微波烧结原理与研究现状

微波烧结原理与研究现状
微波烧结原理与研究现状

基金项目:湖南省纳米研究中心资助和国家“863”国际合作重大项目资助。

作者简介:范景莲,女,35岁,教授,主要从事纳米超细材料的研究制备及钨基合金超细粉末的注射成形。在国内外知名刊物和国际学术会议发表相关文章近60篇,其中被SCI 、EI 检索20余篇。

微波烧结原理与研究现状

范景莲,黄伯云,刘军,吴恩熙

(中南大学粉末冶金国家重点实验室,湖南长沙,410083)

摘 要:介绍了微波烧结原理与特点以及微波烧结技术在金属材料领域和精细陶瓷领域中的

应用所取的研究成果。同时也指出了目前微波烧结存在的问题和有待进一步研究和应用的方向。

关键词:微波烧结;原理;设备中图分类号:TF12415 文献标识码:A 文章编号:1006-6543(2004)01-0029-05

PRINCIPL ES AND STA TUS OF M ICROWAV E SIN TERIN G

FAN Jing 2lian ,HUANG B ai 2yun ,L IU Jun ,WU E n 2xi

(National K ey Laboratory for Powder Metallurgy ,Central S outh University ,Changsha ,410083,China )

Abstract :The principles and use of microwave sintering in metallurgy and ceramics indastry are introduced.The existing problems to be solued are pointed out.K ey w ords :microwave sintering ;principle ;equipment

微波烧结概念由Tinga 等人于20世纪50年代提出[1],但直至80年代才受到重视。80年代中后期微波烧结技术被引入到材料科学领域,逐渐发展成为一种新型的粉末冶金快速烧结技术[2]。进入90年代,该技术向着基础研究、实用化和工业化发展,尤其在陶瓷材料领域成了研究热点[3]。目前,我国学者对微波烧结陶瓷的研究主要集中于结构陶瓷,而国外许多大学、研究机构及大公司同时开展了结构陶瓷和电子陶瓷等方面的微波烧结研究[4-6]。与常规烧结相比,微波烧结具有烧结速度快、高效节能以及改善材料组织、提高材料性能等一系列优点。21世纪随着人们对纳米材料研究的重视,该技术在制备纳米块体金属材料和纳米陶瓷方面具有很大的潜力[7],该技术被誉为“21世纪新一代烧结技术”。

1 微波烧结设备的结构原理及特点

微波是一种高频电磁波,其频率范围为013~

300GHz 。但在微波烧结技术中使用的频率主要为2145GHz ,Sutton 对该频率波段的微波烧结进行详

细研究[4]。目前也有28GHz [8]、60GHz [9]其至更

高频率的研究报道。微波烧结是利用微波电磁场中陶瓷材料的介质损耗使材料整体加热至烧结温度而实现烧结和致密化。在微波电磁场作用下,陶瓷材料会产生一系列的介质极化,如电子极化、原子极化、偶极子转向极化和界面极化等。参加极化的微观粒子种类不同,建立或消除极化的时间周期也不一样。由于微波电磁场的频率很高,使材料内部的介质极化过程无法跟随外电场的变化,极化强度矢量P 总是滞后于电场E ,导致产生与电场同相的电流,从而构成材料内部的耗散,在微波波段,主要是偶极子极化和界面极化产生的吸收电流构成材料的介质耗散[10]。在绝热环境下,当忽略材料在加热过程中的潜能(如反应热、相变热等)变化时,单位体积材料在微波场作用下的升温速率为:

d T /d t =2πf ε0

ε’E 2

/C p ρ第14卷 第1期2004年2月 粉末冶金工业POWDER METALL URG Y IN D USTR Y

Vol.14No.1

Feb.2004

式中f 为微波工作频率;ε’为材料介电损耗;ε0为空间介电常数;E 为微波电场强度;C p 为材料热容;ρ为材料密度。

上式给出了微波烧结陶瓷材料时微波炉功率与微波腔内场强的关系以及微波场强的大小对加热速度的影响。微波烧结的功率决定了微波烧结场场强的大小,升温速率与烧结场场强、材料热容和材料密度密切相关。这对进行微波炉设计和进行试样烧结时对实验参数的设计提供了一个基本依据。

与常规烧结相比,微波烧结具有如下特点:

(1)烧结温度大幅度降低,与常规烧结相比,最大降温幅度可达500℃左右。

(2)比常规烧结节能70%~90%,降低烧结能耗费用。由于微波烧结的时间大大缩短,尤其对一些陶瓷材料烧结过程从过去的几天甚至几周降低到用微波烧结的几个小时甚至几分钟,大大得高了能源的利用效率。

(3)安全无污染。微波烧结的快速烧结特点使得在烧结过程中作为烧结气氛的气体的使用量大大降低,这不仅降低了成本,也使烧结过程中废气、废热的排放量得到降低。

(4)使用微波法快速升温和致密化可以抑制晶粒组织长大,从而制备纳米粉末、超细或纳米块体材料。以非晶硅和碳混合料为原料,采用微波烧结法可以制备粒度为20~30nm 的β2SiC 粉末,而用普通方法时,制备的粉末粒度为50~450nm 。采用微波烧结制备的WC 2Co 硬质合金,其晶粒粒度可降低到100nm 左右[11]。

(5)烧结时间缩短,相对于传统的辐射加热过程致密化速度加快,微波烧结是依靠材料本身吸收微波能转化为材料内部分子的动能和势能,材料内外同时均匀加热,这样材料内部热应力可以减少到最小,其次在微波电磁能作用下,材料内部分子或离子的动能增加,使烧结活化能降低,扩散系数提高,可以进行低温快速烧结,使细粉来不及长大就被烧结。

(6)能实现空间选择性烧结。对于多相混合材料,由于不同材料的介电损耗不同,产生的耗散功率不同,热效应也不同,可以利用这点来对复合材料进行选择性烧结,研究新的材料产品和获得更佳材料性能[12-13]。

微波烧结可降低烧结活化能、增强扩散动力和扩散速率,从而实现迅速烧结。高纯Al 2O 3常规烧结的活化能为575kJ /mol ,而在28GHz 的微波场下

对高纯Al 2O 3进行微波烧结所需的活化能为160kJ /mol ,当微波频率进一步提高到82GHz 时,所需活化能降低到100kJ /mol 。与此同时,Janney [14]采用失踪原子研究比较采用微波烧结和常规烧结在O 18和Al 2O 3单晶中的扩散速率,结果发现在微波场内部的O 18的扩散速率远大于在常规加热试样中的速率。在以上研究的基础上,Janney 认为微波增强扩散机制与以下3个因素有关:(1)自由表面的影响;(2)晶界与微波耦合的影响;(3)晶体内部缺陷与微波耦合的影响。

2 微波烧结设备的结构与主要工艺参

数对制品的影响

211 微波烧结设备结构

微波烧结设备主要由微波发生器、谐振腔(加热腔体)、保温系统、温度控制系统组成,如图1所示

图1 微波烧结设备结构图

目前所使用的加热腔有谐振式和非谐振式两种,谐振式加热腔又有单模谐振腔和多模谐振腔之分。单模谐振腔的特点是场强集中,适合烧结介质损耗因子较小的材料。多模谐振腔的特点是结构简单,适用各种加热负载,但由于腔内存在多种谐振模式,加热均匀性差,而且很难精确分析,对不同的材料进行微波烧结需要不断通过试验调节烧结炉的参数。为改善多模谐振腔的均匀性,一般采用两种方式:一种是在烧结过程中不断移动试样,使试样各部分所受到的平均电场强度均匀;另一种是在微波入口处添加模式搅拌器搅乱电场的分布。在多模腔中获得大均匀场的方法是通过对场形的设计来获得大的均匀场烧结区域。

微波烧结过程中由于升温速度很快和微波场强不均匀很容易导致在样品内部产生温度梯度,从而导致烧结产品出现裂纹。解决这种问题的一种方法是在样品周围加入保温层。它可以起到减小热损

?

03? 粉末冶金工业 第14卷

失、预热低损耗材料和防止加热腔中发生微波打火现象等多种作用。保温材料的选择要求具有不吸收或少吸收微波能、绝缘性好、耐热、高温下不与被烧结材料发生反应等特点。常用的保温材料为Al 2O 3和ZrO 2等,它们对微波有很好的透过深度,不会影响被烧结材料对微波能的吸收。保温层形式主要有埋粉式和篮框式,为防止保温材料与被烧结材料发生粘连,还应进行隔离层设计,通常是在保温层与烧结体之间夹入一层烧结体材料的介质。保温层的结构设计对微波烧结有较大的影响。在高温下通过坯体表面的热传导和辐射方式导致的热量散失较为严重,在设计中应尽量减小坯体与保温层之间的间隔,加大保温层的厚度,这样有利于改善加热的均匀性。例如在微波烧结ZrO 2时,由于ZrO 2导热性差和在临界温度点会产生热失控现象等,坯体容易产生局部热斑进而导致坯体开裂。文献[15]报道了Janney 所设计的保温层如图2所示。此设计避免了在烧结过程中ZrO 2试样局部热斑的产生,在2145GHz 下烧结出的样品可以与28GHz 下烧结的样品相比。图3是具有保温结构的微波烧结腔体的整体示意图。图中的SiC 棒起到了预热ZrO 2坯体和改善加热均匀性的双重效果。在低温阶段吸收了大部分的微波能量,然后通过热传导和热辐射加热ZrO 2坯体,避免了ZrO 2坯体在低温阶段局部热斑的形成,当温度升高到整个坯体都对微波具有很强耦合能力时,微波能基本上被坯体吸收

图2 ZrO 2

陶瓷保温结构设计示意图

图3 具有保温结构的微波烧结腔体图

采用辅助加热可以对烧结工艺进一步改进。这种方法又分为两种方法,一是将材料预先加热到临界温度后然后将陶瓷材料送入微波烧结炉中继续加热;另外一种方法是在微波烧结炉中加入辅助加热系统,材料在临界温度点以下主要是利用辅助加热。

温度精确控制对微波烧结过程非常重要。目前

主要的温度控制手段包括热电偶测温、光学高温计

测温、红外光纤测温。热电偶测温的优点是可以从室温开始测量,可以直接测量烧结试样内部的温度,而且便于和温度控制仪表组成自动控制系统。但是在磁场中热电偶自身会发热引起测量温度不精确,同时热电偶还会影响微波场的均匀性、引起烧结腔体发生电弧等缺陷。光学高温计在测量很高温度时有一定优势,但是它在温度低于600℃时不能有效地测量,而且不利于组成自动控制温度测量系统。现在大多数微波烧结炉使用红外光纤测温装置。212 微波烧结过程中的主要工艺参数

微波烧结的一系列优点,使微波烧结技术广泛地应用于烧结许多精细陶瓷。目前已可采用微波炉烧结技术成功地制备出SiO 2、Fe 3O 4、ZrO 2、Al 2O 3、SiC 、Si 3N 4、Al 2O 32TiC 、BC 、Y 2O 32ZrO 2和TiO 2等烧结体[15,16]。影响微波烧地效果的因素主要有:所使用的微波频率,烧结时间,烧结升温速度,材料本身的介电损耗特性。

使用高的微波频率对烧结过程有两方面的影响:可以改善微波烧结的均匀性,加快烧结过程。提高频率对改善微波加热的均匀性有一定的作用。一方面由于具有更高频率微波的波长更短,在谐振腔内更容易得到更均匀的微波场,从而使得微波加热的均匀性得以提高。文献[17]报道了在一非谐振腔中采用2145GHz 和28GHz 两种频率对ZrO 2进行微波烧结的结果。在2145GHz 频率下ZrO 2试样发生了开裂,而在28GHz 下ZrO 2试样没有发生开裂,这就证明了采用高频率的微波更容易获得高的成品率。另一方面,使用的微波频率越高,在单位时间内样品吸收的能量越多,烧结致密化速度越快。

?

13?第1期 范景莲等:微波烧结原理与研究现状

烧结时间和加热速度对烧结体的组织性能有很大的影响。高温快烧和低温慢烧均会造成组织晶粒尺寸不均匀,孔隙尺寸过大等现象。过快的加热速度会在材料内部形成很大的温度梯度,产生的热应力过大会导致材料开裂。

材料本身的特性也对微波烧结有很大的影响。微波烧结是利用材料对微波的吸收转化为材料内部的热量而使材料升温,因而存在材料吸收微波能力的问题。烧结工艺与具体的微波装置、每一种材料本身特性有关。对于介电损耗高、介电特性也不随温度发生剧烈变化的陶瓷材料,微波烧结的加热过程比较稳定,加热过程容易控制。但是大多数陶瓷材料存在一个临界温度点,在室温至临界温度点以下介电损耗较低,升温较困难。一旦材料温度高于临界温度,材料的介电损耗急剧增加,升温就变得十分迅速甚至发生局部烧熔现象。微波烧结氧化铝精细陶瓷实验表明[14],氧化铝陶瓷在室温下的介电损耗ε″=5×10-5,而在1500℃时为ε″=0.1。

3 微波烧结制备材料的研究进展

M.C.Patterson 研究了在2145GHz 频率下对Si 3N 4刀具材料进行的微波烧结。每炉最多烧结90

件,最大质量为1kg ,最终烧结密度为95%~97%,平均力学性能均优于常规烧结刀具。

中国科学院冶金研究所提出了汇聚天线激励介质多模谐振腔,将微波能量均匀地约束在烧结区域内从而实现高场能量密度与场均匀分布相统一,在2145GHz 频率下微波烧结可以制备的坯件直径达96mm (发动机增压转子),试样不开裂、组织均匀、最终烧结密度为理论密度的97%。它是到目前为止报道的最复杂的微波烧结陶瓷部件。

由于金属是导体,对微波具有反射作用,一般情况下微波烧结不能用来烧结金属制品,但近年来通过对微波炉进一步改进和对微波烧结工艺进行调整,美国宾夕法尼亚大学的研究者[18]研究并发现了微波烧结金属制品的工艺。研究结果表明,微波烧结能够改进粉末金属制品的性能,能够生产形状复杂的零件而且生产成本较低。实际上任何金属粉末生坯在微波炉中都能在10-30nim 内完成烧结。该研究所研究了微波烧结产业制备铁、钢、铜、铅、镍、钴、钼、钨、碳化钨和锡环状、管状和齿轮制品,其比传统的制品有更高的力学性能,显微组织的均匀

性好、气孔率很少。

4 存在问题

微波烧结设备是阻碍微波烧结技术工业化的一个很主要的因素,对微波烧结机理的充分认识有助

于解决这一问题。目前微波烧结作为工业化应用还存在一系列问题尚待解决,如更大的均匀微波场的获得、低介电损耗材料在室温至临界温度点之间的加热,材料微波参数的获得等问题。

411 足够大的微波均匀场区域是保证能够烧结合

格样品的前提条件

由于Al 2O 3,ZrO 2的介电损耗低,为了实现均匀烧结,需要有较大的均匀烧结场区。由于微波本身的特性,在微波炉腔体中的场强往往不均匀,通过合理的设计可以使得在一定范围内微波场均匀,但是目前设计出来的微波烧结炉的均匀场区域(有效烧结区域)还是很小。同时由于微波烧结过程中样品的加热速度非常迅速,不均匀的微波场将导致在烧结样品内部不同的部位获得不同的微波能量,从而导致在样品内部出现很大的温度梯度,最终会导致样品因为温度应力而开裂。如在烧结氧化铝陶瓷过程中陶瓷内部的温度差超过10℃就可能导致烧结样品开裂。国内研究人员通过对微波场的设计获得了较大微波烧结场区域,它们主要有混合场、多模腔场方案、模式互补场。单模腔场的均匀场区域小于<21;对于多模腔场,当腔体尺寸为500mm ×400mm ×400mm 时,均匀场区域可以达到<50;对于混合场,其均匀场区域可以达到<100;另外还存在模式互补场方案,它需要同时采用两只频率相近的磁控管,这样可以获得大于<300的均匀场区域。尽管如此,为实现工业化中的应用,在获得更大空间区域均匀性更好的烧结场方面还需要进一步的研究。412 介电特性随温度骤变材料的烧结

微波与材料的交互作用形式有3种,即穿透、反射和吸收。在这3种作用形式中只有最后一种作用形式才能使材料发生介质损耗而将微波能量转换为烧结样品的热能。材料与微波的作用形式与它在电场的介质特性有关。对于实际有损耗的介质来说,其介质常数具有复数形式,实数部分称为介电常数,虚数部分称为损耗因子。通常用损耗正切值(损耗因子与介电常数之比)来表示材料与微波的耦合能力,损耗正切值越大,材料与微波的耦合能力就越

?

23? 粉末冶金工业 第14卷

强。对于大多数的氧化物陶瓷材料如SiO2、Al2O3等,它们在室温下对微波是透波的,几乎不吸收微波能量,只有达到某一临界温度后,它们的损耗正切值才变得很大。对于这些材料的微波烧结,通常采用两种方法来进行;其一,加入一些微波吸收材料如SiC、Si3N4等作为助烧剂,使它们在室温时也有很强的微波耦合能力,达到快速烧结的效果。微波吸收材料的选择不仅要起到辅助烧结的作用,还应起到改善烧结体性能的作用。这使得使用该方法时受到很大的限制。另一种办法是采用常规烧结的方法使粉末生坯预热到一定的温度,此时材料已具有很强的微波吸收能力,然后再进行微波加热烧结。在烧结温度不是很高的情况下,还可以采用二次加热技术。国外的专利[19]还介绍了通过两套加热系统进行烧结的微波烧结炉子,其中的电阻加热系统在室温至临界温度以下可作为辅助加热系统。但是这种设计使得整个微波烧结炉结构复杂,而且造价高昂。413 微波烧结参数的获得

对微波场而言,不同材料的介质损耗系数是不一样的,即使是同一材料在不同的温度条件的介质损耗系数也不一样。同时不同类型的微波烧结炉由于功率参数不同、场形设计方式不同以及烧结腔体保温性能的差异、烧结材质的差异等都会导致微波烧结参数出现差异,这是目前微波烧结设备还没有应用到实际生产中的主要原因,这些原因都可导致微波烧结设备在设计和使用过程中出现问题,阻碍微波烧结在工业中的应用。

5 结束语

微波烧结技术的研究与工业化应用尽管还处于发展早期,但它展现出了常规烧结技术无法比拟的优点,预示了它具有广泛的发展前景。随着微波烧结设备朝着更高功率密度、自动化、智能化方向的发展,微波烧结技术必将成为最具应用前景的新一代烧结技术。

参考文献

[1] Ting W R&W A G Academic Process,New Y ork,

19681

[2] HU Xiao-li,CHEN K ai,YIN Hong.Microwave sin2

tering—new technology for ceramic sintering[J].China

Ceramics,1995,31(1):29-32(Ch).

[3] 朱文迅,吴一平等1微波烧结技术及其进展1材料科

学与工程,1998,16(2):61-641

[4] Sutton W H.Am Cerma S oc Bull,1989,68(2):376-

3811

[5] Sheppared L M.Am Cerma S oc Bull.,1988,67(10):

1656-1662.

[6] Samuei J,Brandon J R.J Mater Sci,1992,27(12):

3259-3262.

[7] 彭金辉1微波烧结纳米材料1云南冶金,1997,26(3):

50-521

[8] Berta Swain.Advanced Materials and Process Inc[J].

Metal Progress,1988,24(15):82-851

[9] Meek T T et al.Ceram Eng Sci Proc,1987,8:7-12.

[10] 周健,程吉平,付文斌等12450MHz/5kW改进的单模

腔型微波烧结系统研制[J]1武汉工业大学学报,

1999,21(4):4-71

[11] 周健,程吉平,袁润章等1微波烧结WC-Co细晶硬

质合金的工艺与性能[J]1中国有色金属学报,1999,

9(3):464-468.

[12] 胡晓力,刘阳,尹虹等1微波烧结Al2O3-TiC复合材

料的研究[J]1中国陶瓷工业,2002,9(3):1-51 [13] Black R D,Meek T T,Microwave processed composite

materials[J].J Mater Sci L et al,1986,5:1097-

1098.

[14] Janney M A,K imvey H D,Allen W R,et al,En2

hanced diffusion in sapphire during microwave heating,

J of Materials Science,1997,32,1347-1355. [15] 朱文玄,吴一平,徐正达等1微波烧结技术及其发展,

材料科学与工程,1998,16(2):61-64

[16] Teiichi K imura,Hirotsugu Takizawa,Kyota Vheda,et

al.Microwave synthesis of yttrium iron garnet powder,

J Am Ceram S oc,1998,81(11):2961-29641 [17] 丁明桐,杜先智,陈凡等1Y-ZrO2稀土增韧陶瓷的

微波烧结[J]1安徽师范大学学报,2000,23(4):344-

3461

[18] Anklekar R M,Agrawal D K and Roy R,Microwave

sintering and mechanical Properties of PM copper steel

[J]1Powder Metallurgy,2001,44(4):355-3621 [19] Dennis,Mahlon Denton,Roy,et al,Method and appa2

ratus for transporting green work pieces through a mi2

crowave sintering system,US Patent,6,066,290,

19991

?

3

3

?

第1期 范景莲等:微波烧结原理与研究现状

微波烧结技术

微波设备烧结技术的进展及未来展望 地点:微朗科技微波实验室 单位:株洲市微朗科技有限公司 时间:2013-01-10 声明:本研究成果归株洲市微朗科技有限公司所有,仿冒必究. 材料的微波烧结开始于20世纪60年代中期,W.R.Tinga首先提出了陶瓷材料的微波烧结技术;到20世纪70年代中期,法国的J.C.Badot和A.J.Berteand开始对微波烧结技术进行系统研究。20世纪80年代以后,各种高性能的陶瓷和金属材料得到了广泛应用,相应的制备技术也成了人们关注的焦点,微波烧结以其特有的节能、省时的优点,得到了美国、日本、加拿大、英国、德国等发达国家的政府、工业界、学术界的广泛重视,我国也于1988年将其纳入“863”计划。在此期间,主要探索和研究了微波理论、微波烧结装置系统优化设计和材料烧结工艺、材料介电参数测试,材料与微波交互作用机制以及电磁场和温度场计算机数值模拟等,烧结了许多不同类型的材料。20世纪90年代后期,微波烧结已进入产业化阶段,美国、加拿大、德国等发达国家开始小批量生产陶瓷产品。其中,美国已具有生产微波连续烧结设备的能力。 1、微波烧结的技术原理 微波烧结是利用微波加热来对材料进行烧结。它同传统的加热方式不同。传统的加热是依靠发热体将热能通过对流、传导或辐射方式传递至被加热物而使其达到某一温度,热量

从外向内传递,烧结时间长,也很能得到细晶。而微波烧结则是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,材料的介质损耗使其材料整体加热至烧结温度而实现致密化的方法。 1.1 材料中的电磁能量耗散 材料对微波的吸收是通过与微波电场或磁场耦合,将微波能转化热能来实现的。黄向东等利用麦克斯韦电磁理论,分析了微波与物质的相互作用机理,指出介质对微波的吸收源于介质对微波的电导损耗和极化损耗,且高温下电导损耗将占主要地位。在导电材料中,电磁能量损耗以电导损耗为主。而在介电材料(如陶瓷)中,由于大量的空间电荷能形成的电偶极子产生取向极化,且相界面堆积的电荷产生界面极化,在交变电场中,其极化响应会明显落后于迅速变化的外电场,导致极化弛豫。此过程中微观粒子之间的能量交换,在宏观上就表现为能量损耗。 1.2 微波促进材料烧结的机制 研究结果表明,微波辐射会促进致密化,促进晶粒生长,加快化学反应等效应。因为在烧结中,微波不仅仅只是作为一种加热能源,微波烧结本身也是一种活化烧结过程。M. A.Janny等首先对微波促进结构的现象进行了分析,测定了高纯Al2O3烧结过程中的表观活化能Ea,发现微波烧结中Ea仅为170kj/mol,而在常规电阻加热烧结中Ea=575kj/mo l,由此可推测微波促进了原子的扩散。M.A.Janny等进一步用18O示踪法测量了Al2O3单晶的扩散过程,也证明微波加热条件下扩散系数高于常规加热时的扩散系数。S.A.Freem an等的实验结果表明,微波场具有增强离子电导的效应。认为高频电场能促进晶粒表层带电空位的迁移,从而使晶粒产生类似于扩散蠕动的塑性变形,从而促进了烧结的进行。Birnboin等分析了微波场在2个相互接触的介电球颗粒间的分布,发现在烧结颈形成区域,电场被聚焦,颈区域内电场强度大约是所加外场的10倍,而颈区空隙中的场强则是外场的

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势xxxx xxx xxxxxxxxx 先进制造技术不仅是衡量一个国家科技进展水平的重要标志,也是国际间科技竞争的重点。我国正处于工业化经济进展的关键时期,制造技术是我们的薄弱环节。只有跟上进展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,,进一步推进国企改革,推动建立强大的企业集团。推进技术创新,推动大型企业尽快建立技术开发中心,广泛吸引人才,在重大技术创新项目中实行产学研结合,才能尽快缩小同发达国家的差距,才能在猛烈的市场竞争中立于不败之地。本文将详细介绍先进制造技术的含义、特点以及在我国的进展状况和进展趋势。 1 先进制造技术的含义和特点 1.1 含义 先进制造技术(AMT)是以人为主体,以运算机技术为支柱,以提升综合效益为目的,是传统制造业持续地吸取机械、信息、材料、能源、环保等高新技术及现代系统治理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测、治理及售后服务的制造全过程,实现优质、高效、低耗、清洁、灵敏制造,并取得理想技术经济成效的前沿制造技术的总称。 1.2 先进制造技术的特点 1)是面向工业应用的技术先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产预备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。 2)是驾驭生产过程的系统工程先进制造技术专门强调运算机技术、信息技术、传感技术、自动化技术、新材料技术和现代系统治理技术在产品设计、制造和生产组织治理、销售及售后服务等方面的应用。它要持续吸取各种高新技术成果与传统制造技术相结合,使制造技术成为能驾驭生产过程的物质流、能量流和信息流的系统工程。 3)是面向全球竞争的技术随着全球市场的形成,使得市场竞争变得越来越猛烈,先进制造技术正是为适应这种猛烈的市场竞争而显现的。因

微波技术原理简述

微波原理 微波技术是一门需要高度实验技能的专业技术知识,微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题,微波是一门理论与实践密切结合的科技知识。 微波是一种频率非常高的电磁波。微波包括的波长范围没有明确的界限,一般是指分米波、厘米波和毫米波三个波段,也就是波长从1mm到1m左右的电磁波。由于微波的频率很高,所以也叫超高频电磁波。目前国内只有915MHz和2450MHz 被广泛使用。 微波是电磁波,它具有电磁波的诸如反射、透射干涉、衍射、偏振以及伴随着电磁波能量传输等波动特性,这就决定了微波的产生、传输、放大、辐射等问题都不同于普通的无线电、交流电。微波系统没有导线式电路,通常应用所谓“场”的概念来分析系统内电磁波的结构,并采用功率、频率、阻抗、驻波等作为微波测量的基本量。 l 微波的穿透深度 ①、渗透深度(穿透深度)当微波进入物料时,物料表面的能量密度是最大的,随着微 波向物料内部的渗透,其能量呈指数衰减,同时微波的能量释放给了物料。渗透深度可表示物料对微波能的衰减能力的大小。一般它有两种定义: ②渗透深度为微波功率从物料表面减至表面值的1/e(36.8%)时的距离,用DE表示,e 为自然对数底值。 DE=λ0/π gδ式中λ0--------自由空间波长; ε---------介电常数; tgδ-------介质损耗。 ③微波功率从物料表面衰减到表面值的1/2时的距离,即所谓半功率渗透深度D1/2,其表 达式为 渗透深度随波长的增大而变化,它与频率有关,频率越高,波长越短,其穿透力也越弱。 微波在空气中的渗透深度:2450MHz为12.2cm;915Mhz为33.3cm。 特别注意提醒:微波进入物料后,物料吸收微波能并将其转变为热能,微波的场强和功率就不断地被衰减,即微波透入物料后将进入衰减状态。不同的物料对微波能的吸收衰减能力是不同的,这随物料的介电特性而定。衰减状态决定着微波对介质的穿透能力。 l 微波的热效率 工业微波设备在生产工作中的热效率计算方法,行业内多数企业几乎依据1Kw的微波输出功率在1h时间内烘干1kg的水来笼统计算。这样的计算结果在设备工作过程中给客户和生产企业带来很多莫名的误区,从而给工业微波造成不必要的负面影响。 假设微波设备的输出功率为P0(kw),那么微波设备在1h的工作过程中,所产生的热效率应进行如下的估算: 式中:η微波加热效率,其值的大小与加热器损耗和负荷匹配系数确定,一般做到0.7~0.9;

用微波炉谨慎加热几种食物

用微波炉谨慎加热几种食物 微波炉是一种用微波加热食品的现代化烹调灶具,它利用电磁波原理来进行加热,不但能够快速加热,而且能够很大程度上地保存营养素,目前被广泛使用于大多数食材的加热。但微波炉在使用过程中,不可避免会有一些危险产生。据MSNJApAN报道,为了避免危险,这几类物品应当尽量避免使用微波炉来加热。 1、火腿肠及咸鳕鱼子谨慎放入 像火腿肠、鳕鱼子等一部分使用外壳或者膜来进行包装的食材,最好不要直接放入微波炉中加热。因为在食物加热的过程中会产生蒸汽,而包装好的食材蒸汽无处可散,非常容易导致膜及食物破裂,甚至可能导致容器的破裂。这类型的食物在使用微波炉加热的过程中,应当注意去掉外壳,或是在膜上割一刀或戳几个洞,以便让蒸汽散发出去,避开危险。 2、塑料容器谨慎放入 塑料容器分为可放入微波炉加热类型和不可放入加热类型,如果是用来塑料容器,在加热前一定要确认该种塑料是否可放入微波炉,以免造成塑料变形、融化、漏洞等,甚至导致塑料中的有毒有害物质进入食物中。 3、金、铝制品不要放入 铝合金制成的容器、金属瓶子、罐头等金属类容器在加热状态下容易出现燃烧、火花等现象,这是非常危险的现象,因为完全有可能造成微波炉燃烧、爆炸等危险,因此,金属类制品不应

当放入微波炉中加热。 4、纸制品不要放入 有不少食材是用纸制品来进行包装的,在微波炉中加热过程中,纸完全有可能受热燃烧起来,同样可能造成燃烧、爆炸等危险,因此,不管是用纸壳还是用报纸包裹的东西,在放入微波炉之前都应当先将纸去掉,放入正确的容器中再加热。 5、鸡蛋要谨慎放入 鸡蛋也和有外壳、有膜的食物一样,在加热过程中有蒸汽产生,很容易出现爆炸等危险现象,因此在用微波炉加热鸡蛋时,应当避免直接放入整个的鸡蛋。如果是用微波炉加热鸡蛋羹等食物,也要注意在碗上加盖留孔,以免鸡蛋羹可能炸得一整个微波炉内壁到处都是。 6、液体食品谨慎放入 液体在放入微波炉中加热的过程中,有可能出现突然沸腾并爆开的“突沸”现象,高温液体四处喷洒,很有可能烫到人,因此在加热液体食品时要注意不要用高温加热太久,或尽量避开使用微波炉加热液体食品。 7、注意清洁微波炉内部的污垢 在加热一段时间过后,微波炉内壁可能附着一部分加热食品的过程中爆出来的油渍或污垢,一旦放置不管任其残留在微波炉中,在反反复复的加热过程中,这些污垢很有可能会碳化并出现放电现象,造成危险,因此,在每一次使用完微波炉后应当将微波炉的内壁擦洗干净,或定时清洁微波炉的内壁。

我国的先进制造技术研究现状及发展趋势

中国先进制造技术的发展趋势 随着科学技术的进步以及新的管理思想、管理模式和生产模式的引进,近年来,先进制造技术在机械加工领域中的应用越来越广泛,越来越深入。机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。改革开放以来,随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中,我国制造科学技术有日新月异的变化和发展,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。 一先进制造技术概述 (1)先进制造技术的体系结构及分类 先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。 三个层次:一是优质、高效、低耗、清洁的基础制造技术。这一层次的技术是先进制造技术的核心,主要由生产中大量采用的铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺优化而成。二是新型的制造单元技术。这是制造技术与高技术结合而成的崭新制造技术。如制造业自动化单元技术、极限加工技术、质量与可靠性技术、新材料成型与加工技术、激光与高密度能源加工技术、清洁生产技术等。三是先进制造的集成技术。这是运用信息技术和系统管理技术,对上述两个层次进行技术集成的结果,系统驾驭生产过程中的物质流、能量流和信息流。如成组技术(CT)、系统集成技术(SIT)、独立制造岛(AMI)、计算机集成制造系统(CIMS)等。 四个大类:一是现代设计技术,是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术等;二是先进制造工艺技术,主要包括精密和超精密加工技术、精密成型技术、特种加工技术、表而改性、制模和涂层技术;三是制造自动化技术,其中包括数控技术、工业机器人技术、柔性制造技术、计算机集成制造技术、传感技术、自动检测及信号识别技术和过程设备工况监测与控制技术等;四是系统管理技术,包括工程管理、质量管理、管理信息系统等,以及现代制造模式(如精益生产、CIMS、敏捷制造、智能制造等)、集成化的管理技术、企业组织结构与虚拟公司等生产组织方法。 (2)先进制造技术的特点 先进性:作为先进技术的基础——制造技术,必须是经过优化的先进工艺。因此,先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺。它从传统工艺发展起来,并与新技术实现了局部或系统集成。 通用性:先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、维修服务、甚至回收再生的整个过程。 系统性:随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术能驾驭生产过程的物质流、能源流和信息流的系统工程。 集成性:先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至

微波原理与技术论文

摘要:微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题。微波是一门理论与实践密切结合的一门知识,微波技术理论的出发点是麦克斯维方程组,通过解决微波在传输、处理过程中的遵循的原理,逐渐使微波技术发展成为一门很完整的学科,并在工程上有日新月异的应用。在加热技术上形成一种全新的观念,在通信方面给信息领域带来一场空前的革命。关键词:微波技术;微波加热;通信;电磁波;天线 Abstract The theoretical basis of microwave technique is the classical electromagnetic theory, the goal is to solve the practical problems in microwave engineering. Microwave is a knowledge of a close combination of theory and practice, the theoretical starting point of microwave technology is the Max equations, solved by microwave in transmission, processing process follow the principle, the development of microwave technology has become a very complete discipline, and change rapidly used in engineering. The formation of a new idea in the heating technology in communication, to the information industry brought an unprecedented revolution. 1.引言 随着科学技术的迅速发展和生产工艺的不断改进,微波技术已在许多工业生产领域得到应用。在国内,微波技术已应用于玻璃纤维、化工产品、保温材料、木材等的干燥,食品、医疗的灭菌、干燥和焙烤。并在医疗、环保、农业等领域也有所应用。微波技术的应用,提高了生产效率和产品质量,降低了能耗和环境污染,减轻了人的劳动强度,提高了生产效益。在国际上,许多工业发达国家都对微波的工业应用非常重视,把微波技术作为改进生产工艺和提高产品质量的重要手段。 2.微波的特性 一是似光性。微波波长非常小,当微波照射到某些物体上时,将产生显著的反射和折射,就和光线的反、折射一样。同时微波传播的特性也和几何光学相似,能像光线一样地直线传播和容易集中,即具有似光性。这样利用微波就可以获得方向性好、体积小的天线设备,用于接收地面上或宇宙空间中各种物体反射回来的微弱信号,从而确定该物体的方位和距离,这就是雷达导航技术的基础。 二是穿透性。微波照射于介质物体时,能深入该物体内部的特性称为穿透性。例如微波是射频波谱中惟一能穿透电离层的电磁波(光波除外)。因而成为人类外层空间的“宇宙窗口”;微波能穿透生物体,成为医学透热疗法的重要手段;

陶瓷材料的微波烧结特性及应用

第24卷 第5期 2002年5月武 汉 理 工 大 学 学 报JOURNAL OF W UHAN UN I VERSI T Y OF TECHNOLOG Y V o l .24 N o.5 M ay .2002文章编号:167124431(2002)0520043204 陶瓷材料的微波烧结特性及应用3 王 念 周 健(武汉理工大学)  摘 要: 介绍了微波烧结陶瓷材料的应用历史、基本原理,分析了陶瓷材料的微波烧结特性和微波烧结在氧化物陶瓷、非氧化物陶瓷及透明陶瓷方面的应用,指出了应用中存在的一些亟待解决的问题,展望了微波烧结陶瓷材料的应用前景。 关键词: 微波加热; 微波烧结; 陶瓷材料 中图分类号: TQ 17012文献标识码: A 收稿日期:2001212208. 作者简介:王 念(19772),男,硕士生;武汉,武汉理工大学材料复合新技术国家重点实验室(430070).3武汉市晨光计划(20005004034)1 微波是一种电磁波,它遵循光的有关定律,可以被物质传递、吸收或反射,同时还能透过各种气体,很方便地实现在各种气氛保护下的微波加热及有气相参与的合成反应[1]。材料在微波场中可简要地分为下列三种类型[2]:(1)微波透明型材料:主要是低损耗绝缘体,如大多数高分子材料及部分非金属材料,可使微波部分反射及部分穿透,很少吸收微波。这类材料可以长期处于微波场中而不发热,可用作加热腔体内的透波材料。(2)全反射微波材料:主要是导电性能良好的金属材料,这些材料对微波的反射系数接近于1,仅极少数 入射的微波能量能透入,可用作微波加热设备中的波导、微波腔体、搅拌器等。 (3)微波吸收型材料:主要是一些介于金属与绝缘体之间的电介质材料,包括纺织纤维材料、纸张、木材、陶瓷、水、石蜡等。 微波加热技术早在20世纪40年代末期就已产生,50年代美国的V on H i ppel 在材料介质特性方面的开创性研究为微波加热的应用奠定了基础[3]。微波烧结就是利用微波加热原理来对材料进行的烧结。作为一种新型的陶瓷加工技术,微波烧结的应用时间并不长。加拿大的W .R .T inga 等人在60年代末期最早尝试了用微波加热及烧结陶瓷材料,并获得了初步成功[2]。进入80年代以后,人们对微波烧结技术进行了广泛而深 入的研究,并成功的制备出了A l 2O 3、B 4C 、Y 2O 32Zr O 2、Si O 2、T i O 2、ZnO 等陶瓷材料[3]。 1 微波烧结陶瓷材料的基本原理 1.1 微波烧结的微观机理 陶瓷材料在微波电磁场的作用下,会产生如电子极化、原子极化、偶极子转向极化和界面极化等介质极化[4],参加极化的微观粒子种类不同,建立或消除极化的时间周期也不一样。由于微波电磁场的频率很高,使材料内部的介质极化过程无法跟随外电场的变化,极化强度矢量P 会滞后于电场强度矢量E 一个角度,导致与电场同相的电流产生,这就构成了材料内部的耗散。在微波波段,主要是偶极子转向极化和界面极化产生的吸收电流构成材料的功率耗散。 微波烧结的成功与否,关键取决于材料自身的特性,如介电性能、磁性能以及导电性能等。当微波穿透和传播到介电材料中时,内部电磁场使电子、离子等产生运动,而弹性惯性和摩擦力使这些运动受到阻碍,从而引起了损耗,这就产生了体加热[5]。从满足微波烧结的角度出发,陶瓷材料应具有的最重要特性是损耗正切 tg ?[6],它表征了材料将所吸收的微波能转化为热能的能力;同时为达到材料与微波的最佳耦合状态,一个 适中的相对介电常数Ε 和较高的介电损耗因子Ε 是必须的,因为Ε 表征了微波通过材料的能力,而Ε 则表

微波技术原理试卷

《微波技术原理》课程试卷 20 -20 学年第一学期 得分 评卷人 一、填空题(每小题1分,共18分) 1、微波波段常用的传输线有 、 、 、 和 。 2、对于均匀无耗传输线,根据终端所接负载阻抗大小和性质的不同,其工 作状态分为 、 、 三种。 3、微波是最高的无线电波,其频率范围大约在 ~ 之间。它一般划分为 、 、 和 四个主要波段。 4、微波不同于其它波段的电磁波,其具有 、 、 、 和 等特性。 得分 评卷人 二、选择题(每小题2分,共6分) 1、厘米波的频率范围为( ) A 、0.3~3GHz B 、3~30GHz C 、30~300GHz D 、300~3000GHz 2、下列是二端口微波网络工作特性参量的是( ) A 、输入阻抗 B 、转移参量 C 、散色参量 D 、输入驻波比 3、终端负载与传输线不匹配,测得传输线中相邻两个电压振幅波节点之间的距离20mm ,则工作波长为( ) A 、5mm 、 B 、10mm C 、20mm D 、40mm 题号 一 二 三 四 五 六 总分 得分

得分评卷人 三、判断题(每小题2分,共8分) 1、均匀无耗传输线上各点反射系数的模是相等的。() 2、大中功率的微波系统中常采用矩形波导作为传输线和构成器件。() 3、传输线长度为10cm时,当信号为937.5MHz时,此传输线是短线。() 4、短路负载将电磁能量无反射全部吸收。() 得分评卷人 四、名词解释(每小题4分,共12分) 行波状态 驻波比 定向耦合器 得分评卷人 五、简答(每小题6分,共18分) 1、简述波导、同轴线、平面传输线在实际应用中各有何特点。 2、对传输线的基本要求是什么?

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势 xxxx xxx xxxxxxxxx 先进制造技术不仅是衡量一个国家科技进展水平的重要标志,也是国际间科技竞争的重点。我国正处于工业化经济进展的关键时期,制造技术是我们的薄弱环节。只有跟上进展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,,进一步推进国企改革,推动建立强大的企业集团。推进技术创新,推动大型企业尽快建立技术开发中心,广泛吸引人才,在重大技术创新项目中实行产学研结合,才能尽快缩小同发达国家的差距,才能在猛烈的市场竞争中立于不败之地。本文将详细介绍先进制造技术的含义、特点以及在我国的进展状况和进展趋势。 1 先进制造技术的含义和特点 1.1 含义 先进制造技术(AMT)是以人为主体,以运算机技术为支柱,以提高综合效益为目的,是传统制造业不断地吸取机械、信息、材料、能源、环保等高新技术及现代系统治理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测、治理及售后服务的制造全过程,实现优质、高效、低耗、清洁、灵敏制造,并取得理想技术经济成效的前沿制造技术的总称。 1.2 先进制造技术的特点 1)是面向工业应用的技术先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产预备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。 2)是驾驭生产过程的系统工程先进制造技术专门强调运算机技术、信息技术、传感技术、自动化技术、新材料技术和现代系统治理技术在产品设计、制造和生产组织治理、销售及售后服务等方面的应用。它要不断吸取各种高新技术成果与传统制造技术相结合,使制造技术成为能驾驭生产过程的物质流、能量流和信息流的系统工程。 3)是面向全球竞争的技术随着全球市场的形成,使得市场竞争变得越来越猛烈,先进制造技术正是为适应这种猛烈的市场竞争而显现的。因此,一个国家的先进制造技术,它的主体应该具有世界先进水平,应能支持该国制造业在全球市场的竞争力 2 先进制造技术的组成 先进制造技术是为了适应时代要求提高竞争能力,对制造技术不断优化和推陈出新而形

微波技术原理及其在化学化工领域的应用

HUNAN UNIVERSITY 题目:微波技术原理及其在化学化工领域的应用

微波技术原理及其在化学化工领域的应用 摘要:本文介绍了微波技术原理以及其发展背景,并针对微波技术在化学化工领域的应用概况进行了总结和介绍,也提出了应用中的问题以及展望。 关键词:微波技术,化学,化工 1.引言 微波是一种波长很短的电磁波,其频率介于300 MHz-300 GHz,波长介于1 mm-1 m之间。因其波长介于远红外线和短波之间,故称之为微波。微波具有的特点为高频性、波动性、热特性和非热特性[1]。随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。近年来,微波以其高效、均匀、节能、环保等诸多优点受到广泛关注,并逐渐成为一种新型能源得到越来越广泛的应用[2]。 2.微波技术的发展 微波技术兴起于20世纪30年代,在电视、广播、通讯等相关技术领域中得到了广泛的应用。经过长期发展后,美国于 1945 年率先发现了微波的又一特性,即热效应,并创新性的将其作为一种非通讯能源开始应用于工业、农业以及相关科学研究中。 微波技术的发展主要取决于微波器件的应用和发展。早在20世纪初,就有研究人员开始了对微波理论的探索,并进行了相关的实验研究。但由于当时信号发生器功率较小,加之信号接收器灵敏度较差,实验未能取得实质性的进展[3]。1936年,波导技术的进一步发展为微波技术的研究提供了可靠的理论及实验条件。美国电话电报公司的George C. Southworth.将波导用作宽带传输线并申请了专利,同时,美国麻省理工学院的M.L Barrow 完成了空管传输电磁波的实验,这些工作为规则波导奠定了理论基础,推动了微波技术进一步向前发展[4]。20世纪40年代,第二次世界大战期间,雷达的出现和使用引起了人们对微波理论和技术的高度重视,并研制了很多微波器件,在此期间,微波技术迅速发展并在

金属微波烧结原理与研究现状

金属材料微波烧结研究现状 陈鼎,李林,陈振华 湖南大学材料科学与工程学院长沙410083 摘要:微波烧结是近年来广泛研究的一种全新的烧结技术,已经在金属,陶瓷以及复合材料取得越来越广泛的应用。本文针对微波烧结在金属材料领域的国内外研究现状,从金属微波烧结的特点以及在金属材料领域的一些较为典型的应用实例进行了较为全面的介绍。 关键词:微波烧结;金属;特点 Status Of Microwave Sintering In Metal Field CHEN Ding, LI Lin, CHEN Zheng-hua Materials Science and Engineering, Hunan University, 410083, Changsha,China Abstract:Microwave sintering has emerged in recent years as a new method for sintering a variety of materials that has shown signi?cant advantage s against conventional sintering procedures. This review article firstly provides a summary of fundamental theoretical aspects of microwave sintering, and then advantages of microwave sintering against conventional methods are described. At the end, some applications of microwave sintering in Metal field are mentioned which so far have manifested the advantages of this novel method. Key words: microwave sintering; metal;characteristics 1 前言 微波烧结是近年来迅速发展起来的一种加热烧结的新技术,它不同于通过传导、辐射、对流机制传递热量的传统加热烧结方法,而是利用微波的特殊波段与材料的基本结构耦合而产生热量,通过材料的介质损耗使得材料整体被加热至烧结温度而实现致密化[1-3],从而具有烧结温度低、烧结周期短、能量损耗低,环境友好等特点,符合当前发展绿色工业的趋势,迅速成为各国学者研究的热点。20世纪60年代,Tinga首先在陶瓷材料的制备中应用了微波烧结技术[4],同时,关于材料介质特性的研究获得了突破性进展,这为微波烧结的应用奠定了理论基础。随后,世界能源危机的爆发推动了各国学者对微波烧结技术的进一步研究,至今,微波烧结技术已成功应用于制备各种陶瓷材料、金属材料、复合材料等[5-7]。在研究早期,人们普遍认为块状金属会反射微波,且具有等离子放电和电弧放电

电磁场理论与微波技术复习提纲

电磁场理论与微波技术复习提纲 一、总体要求 通过本课程的学习,建立起电磁场与电磁波的基本思想,掌握电磁场与微波技术的基本概念、基本原理、基本分析方法,对波导理论有比较完整的理解,了解电磁场与微波技术的最新发展和应用。 “电磁场理论与微波技术”由“电磁场与电磁波基本理论”和“微波技术基础”两部分构成。第一部分“电磁场理论”所占比例约为:55% 第二部分“微波技术基础”所占比例约为:45% “电磁场与电磁波基本理论”部分重点考查内容为: 基本概念和理论 静电场 恒定电场 麦克斯韦方程组 平面电磁波 “微波技术基础”部分考查内容为: 基本概念和理论 传输线理论 波导理论 微波网络基础 二、考试形式与试卷结构 1、试题分为选择题(20%)、填空题(20%)、名词解释题(8%)、简答题(10%)、计算题(42%)。试卷总分100分。 2、考试形式为闭卷考试 3、考试时间:120分钟 名词解释: 1、坡印廷矢量和平均坡印廷矢量 2、电位移矢量 3、主模 4、色散

5、体电荷分布、面电荷分布、线电荷分布、体电流分布、面电流分布、线电流分布 6、电偶极子 7、直线极化、左右旋圆极化、椭圆极化 8、趋肤效应 9、均匀平面波、TEM模、TE模、TM模 10、全反射和全透射 11、波导 12、基本振子和对称振子 13、简并现象 14、微波 简答题: 1、如何判断长线和短线? 2、何谓分布参数电路?何谓集总参数电路? 3、何谓色散传输线?对色散传输线和非色散传输线各举一个例子。 4、均匀无耗长线有几种工作状态?特点?条件是什么? 5、说明二端口网络几种参量的物理意义? 6、发生全反射和全透射的条件 7、分析微波网络的方法 8、写出常见的微波元件9、分析天线的方法10、写出常见的天线 11、用哪些参数可以描述天线的性能指标,并解释其中的一到两个参数。 12、通量和散度的区别 13、旋度和环流的区别14、负载匹配和电源匹配 计算题: 1、矢量分析 1.1、1. 2、1.4、1.15、1.20 2、无界空间均匀平面波2.45、2.46、3.2、3.14 3、理想介质和良导体为边界的均匀平面波垂直入射3.17、3.22 4、分离变量法2.23,平行导体板(ppt例题) 5、阻抗圆图 6、波导模式和波长等计算5.11、5.12 7、高斯定理和安培环路定理(ppt例题)

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势

摘要近年来, 制造业出现了世界范围的研究并采用“先进制造技术”的浪潮,先进制造技术已成为当代国际间的科技竞争的重点。本文论述了先进制造技术的发展现状与发展趋势,指出:信息化、精密化、集成化、柔性化、动态化、虚拟化、智能化、绿色化将是未来制造技术的必然发展方向。 1.先进制造技术简介 1.1先进制造技术的定义 先进制造技术AMT(advanced manufacturing technology)是制造业不断吸收机械、电子、信息(计算机与通信、控制理论、人工智能等)、能源及现代系统管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁和灵活生产,提高对动态多变的产品市场的适应能力和竞争能力的制造技术的总称。它集成了现代科学技术和工业创新的成果,充分利用了信息技术,使制造技术提高到新的高度。先进制造技术是不断利用新技术逐步发展和完善的技术,因而它具有动态性和相对性。先进制造技术以提高企业竞争能力为目标,应用于产品的设计、加工制造、使用维修、甚至回收再生的整个制造过程,强调优质、高效、清洁、灵活生产,体现了环境保护与可持续发展和制造的柔性化。 1.2 先进制造技术的内涵和技术构成 先进制造技术的技术构成可以分为以提高生产效率和快速响应市场需求为 目的的技术构成和以满足特种需求为目的的技术构成。 以提高生产效率和快速响应市场需求为目的的技术构成强调制造系统与制 造过程的柔性化、集成化和智能化。包括: (1) 系统理论与技术(着重制造系统组织优化与运行优化,以提高制造系统的整体柔性与效率) 。 (2) 制造过程的单元技术(着重制造过程的优化,以提高单元的效率与精 度) 。系统理论与技术涉及范围包括:CIMS、敏捷制造、精益生产、智能制造等。制造过程单元技术涉及的范围包括:设计理论与方法、并行工程、系统优化、运行、控制、管理、决策与自组织技术、虚拟制造技术、制造过程智能检测、信息处理、状态检测、补偿与控制、制造设备的自诊断与自修复、智能机器人技术、

微波高温烧结技术资料

微波烧结设备技术专利分析(二)——主要技术领域 微波烧结技术的发展已经历了几十年,虽然还有很多不成熟、不完善的地方,但是,它具有常规技术无法比拟的优点,预示了它广阔的发展前景。首先,作为一种省时、节能、节省劳动、无污染的技术,微波烧结能满足当今节约能源、保护环境的要求;其次,它所具有的活化烧结的特点有利于获得优良的显微组织,从而提高材料性能;再次,微波与材料耦合的特点,决定了用微波可进行选择性加热,从而能制得具有特殊组织的结构材料,如梯度功能材料。这些优势使得微波烧结在高技术陶瓷及金属陶瓷复合材料制备领域具有广阔的前景。 各种材料的介电损耗特性随频率、温度和杂质含量等的变化而变化,由于自动控制的需要,与此相关的数据库还需要建立。微波烧结的原理也需要进一步研究清楚。由于微波烧结炉对产品的选择性强,不同的产品需要的微波炉的参数有很大差异,因此,微波烧结炉的设备需要投资增大。今后微波烧结设备的方向是用模块化设计与计算机控制相结合。 介于此,从主要技术领域方向研究微波烧结设备技术动向具有对未来发展方向的预测作用,通过相关技术的研读和分析,以期对相关技术人员予以参考和借鉴。 (一)2000-2009年专利技术领域分布 上图中相关的IPC分类如下:

C04B35622: 形成工艺;准备制造陶瓷产品的无机化合物的加工粉末 H01B312: 陶瓷 C04B3564: 焙烧或烧结工艺 C04B35462: 以钛酸盐为基料的 C04B35495: 以氧化钒、氧化铌、氧化钽、氧化钼或氧化钨或与其他氧化物(例如钒酸盐、铌酸盐、钽酸盐、钼酸盐或钨酸盐)的固溶体为基料的 (二)按年度分布的专利技术领域分布 从上图中数据可以看出,从2005年到2009年,总体专利数量在增加,同时相应的主要技术领域也比较固定,在C04B水泥;混凝土;人造石;陶瓷;耐火材料领域中,每年的增长速度最快,其次是H01B 电缆;导体;绝缘体;导电、绝缘或介电材料的选择领域,所以,在这一技术领域中,研究的方向比较固定,也比较集中。 参考文献

微波工作原理

微波工作原理 微波杀菌是微波加热技术功能的延伸,表现为微波与生物体及其组成的基本单元——细胞之间相互作用后,生物体的细胞生理活动变化和反应,与巴氏加热杀菌法比较,微波杀菌有以下显著特点: A、微波杀菌是一种物理杀菌方法,它不需要添加化学防腐剂就能够杀灭细菌、霉菌和虫卵,以及病毒等有害人体的微生物,它在杀灭有害微生物过程中,不会对食品残留毒性或放射性物质的污染,安全无害。也不会改变食品的色香味和营养成分。 B、在同样杀菌温度下,所需杀菌时间短,不需要预热。如大肠杆菌杀灭时间约30S。在相同杀菌条件下,菌致死的温度比较低,且杀菌效果极为显著。 C、能同时对被杀菌物料表里实施整体杀菌,极大地缩短杀菌周期,并保证杀菌一致性。 D、由于物料各部位杀菌的同时性,杀菌时间短,能避免因长时间的加热影响食品品质,特别是对不宜在较高温度或较长加热时间情况下进行杀菌的食品。例如:易挥发香辛成分的姜粉、含水分较多的鲜嫩海蛰等。对于既要保持色泽、香味和口感不变等质量要求又需杀菌的物料,使用微波杀菌可取得最佳效果。 E、微波杀菌可分为包装后杀菌和包装前杀菌。包装容器不能用金属质地的,需用介质材料,一般用塑料软包装或玻璃,工程塑料质地容器为宜。为防止在微波杀菌过程中涨袋,设备可在工作仓内施加压力采用反压杀菌工艺,可防止涨袋损失。

微波设备可对已包装、未包装的不同物品进行灭菌加工处理可用于: 粮食制品类:面包、月饼、面条、豆腐、豆腐干等。 蔬菜类:泡菜、竹笋、香菇类等。 水果类:荔枝、龙眼等。 奶制品、调味品、香精香料、方便面汤料、火锅调料及各种液体等均可杀菌加工。 微波是一种高频率的电磁波,其频率范围约在300~300 000MHz(相应的波长为100~0.1cm)在300MHz至300GHz之间.它具有波动性、高频性、热特性和非热特性四大基本特性。微波作为一种电磁波也具有波粒二象性.微波量子的能量为1 99×l0 -25~1.99×10-22j.它与生物组织的相互作用主要表现为热效应和非热效应。微波能够透射到生物组织内部使偶极分子和蛋白质的极性侧链以极高的频率振荡,引起分子的电磁振荡等作用,增加分子的运动,导致热量的产生。1.1 微波的特性 1.1.1 选择性加热 物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸

微波原理概述.

微波原理概述 1、微波技术原理 微波技术是一门需要高度实验技能的专业技术知识,微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题。微波是一门理论与实践密切结合的一门知识,微波技术理论的出发点是麦克斯维方程组,麦克斯维方程组本身就是从实践中归纳、总结出来的。大多数微波实际应用的工程问题都不能通过理论计算得到精确的解析解。在研究微波工程问题时,为了避开一些复杂的数学运算和无解析解的问题,常需要根据具体情况和一些基本的物理概念对所研究的问题做简化、等效或近似处理,因此,通过实践来修正理论分析结果是每个微波工程技术人员具备的基本技能。 2、微波定义 微波是一种频率非常高的电磁波。微波包括的波长范围没有明确的界限,一般是指分米波、厘米波和毫米波三个波段,也就是波长从1mm到1m左右的电磁波。由于微波的频率很高,所以也叫超高频电磁波。 为了进行比较,这里将微波、工业用电和无线电中波广播的频率与波长范围列于表中。 因为微波的应用极为广泛,为了避免相互的干扰,供工业、科学及医学使用的微波频段是不同的,现将其列于表中 不同工作频率的微波系统具有不同的技术特性、生产成本和用途,微波系统的工作频率越高。其结构尺寸就越小;微波通讯系统的工作频率越高,其信息容量越大;微波雷达系统的工作频率越高,雷达信号的方向性和系统的分辨率就越高。微波的频率越高,其大气传输和传输线传输的损耗就越大。 目前国内只有915MHz和2450MHz 被广泛使用。在较高的两个频率段还没有合适的大功率工业设备。 3、微波的特殊性质

微波是电磁波,它具有电磁波的诸如反射、透射干涉、衍射、偏振以及伴随着电磁波能量传输等波动特性,这就决定了微波的产生、传输、放大、辐射等问题都不同于普通的无线电、交流电。在微波系统中,组件的电性质不能认为是集总的,微波系统没有导线式电路,交、直流电的传输特性参数以及电容和电感等概念亦失去了其确切的意义。在微波领域中,通常应用所谓“场”的概念来分析系统内电磁波的结构,并采用功率、频率、阻抗、驻波等作为微波测量的基本量。 ⑴在研究微波问题时,应使用电磁场的概念,许多高频交变电磁场的效应不能忽略。例如微波的波长和电路的直径已是同一数量级,位相滞后现象已十分明显,这一点必须加以考虑。 ⑵微波传播时是直线传播,遇到金属表面将发生反射,其反射方向符合光的反射规律。 ⑶微波的频率很高,因此其辐射效应更为明显,它意味着微波在普通的导线上传输时,伴随着能量不断的向周围空间辐射,波动传输将很快地衰减,所以对传输组件有特殊要求。 ⑷当入射波与反射波相迭加时能形成波的干涉现象,其中包括驻波现象。在微波波导或谐振腔中,我们也利用多种模式的电磁场的分布、迭加来改善电磁场分布的均匀性。 ⑸微波能量的空间分布同一般电磁场能量一样,具有空间分布性质。哪里存在电磁场,哪里就存在能量。例如微波能量传输方向上的空间某点,其电场能量的数值大小与该处空间的电场强度的二次方有关,微波电磁场总能量为空间点的电磁场能量的总和。 4、微波与材料的相互作用 当微波在传输过程中遇到不同材料时,会产生反射、吸收和穿透现象,这些作用和其程度、效果取决于材料本身的几个主要的固有特性:介电常数、介质损耗角正切(tgδ,简称介质损耗)、比热、形状、含水量的大小等。 ⑴常用材料 在微波加工系统中,常用的材料有导体、绝缘体、介质、极性和磁性化合物几类。 ①导体一定厚度以上的导体,如铜、银、铝之类的金属,能够反射微波,因此在微波系统中,常利用导体反射微波的这种特殊的形式来传播微波能量。例如微波装置中常用的波导管,就是矩形或圆形的金属管,通常由铝或黄铜制成。它们像光纤传导光线一样,是微波的通路。 ②绝缘体在微波系统中,绝缘体有其完全不同于普通电路中的地位。绝缘体可透过微波,并且它吸收的微波功率很小。微波和绝缘体相互间的影响,就象光线和玻璃的关系一样,玻璃使光线部分地反射,但大部分则透过,只有很少部分被吸收。在微波系统中,根据不同情况使用着玻璃、陶瓷、聚四氟乙烯、聚丙烯塑料之类的绝缘体,它们常作为反应器的材料。由于这种“透明”特性,在微波工程中也常用绝缘体材料来防止污物进入某些要害部位,这时的绝缘体就成为有效的屏障。

先进制造技术的应用与发展剖析

毕业设计论文 作者学号 系部机电学院 专业机电一体化技术 题目先进制造技术的应用与发展 指导教师 评阅教师 完成时间:2014 年4月26 日

毕业设计(论文)中文摘要

目录 1 绪论 (4) 1.1先进制造技术的概述 (4) 2 先进制造技术的现状 (5) 3 先进制造技术的应用 (6) 4 先进制造技术的应用举例 (7) 4.1在产品制造过程与工艺技术中的应用 (7) 5 先进制造技术发展展望 (8) 6 计算机集成制造系统 (10) 6.1 CIMS 系统的功能组成 (11) 6.2 CIMS 系统的技术优势分析 (11) 6.2.1保障和提高了新产品开发的质量 (11) 6.2.2 缩短了新产品的上市周期 (12) 7 加工技术 (12) 7.1 超精密加工的技术范畴 (12) 7.2 超精密加工的关键技术 (13) 7.2.1 主轴 (13) 7.2.2 直线导轨 (13) 7.2.3 传动系统 (14) 7.3数控技术(Numerical Control(NC)) (14) 7.3.1 数控技术是应用制造技术的基础和核心 (15) 7.3.2数控技术的推广应用给机械制造业带来了重大变革 (15) 结论 (16) 致谢 (16) 参考文献: (17)

1绪论 1.1先进制造技术的概述 先进制造技术(Advanced Manufacturing Technology),人们往往用AMT 来概括由于微电子技术、自动化技术、信息技术等给传统制造技术带来的种种变化与新型系统。具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。AMT是制造业企业取得竞争优势的必要条件之一,但并非充分条件,其优势还有赖于能充分发挥技术威力的组织管理,有赖于技术、管理和人力资源的有机协调和融合。先进制造技术在传统制造技术的基础上融合了计算机技术、信息技术、自动控制技术及现代管理理念等,所涉及的内容非常广泛,学科跨度大。本书围绕先进制造技术的各主题,系统地介绍了各先进制造技术的基本知识、关键技术及其在实际中的应用等。制造技术是使原材料成为人们所需产品而使用的一系列技术和装备的总称,是涵盖整个生产制造过程的各种技术的集成。从广义来讲,它包括设计技术、加工制造技术、管理技术等三大类。其中设计技术是指开发、设计产品的方法;加工制造技术是指将原材料加工成所设计产品而采用的生产设备及方法;管理技术是指如何将产品生产制造所需的物料、设备、人力、资金、能源、信息等资源有效地组织起来,达到生产目的的方法。 具体地说, 先进制造技术是制造业不断吸收信息技术和现代管理技术的成果, 并将其综合应用于产品设计、加工、检测、管理、销售、使用、服务乃至回收的制造全过程, 以实现优质、高效、低耗、清洁、灵活生产, 提高对动态多变的市场的适应能力和竞争能力的制造技术的总称。与传统的制造技术相比, 当代的先进制造技术以其高效率、高品质和对于市场变化的快速响应能力为主要特征。先进制造技术是生产力的主要构成因素, 是国民经济的重要支柱。它担负着为国民经济各部门和科学技术的各个学科提供装备、工具和检测仪器的重要任务, 成为国民经济和科学技术赖以生存和发展

相关文档
最新文档