高考电磁感应压轴题选讲

高考电磁感应压轴题选讲
高考电磁感应压轴题选讲

电磁感应压轴题选讲

1如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m 。两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω。在t =0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。经过t =5.0s ,金属杆甲的加速度为a =1.37m/s 2,问此时两金属杆的速度各为多少?

2图中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里。导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2。x 1 y 1与x 2 y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为和m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆x 1y 1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

3两根相距d =0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B =0.2T ,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r =0.25Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v =5.0m/s ,如图所示.不计导轨上的摩擦.(1)求作用于每条金属细杆的拉力的大小.

(2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量.

4两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd

v

v

B

v 0

L a

d

b

F

静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少.

(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?

5如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a

A .完全进入磁场中时线圈的速度大于(v 0+v )/2;

B .安全进入磁场中时线圈的速度等于(v 0+v )/2;

C .完全进入磁场中时线圈的速度小于(v 0+v )/2;

D .以上情况A 、B 均有可能,而C 是不可能的

6光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。求导体

棒的最终速度。

7如下图所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B .边长为l 的正方形金属框abcd (下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 型金属框架MNPQ (仅有MN 、NQ 、QP 三条边,下简称U 型框),U 型框与方框之间接触良好且无摩擦.两个金属框每条边的质量均为m ,每条边的电阻均为r .

(1)将方框固定不动,用力拉动U 型框使它以速度0v 垂直NQ 边向右匀速运动,当U 型框的MP 端滑至方框的最右侧(如图乙所示)时,方框上的bd 两端的电势差为多大?此时方框的热功率为多大?

L

a

a

a

b C v 0

(2)若方框不固定,给U 型框垂直NQ 边向右的初速度0v ,如果U 型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?

(3)若方框不固定,给U 型框垂直NQ 边向右的初速度v (0v v ),U 型框最终将与方框分离.如果从U 型框和方框不再接触开始,经过时间t 后方框的最右侧和U 型框的最左侧之间的距离为s .求两金属框分离后的速度各多大.

8如图所示,为某一装置的俯视图,PQ 、MN 为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B ,方向竖直向下.金属棒AB搁置在两板上缘,并与两板垂直良好接触.现有质量为m ,带电量大小为q ,其重力不计的粒子,以初速v 0水平射入两板间,问:

(1)金属棒AB 应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动? (2)若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv 0/qB 时的时间间隔是多少?(磁场足够大)

. 9如图,在竖直面内有两平行金属导轨AB 、CD 。导轨间距为L ,电阻不计。一根电阻不

计的金属棒ab 可在导轨上无摩擦地滑动。棒与导轨垂直,并接触良好。导轨之间有垂

直纸面向外的匀强磁场,磁感强度为B 。导轨右边与电路连接。电路中的三个定值电阻阻值分别为2R 、R 和R 。在BD 间接有一水平放置的平行板电容器C ,板间距离为d 。 (1)当ab 以速度v 0匀速向左运动时,电容器中质量为m 的带电微粒恰好静止。试判断

微粒的带电性质,及带电量的大小。

(2)ab 棒由静止开始,以恒定的加速度a 向左运动。讨论电容器中带电微粒的加速度

如何变化。(设带电微粒始终未与极板接触。)

V 0 M

B

N

P

Q

A

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

10磁悬浮列车动力原理如下图所示,在水平地面上放有两根平行直导轨,轨间存在着等距离的正方形匀强磁场B l和B2,方向相反,B1=B2=lT,如下图所示。导轨上放有金属框abcd,金属框电阻R=2Ω,导轨间距L=0.4m,当磁场B l、B2同时以v=5m/s的速度向右匀速运动时,求

(1)如果导轨和金属框均很光滑,金属框对地是否运动?若不运动,请说明理由;如运动,原因是什么?运动性质如何?

(2)如果金属框运动中所受到的阻力恒为其对地速度的K倍,K=0.18,求金属框所能达到的最大速度v m是多少?

(3)如果金属框要维持(2)中最大速度运动,它每秒钟要消耗多少磁场能?

11如图左所示,边长为l和L的矩形线框a a'、b b'互相垂直,彼此绝缘,可绕中心轴O1O2转动,将两线框的始端并在一起接到滑环C,末端并在一起接到滑环D,C、D彼此绝缘.通过电刷跟C、D连接.线框处于磁铁和圆柱形铁芯之间的磁场中,磁场边缘中心的张角为45°,如图右所示(图中的圆表示圆柱形铁芯,它使磁铁和铁芯之间的磁场沿半径方向,如图箭头所示).不论线框转到磁场中的什么位置,磁场的方向总是沿着线框平面.磁场中长为l的线框边所在处的磁感应强度大小恒为B,设线框a a'和b b'的电阻都是r,两个线框以角速度ω逆时针匀速转动,电阻R=2r.

(1)求线框a a'转到图右位置时感应电动势的大小;

(2)求转动过程中电阻R上的电压最大值;

(3)从线框a a'进入磁场开始时,作出0~T(T是线框转动周期)时间内通过R的电流

i R随时间变化的图象;

(4)求外力驱动两线框转动一周所做的功。

12如图所示,一根电阻为R =12Ω的电阻丝做成一个半径为r =1m 的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B =0.2T ,现有一根质量为m =0.1kg 、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为 r /2时,棒的速度大小为v 1=3

8

m/s ,下落到经过圆心时棒的速度大小为v 2 =

3

10

m/s ,(取g=10m/s 2) 试求:

⑴下落距离为r /2时棒的加速度,

⑵从开始下落到经过圆心的过程中线框中产生的热量.

13平行导轨L1、L2所在平面与水平面成30度角,平行导轨L3、L4所在平面与水平面成60度角,L1、L3上端连接于O 点,L2、L4上端连接于O ’点,OO ’连线水平且与L1、L2、L3、L4都垂直,质量分别为m1、m2的甲、乙两金属棒分别跨接在左右两边导轨上,且可沿导轨无摩擦地滑动,整个空间存在着竖直向下的匀强磁场。若同时释放甲、乙棒,稳定后它们都沿导轨作匀速运动。

(1)求两金属棒的质量之比。

(2)求在稳定前的某一时刻两金属棒加速度之比。

(3)当甲的加速度为g/4时,两棒重力做功的瞬时功率和回路中电流做功的瞬时功率之比为多少?

B

o

答案

1解析:设任一时刻t 两金属杆甲、乙之间的距离为x ,速度分别为v 1和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变

t l v v lx t t v t v x S ?-=-+?+?-=?)(])[(2112

由法拉第电磁感应定律,回路中的感应电动势t

S B E ??= 回路中的电流 R

E i 2=

杆甲的运动方程ma Bli F =-

由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量0(=t 时为0)等于外力F 的冲量21mv mv Ft +=

联立以上各式解得)](2[21211

ma F F B R

m F v -+= )](2[212212ma F I

B R m F v --= 代入数据得s m v s

m v /85.1/15.821==

2解析:设杆向上的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-= ①

回路中的电流 R

E

I =

② 电流沿顺时针方向。两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为

I Bl f 11= ③

方向向上,作用于杆x 2y 2的安培力为 I Bl f 22= ④

方向向下,当杆作匀速运动时,根据牛顿第二定律有02121=-+--f f g m g m F ⑤

解以上各式得 )()(1221l l B g

m m F I -+-=

R l l B g

m m F v 2

12221)()(-+-=

作用于两杆的重力的功率的大小 gv m m P )(21+= ⑧ 电阻上的热功率 R I Q 2

= ⑨ 由⑥⑦⑧⑨式,可得

g m m R l l B g

m m F P )()

()(212

12221+-+-=

⑩ R l l B g m m F Q 2

1221])

()([

-+-= ⑾

3解析:(1)当两金属杆都以速度v 匀速滑动时,每条金属杆中产生的感应电动势分别为: E 1=E 2=Bdv

由闭合电路的欧姆定律,回路中的电流强度大小为:r

E E I 22

1+=

因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F 2=IBd 。

由以上各式并代入数据得22221102.3-?===r

v

d B F F N (2)设两金属杆之间增加的距离为△L ,则两金属杆共产生的热量为v

L

r I Q 222

???=, 代入数据得 Q =1.28×10-2J.

4解析:ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 作匀速运动.

(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= 根

据能量守恒,整个过程中产生的总热量2

2204

1)2(2121mv v m mv Q =-=

(2)设ab 棒的速度变为初速度的3/4时,cd 棒的速度为v 1,则由动量守恒可知:

1004

3

mv v m mv +=

此时回路中的感应电动势和感应电流分别为:BL v v E )4

3(10-=,R

E I 2= 此时cd 棒所受的安培力: IBL

F =

,所以cd 棒的加速度为 m

F a =

由以上各式,可得

mR

v L B a 4022= 。

5 B

6解析:当金属棒ab 做切割磁力线运动时,要产生感应电动势,这样,电容器C 将被充电,ab 棒中有充电电流存在,ab 棒受到安培力的作用而减速,当ab 棒以稳定速度v 匀速

运动时,有:

BLv =U C =q/C

而对导体棒ab 利用动量定理可得: -BLq =mv -mv 0

由上述二式可求得: C

L B m mv v 2

20

+=

7 解: (1)U 型框向右运动时,NQ 边相当于电源,产生的感应电动势0E Blv = 当如图乙所示位置时,方框bd 之间的电阻为 33

34

bd r r R r r r ==+? U 型框连同方框构成的闭合电路的总电阻为

15

34

db R r R r =+= 闭合电路的总电流为 0

415Blv E I R r

==

根据欧姆定律可知,bd 两端的电势差为:0

5

bd bd Blv U IR ==

方框中的热功率为

222

02475B l v bd r

bd

U P R ==

(2)在U 型框向右运动的过程中,U 型框和方框组成的系统所受外力为零,故系统

222

00

11637227

Q mv mv mv =-=动量守恒,设到达图示位置时具有共同的速度v ,根据动量守恒定律 03(34)mv m m v =+ 解得:03

7

v v =

根据能量守恒定律,U 型框和方框组成的系统损失的机械能等于在这一过程中两框架上产生的热量,即

(3)设U 型框和方框不再接触时方框速度为1v ,U 型框的速度为2v ,根据动量守恒定

律,有 12343mv mv mv =+

两框架脱离以后分别以各自的速度做匀速运动,经过时间t 方框最右侧和U 型框最左侧距离为s ,即21()v v t s -= 联立以上两式,解得:13()7s v v t =

-;214(3)7s

v v t

=+ (以上答案供参考,符合题意的其它合理答案均给分)

8(1)粒子匀速运动,所受电场力与洛伦兹力等大反向,则金属棒B 端应为高电势,即金属棒应朝左运动(1分)

设AB 棒的速度为v ,产生的电动势

Bdv =ε (1分)

板间场强

Bv d

E ==

ε

(1分)

粒子所受电场力与洛伦兹力平衡

0Bqv Eq = (1分)

有 0v v = (1分)

(2)金属棒停止运动,带电粒子在磁场中做匀速圆周运动,当位移为

R Bq

mv =0

时,粒子转过的角度为3

π

θ=

(1分)

设粒子运动时间为t ?,有

π

π23

=

?T t Bq m T t 361π==? 9解:(1)棒匀速向左运动,感应电流为顺时针方向,电容器上板带正电。

∵微粒受力平衡,电场力方向向上,场强方向向下 ∴微粒带负电 (1分) mg =q d

U c

(1分) U c =IR (1分) R

E I 3=

(1分) E = Blv 0

(1分)

由以上各式求出 0

3Blv mgd

q =

(1分)

(2)经时间t 0,微粒受力平衡 mg =

q d

U c

(1分) 03

1

Blat U c =

(1分) 求出

Blaq mgd

t 30=

或a

v t 00= (1分)

当t < t 0时,a 1 = g –t md

Blaq

3,越来越小,加速度方向向下 (1分) 当t = t 0时,a 2 = 0

(1分)

当t > t 0时,a 3 =

t md

Blaq

3– g ,越来越大,加速度方向向上 (1分)

10 (1)运动。因磁场运动时,框与磁场有相对运动,ad 、b 边切害虫磁感线,框中产生感应电流(方向逆时针),同时受安培力,方向水平向右,故使线框向右加速运动,且属于加速度越来越小的变加速运动。 …………(6分) (2)阻力f 与安培力F 安衡时,框有v m f =Kv m =F =2IBL ①………(2分) 其中I=E/R ②………(1分) E =2BL (v-v m ) ③………(2分) ①②③联立得:

Kv m =2·[2BL (v-v m )/R ]·BL ∴Kv m =(4B 2L 2v -4B 2L 2v m )/R ∴v m =4B 2L 2v /(KR +4B 2L 2) ④………(1分) =3.2m/s ⑤………(2分) (3)框消耗的磁场能一部分转化为框中电热,一部分克服阴力做功。 据能量守恒

E 硫=I 2Rt+Kv m ·v m t (4分) E 磁=[4B 2L 2(v-v m )2/R ]·1+Kv m 2·1 =2

814014222..???+018×3.22

=2.9J

(2分)

11 (1)根据磁场分布特点,线框不论转到磁场中哪一位置,切割磁感线的速度始终与磁场方向垂直,故

线框a a '转到图示位置时,感应电动势的大小E =2Blv =2Bl

2

L

ω=BlL ω(3分)。

(2)线框转动过程中,只能有一个线框进入磁场(作电源),另一个线框与外接电阻R 并联后一起作为外

电路。.电源内阻为r ,外电路总电阻R 外

=

3

2

=+r R Rr r .故R 两端的电压最大值:U R =IR 外

ωBlL E r r r E 52

52323

2==?+=

(4分)

(3)a a '和b b '在磁场中,通过R 的电流大小相等,

i R =

52=R U R BlL ω·r

BlL r 521ω

=.

从线框aa ′进入磁场开始计时,每隔T /8(线框转动45°)电流发生一次变化,其i R 随时间t 变化的图象如图所示。(5分,其中图3分)

(4)因每个线框作为电源时产生的总电流和提供的功率分别为:

I =

r

E r r E 533

2=

+

, P =IE =r BlL r E 5)(35322ω=.(4分)

两线框转动一周时间内,上线圈只有两次进入磁场,每次在磁场内的时间(即作为电源时的做功时间)为8

T .根据能的转化和守恒定律,外力驱动两线圈转动一周的功,完全转化为电源所获得的电能,所以

W 外

=4P ·

8T =P ·

2

T =P ·r

L l B 53222ωπωπ=(4分)

12(1)R 1= R 3 ? 2R

3 R = 2R 9 = 8

3

Ω

① (4分)

F = BIL = B 2( 3 r ) 2v 1

R 1

=0.12 N

② (4分) 由mg - F = ma

③ (2分) a =g - F

m

= 8.8(m / s 2)

④ (2分) (2)mgr - Q = 1

2 mv 22 – 0

⑤ (5分)

Q = mgr - 1

2

mv 22 = 0.44 J

(2

分)

13(1)3:1 (3)2:1

备战高考物理电磁感应现象的两类情况-经典压轴题及答案

备战高考物理电磁感应现象的两类情况-经典压轴题及答案 一、电磁感应现象的两类情况 1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰) (1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离; (3)在两根杆相互作用的过程中,求回路中产生的电能. 【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v 设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有 2h x v g =2h x s v g +=根据动量守恒 012mv mv mv =+ 求得: 210m/s v = (2)ab 杆运动距离为d ,对ab 杆应用动量定理 1BIL t BLq mv ==V 设cd 杆运动距离为d x +?

22BL x q r r ?Φ?= = 解得 1 22 2rmv x B L ?= cd 杆运动距离为 1 22 27m rmv d x d B L +?=+ = (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能 222 012111100J 222 Q mv mv mv =--= 2.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求: (1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。 【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】 解:(1)t=2s 内MN 杆上升的距离为 2 1 2 h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为 BLh ?Φ= 产生的平均感应电动势为 E t ?Φ = 产生的平均电流为

(完整word版)高考物理压轴题电磁场汇编

24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电量 q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O / Q =R /。 由几何关系得: / OQO ?∠= // OO R R d =+- 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] / (2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 24.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的 方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径qB mv d r = =φsin ,得m qBd v φsin =; v

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

电磁感应压轴题

v (m/s) 10 8 6 4 2 M (kg) 0 0.1 0.2. 0.3 0.4 0.5 电磁感应难题训练1 1. 如图所示,两根与水平面成θ=30角的足够长光滑金属导轨平行放置,导轨间距为L =1m ,导轨底端接有阻值为的电阻R ,导轨的电阻忽略不计。整个装置处于匀强磁场中,磁场方向垂直于导轨平面斜向上,磁感应强度B =1T 。现有一质量为m =0.2 kg 、电阻为的金属棒用细绳通过光滑滑轮与质量为M =0.5 kg 的物体相连,细绳与导轨平面平行。将金属棒与M 由静止释放,棒沿导轨运动了2 m 后开始做匀速运动。运动过程中,棒与导轨始终保持垂直接触。(取重力加速度g=10m/s 2)求: (1)金属棒匀速运动时的速度; (2)棒从释放到开始匀速运动的过程中,电阻R 上 产生的焦耳热; . (3)若保持某一大小的磁感应强度B 1不变,取不同 质量M 的物块拉动金属棒,测出金属棒相应的 做匀速运动的v 值,得到实验图像如图所示, 请根据图中的数据计算出此时的B 1; (4)改变磁感应强度的大小为B 2,B 2=2B 1,其他条件不变, 请在坐标图上画出相应的v —M 图线,并请说明图线与M 轴的 交点的物理意义。 ~ ; $ B θ m R

2. 如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为4Ω的电阻R,导轨电阻忽略不计.在两平行虚线L1、L2间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场,磁场区域的宽度为d=0.5m.导体棒a的质量为ma=0.6kg,电阻Ra=4Ω;导体棒b的质量为mb=0.2kg,电阻Rb=12Ω;它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M、N处同时将它们由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,sin53°=,且不计a、b之间电流的相互作用).求: (1)在整个过程中,a、b两导体棒分别克服安培力做的功; (2)在a穿越磁场的过程中,a、b两导体棒上产生的焦耳热之比; (3)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比; (4)M点和N点之间的距离. / 。 #

高考物理压轴题电磁场汇编

1、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁 感应强度为B。一质量为m带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP= d)射入磁场(不计重力影响)。 ⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q 点切线 方向的夹角为φ (如图)。求入射粒子的速度。 解:⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP 是直径。 设入射粒子的速度为V1,由洛伦兹力的表达式和牛顿第二定律得: v12 m qBv1 d/2 解得:v1-q B d 2m ⑵设O是粒子在磁场中圆弧轨道的圆心,连接 由几何关系得:QQQ Z = QQ^R Z R_d 由余弦定理得:/ 2 2 /2/ (QQ ) =R R -2RR COSr 解得:P Z d(2R-d) 2 ∣R(1 cos J - d 1 2 设入射粒子的速度为v,由m~v√ = qvB R Z 解出: qBd (2R-d) V 2m [R(1 + cos c P) -d 】 2、(17分)如图所示,在XQy平面的第一象限有一匀强电场,电场的方向 平行于y轴向下;在X轴和第四象限的射线QC之间有一匀强磁场,磁 感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带 有 电荷量+q的质点由电场左侧平行于X轴射入电场。质点到达X轴上A 点时,速度方向与X轴的夹角为φ , A点与原点Q的距离为d。接着, 质点进入磁场,并垂直于QC飞离磁场。不计重力影响。若QC与X 轴 的夹角也为φ ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的 场强大小。 D V

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

电磁感应部分 压轴题考法

1.电磁感应加速器(共2题) (20 分)在如图甲所示的半径为r的竖直圆柱形区域内,存在竖直向上的匀强磁场,磁感应强度大小随时间的变化关系为B=kt(k>0 且为常量)。 (1)将一由细导线构成的半径为r、电阻为R0 的导体圆环水平固定在上述磁场中,并使圆环中心与磁场区域的中心重合。求在T 时间内导体圆环产生的焦耳热(2)上述导体圆环之所以会产生电流是因为变化的磁场会在空间激发涡旋电场,其电场线是在水平面内的一系列沿顺时针方向的同心圆(从上向下看),圆心与磁场区域的中心重合。同一条电场线上各点的场强大小相等,涡旋电场场强与电势差的关系与匀强电场相同。如图丙所示,在磁场区域的水平面内固定一个内壁光滑的绝缘环形真空细管道,其内环半径为r,管道中心与磁场区域的中心重合,细管道直径远小于r。某时刻,将管道内电荷量为q 的带正电小球由静止释放(小球的直径略小于真空细管道的直径),假设小球在运动过程中其电荷量保持不变,忽略小球受到的重力、小球运动时激发的磁场以及相对论效应。若小球由静止经过一段时间加速,获得动能E m,求小球在这段时间内在真空细管道内运动的圈数 (3)若在真空细管道内部空间加有方向竖直向下的恒定匀强磁场,小球开始运动后经过时间t0,小球与环形真空细管道之间恰好没有作用力,求在真空细管道内部所加磁场的磁感应强度的大小

动生切割中的电容问题(2题) 12.(20分)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。首先开关S接1,使电容器完全充电。然后将S 接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。问: (1)磁场的方向; (2)MN刚开始运动时加速度a的大小; (3)MN离开导轨后电容器上剩余的电荷量Q是多少。

高考物理压轴题之电磁学专题(5年)(含答案分析).

25.2014新课标2 (19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯 视图如图所示.整个装置位于一匀强磁场中,磁感应强度的 大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的 D点之间接有一阻值为R的电阻(图中未画出).直导体棒 在水平外力作用下以速度ω绕O逆时针匀速转动、转动过 程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩 擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大 小为g.求: (1)通过电阻R的感应电流的方向和大小; (2)外力的功率.

25.(19分)2013新课标1 如图,两条平行导轨所在平面与水平 地面的夹角为θ,间距为L。导轨上端接 有一平行板电容器,电容为C。导轨处于 匀强磁场中,磁感应强度大小为B,方向 垂直于导轨平面。在导轨上放置一质量为 m的金属棒,棒可沿导轨下滑,且在下滑 过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 24.(14分)2013新课标2 如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合 一、电磁感应现象的两类情况 1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=?,间距为d =0.2m ,且电阻不计。导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求: (1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。 【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】 (1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。 由平衡条件 sin mg BId θ=① 导体棒切割磁感线产生的电动势为 E =Bdv ② 由闭合电路欧姆定律得 E I R r = +③ 联立①②③得 v =20m/s ④ 由欧姆定律得 U =IR ⑤ 联立①⑤得 U =7V ⑥ (2)由电流定义式得 Q It =⑦ 由法拉第电磁感应定律得 E t ?Φ = ?⑧

B ld ?Φ=?⑨ 由欧姆定律得 E I R r = +⑩ 由⑦⑧⑨⑩得 Q =0.02C ? 2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒 ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的 过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求: (1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L v θ=2)sin sin t gvt v v CgR θθ=+ 【解析】 试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R = ,棒所受的安培力F BIL = 联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='= 此时电容器的带电量为 Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V

备战高考物理压轴题专题复习——法拉第电磁感应定律的推断题综合附详细答案

一、法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==?? 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

电磁感应压轴题

v (m/s) 10 8 6 4 2 M (kg) 0 0.1 0.2. 0.3 0.4 0.5 电磁感应难题训练1 1. 如图所示,两根与水平面成θ=30角的足够长光滑金属导轨平行放置,导轨间距为L =1m ,导轨底端接有阻值为 的电阻R ,导轨的电阻忽略不计。整个装置处于匀强磁场中, 磁场方向垂直于导轨平面斜向上,磁感应强度B =1T 。现有一质量为m =0.2 kg 、电阻为的金属棒用细绳通过光滑滑轮与质量为M =0.5 kg 的物体相连,细绳与导轨平面平行。将金属棒与M 由静止释放,棒沿导轨运动了2 m 后开始做匀速运动。运动过程中,棒与导轨始终保持垂直接触。(取重力加速度g=10m/s 2 )求: (1)金属棒匀速运动时的速度; (2)棒从释放到开始匀速运动的过程中,电阻R 上 产生的焦耳热; (3)若保持某一大小的磁感应强度B 1不变,取不同 质量M 的物块拉动金属棒,测出金属棒相应的 做匀速运动的v 值,得到实验图像如图所示, 请根据图中的数据计算出此时的B 1; (4)改变磁感应强度的大小为B 2,B 2=2B 1,其他条件不变, 请在坐标图上画出相应的v —M 图线,并请说明图线与M 轴的 交点的物理意义。 B θ m R

2. 如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为4Ω的电阻R,导轨电阻忽略不计.在两平行虚线L1、L2间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场,磁场区域的宽度为d=0.5m.导体棒a的质量为ma=0.6kg,电阻Ra=4Ω;导体棒b的质量为mb=0.2kg,电阻Rb=12Ω;它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M、N处同时将它们由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,sin53°=,且不计a、b之间电流的相互作用).求: (1)在整个过程中,a、b两导体棒分别克服安培力做的功; (2)在a穿越磁场的过程中,a、b两导体棒上产生的焦耳热之比; (3)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比; (4)M点和N点之间的距离.

压轴题08 电磁场综合专题(原卷版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题08电磁场综合专题 1.如图所示,真空区域中存在匀强电场与匀强磁场;每个磁场区域的宽度均为0.20m h =,边界水 平,相邻两个区域的距离也为h ,磁感应强度大小 1.0T B =、方向水平且垂直竖直坐标系xoy 平面向里;电场在x 轴下方的整个空间区域中,电场强度的大小 2.5N/C E =、方向竖直向上。质量41.010kg m -=?、电荷量4 4.010C q -=?的带正电小球,从y 轴上的P 点静止释放,P 点与x 轴的距离也为h ;重力加速度g 取10m/s 2,sin 370.6=,cos370.8=,不计小球运动时的电磁辐射。求小球: (1)射出第1区域时的速度大小v (2)射出第2区域时的速度方向与竖直方向之间的夹角θ (3)从开始运动到最低点的时间t 。 2.如图甲所示,平行金属板M 、N 水平放置,板长L =5 m 、板间距离d =0.20m 。在竖直平面内建立xOy 直角坐标系,使x 轴与金属板M 、N 的中线OO ′重合,y 轴紧靠两金属板右端。在y 轴右侧空间存在方向垂直纸面向里、磁感应强度大小B =5.0×10-3T 的匀强磁场,M 、N 板间加随时间t 按正弦规律变化的电压u MN ,如图乙所示,图中T 0未知,两板间电场可看作匀强电场,板外电场可忽略。比荷q m =1.0×107C/kg 、带正电的大量粒子以v 0=1.0×105m/s 的水平速度,从金属板左端沿中线OO ′连续射入电场,进入磁场的带电粒子从y 轴上的 P 、Q (图中未画岀,P 为最高点、Q 为最低点)间离开磁场。在每个粒子通过电场区域的极短时间内,电场可视作恒定不变,忽略粒子重力,求: (1) 进入磁场的带电粒子在电场中运动的时间t 0及在磁场中做圆周运动的最小半径r 0; (2) P 、Q 两点的纵坐标y P 、y Q ; (3) 若粒子到达Q 点的同时有粒子到达P 点,满足此条件的电压变化周期T 0的最大值。

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

物理压轴题电磁场

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半 圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 2.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场, 磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有 电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着, 质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场 的场强大小。 3.(18分)如图所示,在第一象限有一匀强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一匀强磁场,磁场方向与纸面垂直。一质 量为m 、电荷量为-q (q >0)的粒子以平行于x 轴的速度从y 轴上的 P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离 开磁场。粒子在磁场中的运动轨迹与y 轴交于M 点。已知OP=l , OQ=23l 。不计重力。求:⑴M 点与坐标原点O 间的距离;⑵粒子 从P 点运动到M 点所用的时间。 命题点:带电粒子在组合场中的运动——电场中的加速、偏转;磁场中的圆周 运动 07—25.(18分)飞行时间质谱仪可以对气体分子进行分析。 如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照 射产生不同价位的正离子,自a 板小孔进入a 、b 间的加速电 场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制 区,到达探测器。已知元电荷电量为e ,a 、b 板间距为d ,极 板M 、N 的长度和间距均为L 。不计离子重力及进入a 板时的 初速度。 ⑴当a 、b 间的电压为U 1时,在M 、N 间加上适当的电压U 2, 使离子到达探测器。请导出离子的全部飞行时间与比荷K (K =ne /m )的关系式。 ⑵去掉偏转电压U 2,在M 、N 间区域加上垂直于纸面的匀强磁 x

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案 一、法拉第电磁感应定律 1.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求: (1)金属棒匀速运动的速度大小; (2)金属棒与金属导轨间的动摩擦因数μ; (3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。 【答案】(1);(2);(3)mgL2。 【解析】 【分析】 (1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解; (2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解; (3)根据功能关系结合焦耳定律求解。 【详解】 (1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1, 由于 解得:; (2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里; 根据平衡条件可得:mg=μF A, 通过导体棒的电流I′=,则F A=BI′L1, 解得μ=;

(3)金属棒经过efgh 区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动; 根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W 克=mgL 2, 则Q 总=mgL 2, 定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。 【点睛】 对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。 2.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀 速向上运动;当金属杆受到平行于斜面向下大小为 2 F 的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求: (1)金属杆的质量; (2)金属杆在磁场中匀速向上运动时速度的大小。 【答案】(1)4sin F m g α=;(2)2222344tan RE RF v B l B l μα =-。 【解析】 【分析】 【详解】 (1)金属杆在平行于斜面向上大小为F 的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m ,速度为v ,由力的平衡条件可得 sin cos F mg mg BIl αμα=++, 同理可得 sin cos 2 F mg mg BIl αμα+=+, 由闭合电路的欧姆定律可得 E IR =,

2018年高考理综物理电磁场压轴专项练习集(二)

2018年高考理综物理电磁场压轴专项练习集(二) 1.如图所示,平面直角坐标系xOy 中,平行板电容器位于y 轴左侧,其中线O 1O 与x 轴重合,y 轴右侧存在一与y 轴相切的圆形磁场区域,圆心O 2在x 轴上,PQ 为与x 轴垂直的直径的两个端点,磁场方向垂直纸面向外,已知电容器两板长为L ,两板间距为d ,下板接地,上板的电势随时间变化的关系如图所示,磁场区域的半径为 4 3 d .从t=0时刻开始,大量的电荷量为q 、质量为m 的带负电粒子从Q 1以速度v 0沿x 轴方向持续射入电场,粒子在电场中的运动时间与电场的变化周期相等,发现t=0时刻射入的粒子恰由下板边缘飞出,通过磁场后由P 点离开,求: (1)U 0的值; (2)磁场的磁感应强度B 0的值; (3)将磁场的磁感应强度变为2 B ,请确定在磁场中运动时间最长的粒子进入磁场时位置的横坐标.

2.一足够长的条状区域内存在匀强电场和匀强磁场,其在xoy 平面内的截面如图所示:中 间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xoy 平面;磁场的上、下两侧为电场区域,宽度均为,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条形区域边界上的两点,它们的连线与y 轴平行。一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出。不计重力。 (1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点射入时速度的大小; (3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为6 ,求该粒子的比荷及其从M 点运动到N 点的时间。

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案 一、法拉第电磁感应定律 1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。导线的电阻不计,求0至t1时间内 (1)通过电阻R1上的电流大小及方向。 (2)通过电阻R1上的电荷量q。 【答案】(1) 2 02 3 n B r Rt π 电流由b向a通过R1(2) 2 021 3 n B r t Rt π 【解析】【详解】 (1)由法拉第电磁感应定律得感应电动势为 2 202 2 n B r B E n n r t t t π π ?Φ? === ?? 由闭合电路的欧姆定律,得通过R1的电流大小为 2 02 33 n B r E I R Rt π == 由楞次定律知该电流由b向a通过R1。 (2)由 q I t =得在0至t1时间内通过R1的电量为: 2 021 1 3 n B r t q It Rt π == 2.光滑平行的金属导轨MN和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP间接有阻值R=2.0Ω的电阻,其它电阻不计,质量 m=2.0kg的金属杆ab垂直导轨放置,如图(a)所示.用恒力F沿导轨平面向上拉金属杆ab,由静止开始运动,v?t图象如图(b)所示.g=10m/s2,导轨足够长.求: (1)恒力F的大小; (2)金属杆速度为2.0m/s时的加速度大小; (3)根据v?t图象估算在前0.8s内电阻上产生的热量.

电磁感应压轴题(5法突破)(学生版)

电磁感应是高中物理的重要知识板块,对于简单的电磁感应问题,一般可直接利用法拉第电磁感应定律和楞次定律及其相关知识解答。而对于比较复杂的电磁感应问题,运用以下五种物理思想方法,可快速破解,事半功倍。 一、等效法 在电磁感应中,闭合电路中的一部分导体做切割磁感线运动将产生感应电动势,对于一些弯曲导体在磁场中做切割磁感线运动,我们可以把弯曲导体等效为沿垂直运动方向的直导体。对于正弦式感应电流,可以用有效值计算产生的热量。涉及最大功率的问题,有的需要找出等效电路和等效电源。 [例1]如图所示,da、bc为相距为L的平行导轨(导轨电阻不计)。a、b间连接一个定值电阻,阻值为R。长直金属杆MN可以按任意角θ架在平行导轨上,并以速度v匀速滑动(平移),v的方向与da平行,杆MN每单位长度的阻值也为R。整个空间充满匀强磁场,磁感应强度的大小为B,方向垂直纸面向里。求: (1)定值电阻上消耗的电功率最大时,θ的值; (2)杆MN上消耗的电功率最大时,θ的值。(要求写出推导过程) 二、能量守恒法 在电磁感应现象中,安培力做正功,电能转化为其他形式的能;克服安培力做功,其他形式的能转化为电能。若产生的感应电流是恒定的,则可以利用焦耳定律计算电阻中产生的焦耳热;若产生的感应电流是变化的,则可以利用能量守恒定律计算电阻中产生的焦耳热。 [例2]如图所示,位于竖直平面内的正方形平面导线框abcd,边长为L=0.10 m,线框质量为m=0.1 kg,电阻为R=0.5 Ω,其下方有一匀强磁场区域,该区域上、下两边界之间的距离为H(H>L),磁场的磁感应强度B=5 T,方向与线框平面垂直。令线框从距离磁场上边界h=0.3 m处自由下落,已知线框的ab边进入磁场后,cd边到达上边界之前线框已经达到匀速运动状态,取g=10 m/s2,求: (1)线框在匀速运动状态时的速度大小; (2)从线框开始下落到ab边刚刚到达下边界的过程中,线框中产生的热量。 三、极限法

高考物理压轴题电磁场汇编(可编辑修改word版)

φQ R P O y E φA φ B C 24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B。一质量为m,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP=d)射入磁场(不计重力影响)。 A D ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在 Q点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在 P 点垂直射入磁场,故圆弧轨道的圆心在 AP 上,AP 是直径。 设入射粒子的速度为 v1 v2 m1=qBv 1 d / 2 qBd φ Q R/ R 解得:v1 = 2m P D A O/ O ⑵设 O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 由几何关系得:∠OQO/= OO/=R/+R -d 由余弦定理得:(OO/ )2=R2+R/2 - 2RR/ cos 解得:R/ d (2R -d ) = 2[R(1+ cos) -d ] 设入射粒子的速度为 v,由m v R/ =qvB 解出:v = qBd (2R -d ) 2m[R(1+c os) -d] 24.(17 分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场, 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有电 荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时, 速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d。接着,质点 O x 进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹 角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径r=d sin=mv ,得v= qBd sin; qB m v 2

相关文档
最新文档