三个要素。将上述新建的几个要素导入其中,打开“编辑器”,新建立多边形,通过目视判读,用不同的颜色表示不同的要素类别。同一小组内的两名同学,把该影像图分为上下两块,每个人分别对自己的地域进行描图。当图描好以后,开始进行图形的合并,合并出来的图形有重叠的部分,和空隙的部分。我们应用拓扑关系查找出相应的重叠区、空隙区得位置,一个一个修改,直到没有错误为止。然后再对图像上面渲染,选择适合的颜色把各个用地区分开来,下表就是老师给的图地分类标准,编辑属性主要的步骤是:根据目视判读,新建各地类的多边形,画出多边形后,打开其 属性表,并根据给的标准在属性表中编辑信息。

外文翻译---在遥感和地理信息系统的规模度量

外文资料与中文翻译 Metrics of scale in remote sensing and GIS Michael F Goodchild (National Center for Geographic Information and Analysis, Department of Geography, University of California, Santa Barbara) ABSTRACT: The term scale has many meanings, some of which survive the transition from analog to digital representations of information better than others. Specifically, the primary metric of scale in traditional cartography, the representative fraction, has no well-defined meaning for digital data. Spatial extent and spatial resolution are both meaningful for digital data, and their ratio, symbolized as US, is dimensionless. US appears confined in practice to a narrow range. The implications of this observation are explored in the context of Digital Earth, a vision for an integrated geographic information system. It is shown that despite the very large data volumes potentially involved, Digital Earth is nevertheless technically feasible with today?s technology. KEYWORDS: Scale, Geographic Information System , Remote Sensing, Spatial Resolution INTRODUCTION: Scale is a heavily overloaded term in English, with abundant definitions attributable to many different and often independent roots, such that meaning is strongly dependent on context. Its meanings in “the scales of justice” or “scales over ones eyes” have little connection to each other, or to its meaning in a discussion of remote sensing and GIS. But meaning is often ambiguous even in that latter context. For example, scale to a cartographer most likely relates to the representative fraction, or the scaling ratio between the real world and a map representation on a flat, two-dimensional surface such as paper, whereas scale to an environmental scientist likely relates either to

遥感地质调查作业指导书

遥感地质调查作业指导书 1 目的 明确遥感地质调查工作程序、工作内容和基本要求。 2 适用范围 本标准适用于遥感地质调查项目及地质调查项目中所包含的遥感地质项目。 3 职责 3.1 地质项目承担单位的遥感地质调查项目组负责遥感地质调查工作的实施和管理。 3.2 技术质量管理部门负责对遥感地质调查工作的实施进行检查、监督和管理。 4 遥感工作程序和要求 4.1 区域地质调查、区域环境地质调查中的遥感工作程序和要求。 4.1.1 项目负责人或项目组根据工作区和目标任务,充分收集工作区自然地理、气候资料、环境资料及与遥感调查任务有关的区域地质、矿产、物化探、遥感资料,了解工作区研究程度和存在的主要区域地质、环境地质问题,选择遥感数据类型,确定图像处理方案。 4.1.2 计算机操作人员必须根据预定方案进行遥感图像处理,完成与工作比例尺相适应的遥感影像图。 4.1.3 遥感解译人员对遥感影像图进行解译,建立影像岩石单位及构造解译标志,并完成遥感解译草图。 4.1.4 地面调查人员根据遥感解译的结果,制定地面验证路线。通过实测

遥感地质剖面,验证解译标志。 4.1.5 遥感解译人员根据实测剖面资料对遥感解译标志进行修证,并对遥感影像进行详细解译,填制遥感图像解译登记卡,编制遥感地质解译图,完成遥感解译工作总结。 4.1.6 项目负责人组织进行地面验证工作,对重要地质现象和解译盲区应作详细记录,并完成野外验证工作总结报告。 4.1.7 项目负责人主持编写遥感地质解译报告,项目组会同计算机操作人员制作遥感地质影像图,并编写遥感地质影像图说明书。 4.1.8 院总工办组织有关人员对遥感调查成果进行初步审查验收。 4.2 矿产资源遥感调查工作中的遥感应用程序。 4.2.1 项目负责人会同项目组人员研究确定区域成矿环境、成矿类型和关键控矿因素,形成矿床地质数据文件。 4.2.2 项目负责人应与计算机操作人员选择遥感数据类型,确定图像处理方案,以获取空间域矿化异常增强图像。计算机操作人员必须根据预定方案进行图像处理,并完成与工作比例尺相适应的遥感影像图。 4.2.3 遥感地质人员根据最新成矿理论对典型矿床进行解析,研究成矿、控矿要素所反映的影像特征,以及成矿岩系的反射率特征,形成区域成矿特征信息的影像识别模式和信息提取模型等数据文件和图像图形资料。 4.2.4 遥感地质解译人员对主要控矿、成矿因素及成矿岩系等信息进行提取。 4.2.5 项目组综合研究人员对已形成的矿床地质、遥感地质进行综合分析,并结合区域物、化探资料,进行区域成矿预测,圈定找矿靶区。

遥感和地理信息系统在景观生态学中的应用

第八章遥感和地理信息系统在景观生态学中的应用 教学目的:了解遥感技术与地理信息系统的基本原理、类型与特征;了解遥感技术与地理信息系统技术在景观生态学研究中的应用。 重点难点:教学重点遥感技术与地理信息系统技术在景观分类与格局分析过程中的应用。 随着遥感和地理信息系统技术的迅猛发展,他们已经广泛地应用到各个研究领域中,尤其是与地理空间密切相关的学科。景观生态学作为一门研究景观空间格局与生态过程的学科,分析各种景观现象在不同时空尺度上的分布特征、演变规律、空间镶嵌关系及其对不同景观格局的模拟研究成为景观生态学的研究核心,而地理信息系统在空间分析和空间模拟上的强大功能,为在景观生态学的应用和推广提供了基础。 第一节遥感技术及其在景观生态学中的应用 一、遥感技术基本原理、类型与特征 遥感,遥远的感知,指通过任何不接触被观测物体的手段来获取信息的过程和方法。 1、遥感技术的基本原理 遥感技术的基本原理:是用光谱扫描仪或红外扫描仪对地球表面的地物光谱或温度特征进行记录,通过计算机的数据或图像处理分析地表特征。 2、遥感技术的优点 1)避免研究者对研究对象的直接干扰。 2)能够提供大范围的瞬间静态图像,是生态学家目前获取大尺度上(尤其是区域或全球范围)各种生态和物理信息的主要手段。 3)提供了大面积重复观测的可能,为资料的快速获取与更新、为多时段的对比研究和动态分析提供了基础,是大尺度格局动态的唯一监测手段。 4)大大拓宽了人类观测地球的光谱分辨能力。 5)可以提供高空间分辨率的资料,可以有效地为景观生态学研究提供所必需的多尺度上的资料。 6)遥感数据一般都是空间数据,这也是研究景观的结构、功能和动态所必需的数据形式。 7)现代遥感技术直接提供数字化空间信息,从而大大地促进了景观生态学资料的收集、贮存,以及处理和分析过程,并且使遥感、GIS和计算机模型的密切配合成为必然。 3、遥感数据的基本特征 ?遥感数据一般可分为航空像片数据和数字遥感数据。 ?航空像片数据的空间分辨率反映在像片的比例尺和胶片的灵敏程度上; ?数字遥感数据对地物记录的详细程度主要反映在空间分辨率上。 二、遥感图象处理及其在景观分类中的应用 1、遥感技术在生态学应用中经历的阶段 航空摄影阶段:始于19世纪后期。 从航空摄影向航天摄影过渡的阶段:大约从20世纪50年代至70年代。 1972年美国发射陆地资源卫星(Landsat)标志着航天遥感的开始。 航天摄影阶段:以各种遥感卫星和先进的图像处理技术为标志。

遥感及地理信息系统答案

《遥感及地理信息系统》答案海洋学院2002级遥感及地理信息系统课程考试B卷 考试日期:2005年1月19日时间:13:30-15:30 地点: 南楼112 要点:不需要死记硬背,主要看理解程度;2、重要的是要点与思路。 一基本概念(每题4分) 1、遥感(RS)与地理信息系统(GIS)。 答:广义的遥感泛指一切无接触的远距离探测,包括电磁场、力场、机械波(声波、地震波)等的探测。狭义的定义指的是应用探测仪器,不与目标物相接触,从远处把目标的电磁波特性特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合探测技术。GIS:不仅与属性,而且与空间有关的信息系统,因此除了属性管理功能外,更重要的是其空间分析功能。 2、大气窗口及其主要光谱段。 答:通常把电磁波通过大气层时较少被反射、吸收或散射的、透过率较高的波段称为大气窗口。 大气窗口的光谱段主要有: ,为紫外、可见光、近红外波段。 和,为近、中红外波段。 ,为中红外波段。 8-14μm,为远红外波段。 ,为微波波段。 3、节点、顶点;线段、弧。 答:线的起点、终点和交点称为节点,线的中间点称为顶点。 节点之间的线段称为弧,它具有方向性,顶点之间的曲线称为线段。 4、元数据 答:是关于数据的数据,是有关数据和信息资源的描述信息。地理元数据是关于地理相关

的数据和信息资源的描述信息。它通过对地理空间数据的内容,质量、条件和其他相关特征进行描述与说明,帮助人们有效地定位、评介、获取和使用地理相关数据。 二简述题(每题6分) 1、简述GIS、遥感(RS)与全球定位系统(GPS)三者的关系。 它们呈现三角关系,具体的讲,GIS与RS的关系是RS是GIS的数据源,GIS是RS数据抽象和管理的手段;GIS与GPS的关系是GPS是GIS数据定位的重要手段,通过GPS可以使GIS中的数据定位更精确,G反过来GIS又使GPS的定位更精确和全面;GPS与RS的关系是,GPS指导RS的影像数据的定位,纠正RS影像数据的变形和误差,RS通过影像全局性地确定GPS的定位情况。 2、GIS的基本框架及基本功能。 根据图的基本框架,GIS的基本功能: 数据输入与编辑功能,GIS建库功能;基本查询;空间分析,数据输出和可视化,数据转换,投影等功能. 3、画图并写出GIS中求多边形面积的计算公式,并作简要说明。 其中的一种方法是梯形法, 见上图,具体的计算公式如下: s=1/2Σ(x i+1-x i )(y i+1 +y i ) 具体图见教材p117 (x i+1-x i )项有正有负,但对这个多边形一周循环计算后多边形以外部分正好抵消。 4、GIS数据输入的几种方法简述。 大致分三种:数字化,矢量化与数据转换。(回答时适当的具体展开一下。) 三问答题(每题15分) 1、试论遥感系统的组成,遥感的特点及在地质中的应用。 分为5部分,分别为:信息源,信息获取,信息记录与传输,信息处理,信息应用。特点:大面积同步观测;时效性;数据的综合与可比性;经济性;局限性。 在地质中的应用:分为岩性识别;地质构造识别;构造运动的分析三大应用。

1:250000遥感地质调查技术规定

中国地质调查局 DD 2001-01 1:250000遥感地质调查技术规定 二ОО一年三月二十日

前言 本标准的技术内容是根据国土资源大调查中地质调查工作的需要,按我国目前遥感地质应用的先进水平制定的。 附录A、附录B都是本标准的标准附录。 本标准由中国地质调查局提出并负责起草。 本标准由中国地质调查局负责解释。 本标准主要起草人:曾朝铭、贺尚荣。 参加起草人:刘纪选、黄海、齐泽荣、耿燕婷。

目录 前言 1范围 (1) 2引用标准 (1) 3定义 (1) 4 总则 (2) 5 遥感地质调查设计编制 (3) 6 实地踏勘 (5) 7 遥感地质调查 (5) 8 实地检查验证 (6) 9 遥感地质调查报告编制 (7) 10 质量检查及成果验收 (8) 附录A(标准的附录) 遥感地质调查设计编写提纲 (10) 附录B(标准的附录)遥感地质调查报告编写提纲 (12)

1:250000遥感地质调查技术规定 DD 2001-01 1. 范围 本标准规定了用遥感方法进行1:250000地质调查的内容、程序、方法及主要技术要求。 本标准适用于未开展过1:250000区域地质调查地区的遥感地质调查工作。同比例尺矿产地质调查、环境地质调查及水文地质调查也可参考。 2. 引用标准 下列标准包含的条文,通过本标准引用即构成本标准条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用下列标准时应以最新版本为准。 DZ/T 0001—91 区域地质调查总则(1:50000) DZ/T 0151—95 区域地质调查中遥感技术规定(1:50000) GB 15968—1995 遥感影像平面图制作规范 GB 958—89 区域地质图图例(1:50000) DZ/ T 0179—1997 地质图用色标准及用色原则(1:50000) 3.定义 本标准采用下列定义。 3.1 遥感 利用地物(或天体)对电磁波谱响应的影像信息进行非接触式远距离科学研究或勘查测量。 3.2 遥感地质调查 以遥感资料为信息源,以地质体、地质构造和地质现象对电磁波谱响应的特征影像为依据,通过图像解译提取地质信息、测量地质参数、填绘地质图件和研究地质问题。

遥感与gis区别

摄影测量与遥感技术 20世纪60年代以来,由于航天技术、计算机技术和空间探测技术及地面处理技术的发展,产生了一门新的学科——遥感技术。所谓遥感就是在远离目标的地方,运用传感器将来自物体的电磁波信号记录下来并经处理后,用来测定和识别目标的性质和空间分布。从广义上说,航空摄影是遥感技术的一种手段,而遥感技术也正是在航空摄影的基础上发展起来的。一、摄影测量与遥感技术概念 摄影测量与遥感学科隶属于地球空间信息科学的范畴,它是利用非接触成像和其他传感器对地球表面及环境、其他目标或过程获取可靠的信息,并进行记录、量测、分析和表达的科学与技术。摄影测量与遥感的主要特点是在像片上进行量测和解译,无需接触物体本身,因而很少受自然和地理条件的限制,而且可摄得瞬间的动态物体影像。 二、摄影测量与遥感技术的发展 1、摄影测量及其发展 摄影测量的基本含义是基于像片的量测和解译,它是利用光学或数码摄影机摄影得到的影像,研究和确定被摄影物的形状、大小、位置、性质和相互关系的一门科学和技术。其内容涉及被摄影物的影像获取方法,影像信息的记录和存储方法,基于单张或多张像片的信息提取方法,数据的处理和传输,产品的表达与应用等方面的理论、设备和技术。 摄影测量的特点之一是在影像上进行量测和解译,无需接触被测目标物体本身,因而很少受自然和环境条件的限制,而且各种类型影像均是客观目标物体的真实反映,影像信息丰富、逼真,人们可以从中获得被研究目标物体的大量几何和物理信息。到目前为止,摄影测量已有近170年的发展历史了。概括而言,摄影测量经历了模拟法、解析法和数字化三个发展阶段。表1列出了摄影测量三个发展阶段的主要特点。 如果说从模拟摄影测量到解析摄影测量到解析摄影测量的发展是一次技术的进步,那么从解析摄影测量到数字摄影测量的发展则是一场技术的革命。数字摄影测量与模拟、解析摄影测量的最大区别在于:它处理的原理信息不仅可以是航空像片经扫描得到的数字化影像或由数字传感器直接得到的数字影像,其产品的数字形式,更主要的是它最终以计算机视觉代替人眼的立体观测,因而它所使用的仪器最终只有通用的计算机及其相应的外部设备,故而是一种计算机视觉的方法。 2、遥感及其发展 遥感是通过非接触传感器遥测物体的几何与物理特征性的技术,这项技术主要应用于资源勘探、动态监测和其他规划决策等领域,摄影测量是遥感的前身。遥感技术主要利用的是物体反射或发射电磁波的原理,在距离地物几千米、几万米甚至更高的飞机、飞船、卫星上,通过各种传感器接收物体反射或发射的电磁波信号,并以图像胶片或数据磁带记录下来,传送到地面。遥感技术主要由遥感图像获取技术和遥感信息处理技术两大部分组成。 遥感技术的分类方法很多,按电磁波波段的工作区域,可分为可见光遥感、红外遥感、微波遥感和多波段遥感等。按传感器的运载工具可分为航天遥感(或卫星遥感)、航空遥感和地面遥感,其中航空遥感平台又可细分为高空、中空和低空平台,后者主要是指利用轻型飞机、汽艇、气球和无人机等作为承载平台。按传感器的工作方式可分为主动方式和被动方式两种。在遥感技术中除了使用可见光的框幅式黑白摄影机外,还使用彩色摄影、彩虹外摄影、全景摄影、红外扫描仪、多光谱扫描仪、成像光谱仪、CCD线阵列扫描和面阵摄影机以及合成孔径侧视雷达等手段,它们以空间飞行器作为平台,能为土地利用、资源和环境监测及相关研究提供大量多时相、多光谱、多分辨的影像信息。 3、摄影测量与遥感的结合 遥感技术的兴起,促使摄影测量发生了革命性的变化。但由于测制地形图对摄影成果有着特

遥感与地理信息技术在土地动态监测中的应用

遥感与地理信息技术在土地动态监测中的应用 遥感技术RS与地理信息系统GIS技术在土地动态监测工作中的应用,提升了监测工作的时效性与科学性。以现代化技术手段为支撑,有助于快速掌握土地变化动态,为土地资源的管理以及决策工作的开展创设了便利条件。为深度碗蕨遥感技术与地理信息系统的实用性,文章以其在土地动态监测中的应用作为研究对象,从多个维度出发,结合实践经验对其应用方式进行全面梳理,以期为土地动态监测提供参考依据。 标签:土地动态监测;遥感技术RS;地理信息系统GIS 由于受到技术条件的限制,原有的土地动态机制工作效率较低,准确性较差,难以实时反馈区域内土地资源的变化情况,为提升遥感技术与地理信息系统的技术能力,实现土地动态监测系统的有效运行,文章将两种技术应用方式作为研究对象,从多个维度出发,推动土地动态监测机制的有序运行。 1、遥感技术RS在土地动态监测中的应用 遥感技术(RS)以及地理信息系统(GIS)作为新型数据获取与处理手段,二者在土地动态监测之中的应用,使得土地动态监测系统得以真正组建,工作人员能够在技术手段的,弥补了传统土地监测之中存在不足,增强土地监测的实时性与准确性。遥感技术与传统的地理信息获取方式不同,因此在实际应用的过程中,就需依据遥感技术的技术特点,采取针对性的应用方式,以充分发挥遥感技术的价值。 考虑到土地动态监测工作的基本要求,在遥感技術应用的过程中,除了借助于卫星等硬件装置对土地信息进行获取之外,为了使得土地动态的有效监测,在技术应用的过程中,可以使用像元间比较变化信息提取法,对同一观测区域不同年份同一时间段内的影响差异进行对比,评估土地利用变化情况,此类模式此时技术人员需对影像对比判读,为后续地理信息系统GIS的应用提供了极大的便利。 2、地理信息系统GIS在土地动态监测中的应用 地理信息系统GIS具有强大的空间分析能力,以专题数据库为框架支撑,对土地资源遥感影像进行科学分类以及高效制图,以此为基础,为后续空间决策工作的进行创设了条件。GIS在土地动态监测中的应用主要集中空间信息量算、数据信息叠加、空间信息统计、缓冲区分析等。 以遥感技术之中获得影像资料为前提,使用GIS技术体系中的计算机或者人机交互的方式,对遥感系统中的图像开展分析评估工作。针对于遥感影像之中存在的光谱特征原理,对观测区域内部土地资源利用以及变化情况进行识别,在此基础上,实现对土地利用情况的动态监测与科学管理。

遥感及地理信息系统答案

遥感及地理信息系统答 案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

《遥感及地理信息系统》答案 海洋学院2002级遥感及地理信息系统课程考试B卷考试日期:2005年1月19日时间:13:30-15:30 地点: 南楼112 要点:不需要死记硬背,主要看理解程度;2、重要的是要点与思路。 一基本概念(每题4分) 1、遥感(RS)与地理信息系统(GIS)。 答:广义的遥感泛指一切无接触的远距离探测,包括电磁场、力场、机械波(声波、地震波)等的探测。狭义的定义指的是应用探测仪器,不与目标物相接触,从远处把目标的电磁波特性特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合探测技术。 GIS:不仅与属性,而且与空间有关的信息系统,因此除了属性管理功能外,更重要的是其空间分析功能。 2、大气窗口及其主要光谱段。 答:通常把电磁波通过大气层时较少被反射、吸收或散射的、透过率较高的波段称为大气窗口。 大气窗口的光谱段主要有: 0.3-1.3μm,为紫外、可见光、近红外波段。 1.5-1.8μm和 2.0- 3.5μm,为近、中红外波段。 3.5-5.5μm,为中红外波段。 8-14μm,为远红外波段。 0.8-2.5cm,为微波波段。 3、节点、顶点;线段、弧。

答:线的起点、终点和交点称为节点,线的中间点称为顶点。 节点之间的线段称为弧,它具有方向性,顶点之间的曲线称为线段。 4、元数据 答:是关于数据的数据,是有关数据和信息资源的描述信息。地理元数据是关于地理相关的数据和信息资源的描述信息。它通过对地理空间数据的内容,质量、条件和其他相关特征进行描述与说明,帮助人们有效地定位、评介、获取和使用地理相关数据。 二简述题(每题6分) 1、简述GIS、遥感(RS)与全球定位系统(GPS)三者的关系。 它们呈现三角关系,具体的讲,GIS与RS的关系是RS是GIS的数据源,GIS是RS数据抽象和管理的手段;GIS与GPS的关系是GPS是GIS数据定位的重要手段,通过GPS可以使GIS中的数据定位更精确,G反过来GIS又使GPS的定位更精确和全面;GPS与RS的关系是,GPS指导RS的影像数据的定位,纠正RS影像数据的变形和误差,RS通过影像全局性地确定GPS的定位情况。 2、GIS的基本框架及基本功能。 根据图的基本框架,GIS的基本功能: 数据输入与编辑功能,GIS建库功能;基本查询;空间分析,数据输出和可视化,数据转换,投影等功能. 3、画图并写出GIS中求多边形面积的计算公式,并作简要说明。 其中的一种方法是梯形法, 见上图,具体的计算公式如下: s=1/2Σ(x i+1-x i )(y i+1 +y i ) 具体图见教材 p117

阐述高分辨率影像数据在遥感地质调查中的应用

阐述高分辨率影像数据在遥感地质调查中的应用 阐述高分辨率影像数据在遥感地质调查中的应用 【摘要】随着我国科技水平的提高,尤其是在卫星遥控技术上取得了巨大突破。随着遥感在地质调查中应用的深入和当今地质调查工作的不断发展,遥感已成为矿产勘查中必不可少的手段和方法。但由于传统影像的空间分辨率较低,对地质体的解译能力较差,已不能满足当前数字信息找矿的需求。本文主要阐述高分辨率影像数据在遥感地质调查中的应用。这对于我国地质调查工作具有重要的现实意义。 【关键词】高分辨率;遥感地质;找矿方法 中图分类号:F406文献标识码: A 文章编号: 一、前言 在我国,自90年代以来,遥感技术在地质调查中已得到了广泛的应用。但随着国家经济快速的发展,使得其对石油、煤、多金属等自然资源需求量不断增大,对地质调查的深度和区域要求更高,因此利用传统的影像数据和地质调查调查方法已不能满足当前地质勘查 的需求。[2-3]随着高分辨率传感器技术的日益成熟,高分辨率影像数据已广泛应用于生产生活的各个方面。如何将高分辨率影像数据应用于地质调查领域并充分发挥其优势已成为一个值得探索的课题。 二、传统影像数据特点及地质调查中的应用 1、传统影像数据特点及地质调查中的应用困境 遥感技术拥有影像覆盖面积大、信息量大、获取信息快等诸多特点,从而使其在地质调查中得到广泛的应用。至20世纪80年代以来,在我国地质调查中引入了遥感技术,从此传统的地质调查跟上了信息化步伐,这大大提高了地质调查的效率,减少了人力财力的耗费,加快了我国数字地质信息库的建设步伐。但由于国家地质勘查工作的进一步深入和国家经济建设对矿产资源的需求,使得采用传统的低空间分辨率、低光谱分辨率较低影像数据进行地质调查过程中遇到了新的难题。

《遥感及地理信息系统》答案

《遥感及地理信息系统》答案 海洋学院2002级遥感及地理信息系统课程考试B卷 考试日期:2005年1月19日时间:13:30-15:30 地点: 南楼112 要点:不需要死记硬背,主要看理解程度;2、重要的是要点与思路。 一基本概念(每题4分) 1、遥感(RS)与地理信息系统(GIS)。 答:广义的遥感泛指一切无接触的远距离探测,包括电磁场、力场、机械波(声波、地震波)等的探测。狭义的定义指的是应用探测仪器,不与目标物相接触,从远处把目标的电磁波特性特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合探测技术。 GIS:不仅与属性,而且与空间有关的信息系统,因此除了属性管理功能外,更重要的是其空间分析功能。 2、大气窗口及其主要光谱段。 答:通常把电磁波通过大气层时较少被反射、吸收或散射的、透过率较高的波段称为大气窗口。 大气窗口的光谱段主要有: 0.3-1.3μm,为紫外、可见光、近红外波段。 1.5-1.8μm和 2.0- 3.5μm,为近、中红外波段。 3.5-5.5μm,为中红外波段。 8-14μm,为远红外波段。 0.8-2.5cm,为微波波段。 3、节点、顶点;线段、弧。 答:线的起点、终点和交点称为节点,线的中间点称为顶点。 节点之间的线段称为弧,它具有方向性,顶点之间的曲线称为线段。 4、元数据 答:是关于数据的数据,是有关数据和信息资源的描述信息。地理元数据是关于地理相关的数据和信息资源的描述信息。它通过对地理空间数据的内容,质量、条件和其他相关特征进行描述与说明,帮助人们有效地定位、评介、获取和使用地理相关数据。 二简述题(每题6分) 1、简述GIS、遥感(RS)与全球定位系统(GPS)三者的关系。 它们呈现三角关系,具体的讲,GIS与RS的关系是RS是GIS的数据源,GIS是RS数据抽象和管理的手段;GIS 与GPS的关系是GPS是GIS数据定位的重要手段,通过GPS可以使GIS中的数据定位更精确,G反过来GIS又使GPS的定位更精确和全面;GPS与RS的关系是,GPS指导RS的影像数据的定位,纠正RS影像数据的变形和误差,RS通过影像全局性地确定GPS的定位情况。 2、GIS的基本框架及基本功能。

相关文档
最新文档