复合材料期末复习

复合材料期末复习
复合材料期末复习

复合材料C 复习

第一章概论

1. 复合材料的定义?

复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。

三要素:基体(连续相)增强体(分散相)界面(基体起粘结作用并起传递应力和增韧作用)

复合材料的特点:(明显界面、保留各组分固有物化特性、复合效应,可设计性)

(嵌段聚合物、接枝共聚物、合金:是不是复合材料??)

2、复合材料的命名

f(纤维),w(晶须),p(颗粒)比如:TiO2p/Al

3. 复合材料的分类:

1) 按基体材料类型分为:

聚合物基复合材料;金属基复合材料;无机非金属基复合材料(陶瓷基复合材料)。

2)按增强材料分为:

玻璃纤维增强复合材料;碳纤维增强复合材料;有机纤维增强复合材料;晶须增强复合材料;陶瓷颗粒增强复合材料。

3) 按用途分为:功能复合材料和结构复合材料。

结构复合材料主要用做承载力和此承载力结构,要求它质量轻、强度和刚度高,

且能承受一定温度。

功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。

第二章增强体

1、增强体

定义:结合在基体内、用以改进其力学等综合性能的高强度材料。

要求:1) 增强体能明显提高基体某种所需性能;2) 增强体具有良好的化学稳定性;3) 与基体有良好润湿性。

分类:f,w,p

2、纤维类增强体

特点:长径比较大;柔曲性;高强度。

?玻璃纤维

主要成分:SiO2

性能:拉伸强度高;较强耐腐蚀;绝热性能好。(玻璃纤维高强的原因(微裂纹)及影响因素(强度提升策略:减小直径、减少长度、降低含碱量,缩短存储时间、降低湿度等))

分类:无碱(E玻璃)、有碱(A玻璃)

制备:坩埚法(制球和拉丝)、池窑法(熔融拉丝)。

浸润剂作用:(i) 粘结作用,使单丝集束成原纱或丝束;(ii) 防止纤维表面聚集静电荷;(iii)进一步加工提供所需性能;(iv) 防止摩擦、划伤。(无偶联剂作用)玻璃纤维表征:(i) 定长法:“tex”(含义);(ii) 质量法:“支”(含义)

?硼纤维

芯材:钨、碳和石英

制备:化学沉积(CVD)法原料:卤化硼或氢化硼

形貌:玉米棒状(W芯)光滑(C芯)

表面涂层:SiC (防止脆性相的产生or 便于与基体结合)

目前比模量和比强度最高的陶瓷增强纤维

?碳纤维

1)制备:有机纤维碳化法

有机纤维前驱体满足条件:碳化过程不熔融,保持纤维形态,碳化收率高··

三种重要的前驱体:聚丙烯腈;黏胶纤维(人造丝);沥青纤维。

以PAN为例(制造高强度、高模量碳纤维多选用聚丙烯腈):拉丝--牵引--稳定化--碳化--石墨化

拉丝:即PAN原纤维制备,湿法纺丝、干法纺丝,不能熔融纺丝;PAN特性:受热分解不熔融。

施加牵伸力目的在于使纤维产生择优取向,提高强度和模量。

碳纤维的表面处理方法(见第4章)

石墨纤维和碳纤维的区别:处理温度不同、C含量不同、晶型不同

碳纤维结构:乱层石墨结构。

特性:导热系数较高、线膨胀系数具有负的温度效应(可以抵消热胀冷缩现象)例1)碳纤维增强复合材料是在合成树脂的基体中加入了碳纤维做增强体,具有韧性好等特点,下列物质中可用于制造的是()。

A、电话亭和餐桌椅

B、网球拍和钓鱼竿

C、飞机用隔热瓦

2)在PAN法制备CF的工艺过程中,为什么要进行预氧化、碳化和石墨化三个处理过程?(P20)

聚丙烯腈纤维(PAN)是线性高分子结构,耐热性差,高温会裂解,不能经受碳化的高温得到碳纤维,预氧化可避免直接碳化处理时爆发产生有害的闭环和脱氢等放热反应,防止后续工序中纤维熔并。碳化是在N2保护下进行热解反应,将结构中不稳定部分与非碳原子裂解出去,同时进行分子间的缩合,形成碳素缩合环。石墨化处理可以使碳纤维发生石墨化结晶,形成石墨纤维,以较大幅度提高碳纤维的模量

?SiC纤维

1) 特点:高比强度、高比模量、高温抗氧化性、优异的耐烧蚀性、耐热冲击性和吸波隐身性能等。

2) 碳纤维增强铝基复合材料可用于飞机、导弹、发动机的高性能结构件。

碳化硅纤维增强聚合物基复合材料,可以吸收或透过部分雷达波;作为雷达天线罩、火箭、导弹和飞机等飞行器部件的隐身结构材料,和航空、航天、汽车工业的结构材料与耐热材料。

3) 制备:(i) 化学气相沉积法CH3SiCl3 →SiC↓+3 HCl↑

(ii) 先驱体法:(Nicalon) 制备聚碳硅烷、熔融纺丝、不熔化处理和高温烧成。

3、晶须

1) 晶须与纤维的区别:①晶须是单晶;纤维可以是非晶、单晶或多晶;②晶须直径< 3 μm; 纤维直径几微米至几十微米。③晶须较纤维缺陷少,强度高(机械强度近似相邻原子之间的作用力)、模量大。

2) 晶须主要分陶瓷晶须(Al2O3、SiC) 和金属晶须两大类。

3) 唯一一种具有空间结构的晶须:ZnO晶须

4、颗粒

颗粒增强体(炭黑)与填料(滑石粉、CaCO3)的区别:前者以增强为主要目的,后者以填充体积为主要目的。

刚性颗粒增强体:指具有高强度、高模量、耐热、耐磨、耐高温的陶瓷和石墨等非金属颗粒,如碳化硅、氧化钛、氮化硅、石墨、细金刚石等。

延性颗粒增强体:主要为金属颗粒,加入到陶瓷基体和玻璃陶瓷基体中增强其韧性,如Al2O3中加入Al,W C中加入Co等。金属颗粒的加入使材料的韧性显着提高,但高温力学性能会有所下降。

例:下列哪一项不是颗粒增强体的特点()。

A、选材方便

B、力学性能取决于颗粒的形貌、直径、结晶完整度、体积分数等

C、成本高

5、有机高分子纤维

?Kevlar纤维(芳纶纤维):聚合物大分子的主链由芳香环和酰胺键构成。

(PPTA)

合成方法:1) PPTA分子合成(P42);2) 纺丝:湿纺、干喷和干喷—湿纺(溶

致液晶)

可用来制备防弹衣

Kevlar 纤维化学结构特点:含有大量苯环,内旋转困难,为处于拉伸状态的刚性伸直链晶体。苯环与酰胺键交替排列对称性好,结晶性好。分子间有氢键。 ? 芳香族聚酯纤维 :可以进行熔融纺丝。

? UHMW-PE :密度最低的高性能纤维。

第三章 复合理论

? 复合理论:包括组分相(基体、增强体)的合理设计、组分相间的复合机理

(复合效应与增强原理)。

1、复合材料设计的原理

复合材料为什么具有可设计性?

2、复合材料的复合效应

? 线性效应(平均效应、平行效应、相补效应、相抵效应)

? 平均效应: 密度、单向纤维复合材料的纵向杨氏模量等 单向纤维复合材料的横向杨氏模量等 例: SiC f /硼硅玻璃复合材料的强度随增强纤维体积含量线性增加反映的是复合线性效应中的( )

A 、平均效应

B 、平行效应

C 、相补效应

D 、相抵效应 ? 平行效应:c i

K K ? 即:复合材料的某项性能与某一组分的该项性能相当。(如玻璃纤维增强环氧树脂的耐蚀性能与基体相当)

()

11()c i i i c i

K K K K φφ==∑∑并联模型串联模型

? 相补效应:组成复合材料的基体与增强体,在性能上互补,从而提高了综合性能,显示出相补效应。

? 相抵效应:基体与增强体组成复合材料时,组分间性能相互制约,限制了整体性能提高(性能低于混合定律的预测值),则复合后显示出相抵效应。

(脆性的纤维增强体与韧性基体组成的复合材料,当两者界面结合很强时,复合材料整体显示为脆性断裂)

? 非线性效应(相乘效应、诱导效应、系统效应、共振效应)

? 相乘效应: (/)(/)/X Y Y Z X Z ?=

例: 用作温度自控发热体的石墨粉/聚合物复合材料,可以达到自动控温的效果,其利用的是复合效应的________。

? 诱导效应:诱导另一相材料产生特殊的界面层,传递载荷,改变功能。

(在碳纤维增强尼龙或聚丙烯中,由于碳纤维表面对基体的诱导作用,致使界面上的结晶状态与数量发生了改变,如出现横向穿晶等,这种效应对尼龙或聚丙烯起着特殊的作用。)

? 系统效应:复合材料具有单个组分不具有的某种性能。(涂膜的硬度大于基体和膜层硬度之和)

? 共振效应(强选择性效应):A 组分的大多数性能受到抑制,而其某一项性

能充分发挥。(导电不导热)

例:彩色胶卷仅含有三种感光乳剂层却能记录各种颜色,利用了复合效应中的()

A 、诱导效应

B 、系统效应

C 、相补效应

3、复合材料的增强机制

?颗粒增强机制(颗粒切过、颗粒未切过)

?颗粒切过增强机制

1) 适用于:颗粒的尺寸较大(> 1 μm),自身强度不高,结合力较强

2) 受力特点:基体承担主要的载荷,颗粒阻止位错的运动,并约束基体的

变形。

3) 位错切过强化:(有序增强机制、界面强化机制、共格应变强化机制等)

4) 颗粒的尺寸越小,体积分数越大,强化效果越好。

?颗粒未切过增强机制(颗粒较小,<1 μm)

●低温、高外加应力----位错绕过理论(Orowan机制)(注意:有位错环)

1) 硬质颗粒如Al2O3,TiC,SiC阻碍基体(金属基)中的位错运动或分子

链(高聚物基)运动。

2) 载荷主要由基体承担,弥散微粒阻碍基体的位错运动。

3) 颗粒尺寸越小,体积分数越大,强化效果越好。一般V p为1%~15%,

d p为0.001μm ~ 0.1μm。

●高温、低外加应力----位错攀移机制

1) 形式:局部攀移和整体攀移

●残余应力强化机制:增强体颗粒与基体的膨胀系数和弹性模量存在差异,

使得裂纹在界面处发生偏转(消耗更多能量),起到增韧补强复合材料。

●影响颗粒增强因素:颗粒的性质、基体性质、结合界面、制备工艺(P61)。?纤维增强机制

受力特点:高强度、高模量的纤维承受载荷,基体只是作为传递和分散载荷的媒介。

●单向排列连续纤维增强原理(单向长纤维)纵向:

1) 初始阶段(纤维、基体、复合材料具有相同的应变)

纤维/基体弹性模量的比值↑,纤维体积含量↑,则纤维承载比↑。

2) 断裂顺序和断裂强度:(会分析,判断谁先断裂,然后该材料断裂后另一种材料能否承受全部载荷)

?纤维的强化作用取决于纤维与基体的性质、二者的结合强度、纤维在基体中的排列方式。

?为了达到纤维增强的效果,须遵循以下原则:(简答题)

1) 纤维的强度和弹性模量应远高于基体(使纤维尽可能多的承担外加负荷);

2) 纤维与基体间应有一定的界面结合强度,以保证基体所承受的载荷能通过界面传递给纤维,并防止脆性断裂;

3) 纤维的排列方向要与构件的受力方向一致;

4) 纤维与基体的热胀系数应匹配(纤维的热膨胀系数略大于基体);

5) 纤维与基体不能发生使结合强度降低的化学反应;

6) 纤维所占体积分数、纤维长度和直径及长径比等必须满足一定要求。

?复合材料的物理性质

1) 热膨胀系数:满足平均效应。

一般无机材料的热膨胀系数较聚合物的要小得多,所以,以无机材料为增强体的聚合物基复合材料其热膨胀系数要较纯聚合物的小,其数值接近于金属的热膨胀系数。

2)导热系数:不满足平均效应,复合材料的导热系数小于组分的导热系数

空气为填料的泡沫塑料是良好的隔热材料,而以碳纤维、金属粉等为增强体的复

合材料则可作为导热性复合材料使用。

3) 阻燃性质:

i) 氧指数:聚合物着火后刚够维持燃烧时的氧气在试验气体(氧、氮混合气体)中的最小百分含量。(聚合物阻燃性的判据)

ii) 阻燃增强体:三氧化二锑(与有机卤化物合用);钼化物(高效抑烟);磷化物;氢氧化铝

iii) 满足以下条件的才能成为有效的阻燃剂:产生不燃性气体的温度略低于聚合物热分解温度;在复合塑料的混炼、成型温度下不产生不燃性气体。

第四章界面理论

?复合材料的界面:复合材料的界面是指基体与增强体之间化学成分有显着变化、能够彼此结合、传递载荷的微小区域。(界面结构与性质都不同于两相中的任何一相)界面起“纽带”和“桥梁”作用。

?界面的种类:1) 机械结合界面(钢筋混凝土中钢筋表面有螺纹的作用:表面越粗糙,互锁作用越强,机械粘结作用越有效);

2) 溶解和润湿结合界面(基体润湿增强材料,相互之间发生原子扩散和溶解,形成结合;在制备聚合物基复合材料时,树脂对增强材料的浸润性是指树脂能否均匀地分布在增强材科的周围,这是树脂与增强材料能否形成良好粘结的重要前提);

3) 反应结合界面(偶联剂);

4) 交换结合界面(生成化合物并通过扩散发生元素交换,如分子链的缠结);

5) 混合结合界面

?界面的作用:(传递效应;阻断效应;不连续效应;散射和吸收效应;诱导

效应)

例1:复合材料的界面有哪些作用?

界面的作用归纳为几种效应:传递效应:界面能传递力,能将外力传递给增强体,在基体和增强体间起“桥梁”作用。阻断效应:结合适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用。不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现等现象,比如抗电性、尺寸稳定性等。散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收,如透光性、隔热性、隔音性等。诱导效应:一种物质(增强体)的表面结构使另一种(聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由此产生一些现象,如强的弹性、低的膨胀性等。

例2:在纤维增强聚合物基复合材料中,纤维与基体界面阻止裂纹进一步扩展,从而可提高复合材料的韧性。这里界面起到的主要作用是___ ___。

?界面的润湿性:

表示方法:接触角。

润湿是组分良好粘结的必要条件,并非充分条件。

?聚合物基复合材料的界面

1) 聚合物基复合材料分为热塑性聚合物基复合材料和热固性聚合物基复合材料。

i) 热塑性复合材料的成型分两步:①热塑性聚合物基体的熔体和增强体之间的接触与润湿;②复合后体系冷却凝固成型。

ii) 热固性复合材料的成型工艺:常用预先形成预浸料(干法、湿法)的办法,以提高聚合物基体对增强体的润湿程度。

2)界面形成:聚合物基复合材料的界面在成型过程中形成。分为两个阶段。(P89)

第一阶段是基体与增强纤维的接触与浸润过程。由于增强纤维对基体分子的各种基团或基体中各组分的吸附能力不起着同,它总是要吸附那些能够降低其表面能的物质,并优先吸附那些能较多降低表面能的物质,因此,界面聚合层在结构上与聚合物本体是不同的。第二阶段是聚合物的固化阶段。在此过程中聚合物通过物理的或化学的变化而固化,形成固定的界面层。

3)界面层的包括:界面的结合力、界面的厚度和界面的微观结构等几个方面。4)界面作用机理:(偶联剂的作用??)

?浸润吸附理论(两相充分润湿,两相界面处产生的物理吸附主要是由范德华力的作用实现粘接;产生良好界面的条件:①液体的粘度尽量低;

②S略大于L)

例:若双酚A环氧树脂的表面张力为42.5×10-5 N/m,聚酯树脂为35×10-5 N/m,而给定的玻璃纤维的表面张力为38.3×10-5 N/m,选用________作为玻纤增强聚合物复合材料的基体较为合适。

?化学键理论(基体树脂表面的活性官能团与增强体表面的官能团能起化学反应,大部分偶联剂的作用)

?物理吸附理论:机械咬合和基于次价键作用的物理吸附。

?变形层理论:(增强体优先吸附树脂分子在界面上形成可塑的“柔性层”,可以起到松驰界面上应力集中的作用)

?扩散层理论、静电吸引等

例:碳纤维复合材料,当碳纤维经过某些柔性聚合物涂层处理后,力学性能可改善。而柔性聚合物与树脂和碳纤维都不起化学反应。下列( )不是此时复合材料界面的主要作用?

A. 浸润吸附

B.化学键增强

C. 物理吸附理论

5)改善界面结合的原则:i) 改善树脂基体对增强材料的浸润程度(延长浸渍时间,增大体系压力、降低熔体粘度; 对增强体进行表面改性,增加表面能,提高浸润性;增强体比表面积增加,界面增大,粘合强度提高);ii)适度的界面黏结;iii)减少复合材料成型中形成的残余应力;iv)调节界面内应力、减缓应力集中。

增强体的表面处理:

1) 玻璃纤维(偶联剂的定义)

?表面处理剂主要分为有机铬络合物和有机硅烷两大类。

i) 有机铬络合物(沃兰)

作用机理(P100)

ii) 有机硅烷(P101)

2) 碳纤维

?表面处理机理:

i) 表面粗糙度:增加表面粗糙度有利于碳纤维与基体树脂的机械粘合。

ii) 石墨微晶大小:微晶越小,活性碳原子的数目就越多,越有利于纤维与树脂的粘合。

iii) 碳纤维表面官能团种类与数量:官能团如-OH、-NH2、-COOH等。

经表面处理后,碳纤维表面石墨微晶变细,不饱和碳原子数目增加,极性基团增

多,这些都有利于复合材料性能改善。

第五章聚合物基复合材料

?聚合物基复合材料的特点:高的比强度、比模量;抗疲劳性能好;减振性好;

耐烧蚀性卓越;可设计性强,成型工艺简单;过载安全性好。

?聚合物的基体:

热固性:不饱和聚酯树脂、环氧树脂、酚醛树脂等

(优点:良好的工艺性;宜于在常温常压下浸渍纤维;固化后具有良好的耐化学药品性和抗蠕变性。缺点:预浸料需低温冷藏且贮存期有限;成型周期长和材料韧性差)

热塑性:聚丙烯、聚酰胺、聚碳酸酯、聚醚砜、聚醚醚酮等

(优点:具有高断裂韧性(高断裂应变和高冲击强度);预浸料不需冷藏且贮存期无限、成型周期短、可再成型、易于修补、废品及边角料可再生利用。

缺点:熔体或溶液粘度很高,成型要在高温高压下进行;成品耐热性、抗蠕变性)

聚合物基复合材料结构包括:链结构及聚集态结构。

?基体材料的作用:i) 均衡载荷、传递载荷;ii) 保护纤维,防止纤维磨损;iii)决定复合材料一些性能,如耐热性、耐腐蚀性、耐溶剂、抗辐射及吸湿性、横向性能、剪切性能;iv)决定复合材料成型工艺方法及工艺参数选择;v)对复合材料的一些性能有重要影响,如纵向拉伸、尤其是压缩性能、疲劳性能、断裂韧性等。?不饱和聚酯树脂

1、组成:不饱和二元酸或酸酐、饱和二元酸或酸酐与二元醇缩聚得到的低分子量聚合物。

2、合成:

3、原材料:

二元酸:不饱和二元酸+ 饱和二元酸

不饱和酸:顺丁烯二酸酐(顺酐)、反丁烯二酸(反酸)(作用:提供不饱和度,改善固化速率)

饱和酸:邻苯二甲酸酐,间苯二甲酸酐、己二酸(作用:①调节分子链中的双键密度,降低树脂的脆性,增加柔顺性;②改善聚酯在烯类单体中的溶解度,并降低成本。)

二元醇:常用乙二醇、丙二醇、二乙二醇和二丙二醇

交联剂:烯类单体,既是溶剂,又是交联剂。能溶解不饱和聚酯树脂,使其双键间发生共聚合反应,得到体型产物,以改善固化后树脂的性能

(苯乙烯:与UP相容性良好,固化时与聚酯中的不饱和双键能很好的共聚,固化树脂物理性能良好,价格便宜,是最常见的交联单体)

固化剂:是在促进剂或其它外界条件作用下而引发树脂交联的一种有机过氧化物,又称为引发剂。

促进剂是能促使有机过氧化物在室温下就能分解而产生自由基的物质。(实现室温固化)

(如:二甲基苯胺、二乙基苯胺、二甲基甲苯胺等)

固化过程的特征:凝胶阶段(失去流动性);硬化(定型)阶段;完全固化阶段凝胶阶段:从加入固化剂、促进剂以后算起,直至树脂凝结成胶冻状而失去流动性的阶段。

?环氧树脂(Epoxy Resins)

1) 什么是环氧树脂?其结构特点是什么?

分子结构中含有两个或两个以上环氧基团,并在适当的化学试剂存在下能形成三维网状固化物的化合物的总称。结构特点:分子链中含有活泼的环氧基团。

2) 环氧树脂的特性指标有哪些?

i) 环氧当量(或环氧值)

数;环氧值是指100 g

ii) 羟值(或羟基当量) :羟基当量是指含有1mol羟基的环氧树脂的质量克数;羟值是指100 g环氧树脂中所含的羟基的摩尔数

iii) 酯化当量;iv) 软化点;v) 氯含量

3)缩水甘油醚类环氧树脂中最主要且产量最大的是什么环氧?它有哪两类物质反应得到?

双酚A型环氧树脂;属于缩水甘油醚类;可由双酚A(二酚基丙烷)和环氧氯丙烷在NaOH催化下反应制得。

环氧氯丙烷与双酚A的摩尔比必须大于1:1才能保证聚合物分子末端含有环氧基。

4) 环氧树脂的固化机理和常用的固化剂有哪些?

环氧树脂的固化是通过加入固化剂,利用固化剂中的某些基团与环氧树脂中的环氧基或羟基发生反应来实现的。常用的固化剂为:胺类固化剂、酸酐类固化剂、合成树脂类固化剂、聚硫橡胶类固化剂。

胺类固化剂:氨基与环氧基反应有严格定量关系,氨基上一个活泼氢和一个环氧基反应。

例:E-51环氧树脂,用三乙烯四胺作固化剂,100 g环氧理论上需要固化剂的

含量是多少?

?聚合物基复合材料的制备工艺

聚合物基复合材料的制备工艺特点:(1) 材料的形成与制品的成型同时完成,复合材料的制备过程也就是复合材料成品的生产过程;(2) 聚合物基复合材料成型方便。

1) 聚合物基复合材料的制备主要包括如下过程:预浸料的制备、制件的铺层、固化及制件的后处理与机械加工等。

?预浸料的制备:

?预浸料是指将树脂体系浸涂到纤维或纤维织物上,通过一定的处理过程后贮存备用的半成品。

热固性预浸料:溶液浸渍法和热熔法(P139)

例:溶液浸渍法和热熔法各有何优缺点?

溶液浸渍法可充分浸渍纤维增强体,适宜制备薄型或厚型预浸料,且设备造价低廉。但是预浸料有溶剂残留,成型时易成孔隙,影响复合材料性能。

热熔法无需使用溶剂,但是难以浸透厚度较大的纤维,当树脂粘度较高时基体也难以浸渍纤维。

热塑性预浸料:溶液预浸;熔融预浸;膜层叠;粉末浸渍;纤维混杂。(P141)?手糊成型

原料:

树脂主要为不饱和聚酯树脂(用量约占各类树脂的80% ),其次是环氧树脂。增强材料主要是玻璃纤维,其次碳纤维、芳纶纤维和其他纤维。

为调节树脂粘度,有时还需加入一定量的稀释剂。

手糊成型的辅助材料主要有填料和颜料。(降低固化收缩率和热膨胀系数;改善制品性能;增粘或赋予触变性;降低成本常用CaCO3、石棉、铝粉、石英粉、Al2O3粉、TiO2(提高粘附力))

脱模剂:外脱模剂(如:聚酯薄膜、聚乙烯醇溶液、凡士林油等)

模具材料:如玻璃钢、木材、石蜡等

?工艺流程:增强材料剪裁→磨具准备→涂脱模剂→喷涂胶衣层→成型操作→脱模→修边→装配。

?树脂胶液的配置:胶液的工艺性是影响手糊制品质量的重要因素。胶液的工艺性主要指胶液粘度和凝胶时间。

1) 胶液粘度,表征流动特性。对手糊作业影响大,粘度过高不易涂刷和浸透增强材料;粘度过低,在树脂凝胶前发生胶液流失,使制品出现缺陷。粘度可通过加入稀释剂调节。

2) 凝胶时间。凝胶时间过短,由于胶液粘度迅速增大,不仅增强材料不能被浸透,甚至发生局部固化,使手糊作业困难或无法进行。反之,如果凝胶时间过长,不仅增长了生产周期,而且导致胶液流失,交联剂挥发,造成制品局部贫胶或不能完全固化。

?胶衣层作用:提供颜色;增强胶衣层(防止龟裂);有利于胶衣层与结构层(玻璃布)的粘合。

?手糊成型特点:1) 操作简便;2) 投资少、费用低、能生产大型和复杂制品、制品可设计性好;3) 属劳动密集型、成型效率低;4) 制品质量受操作者技术水平限制;5) 生产周期长,产品强度较其它方法低。

?模压成型

?模压成型是将一定量的模压料放入金属对模中,在一定的温度和压力作用下固化成型制品的一种方法。

?成型过程:1) 将一定量的模压料置于敞开的金属模型腔内,闭模后加热使其熔化;2) 以一定温度和压力,使型腔内的模压料在温度和压力作用下熔融并充满型腔,形成与模腔相同形状的模制品;3) 再经加热使树脂进一步发生交联反应而固化,或者冷却使热塑性树脂硬化,脱模后得到复合材料。?模压成型的优缺点:优点:①较高的生产效率;②制品尺寸准确、表面光洁;③多数结构复杂的制品可一次成型、无需有损制品性能的二次加工;④制品外观及尺寸的重复性好,容易实现机械化和自动化等。缺点:①模具设计制造复杂;②压机及模具投资高;③制品尺寸受设备限制,一般只适合制造批量大的中、小型制品。

?喷射成型

?成型过程:1) 将分别混有促进剂和引发剂的不饱和聚酯树脂从喷枪两侧的两个喷口喷出,同时将玻璃纤维无捻粗纱用切割机切断并由喷枪中心喷出,这三组喷射物相遇并均匀混合后沉积到模具上。2) 待沉积到一定厚度,用手辊液压,使纤维浸透树脂、压实并除去气泡,再进行加热或常温固化;3) 固化后脱模得到制品。

?喷射成型对所用原材料有一定要求,例如树脂体系的粘度应适中,容易喷射雾化、脱除气泡和浸润纤维以及不带静电等

?喷射成型的优缺点:优点:①生产效率比手糊提高2~4倍,生产率可达15kg/min;②可用较少设备投资实现中批量生产;③可用玻璃纤维无捻粗纱代替织物,材料成本低,产品整体性好,无接缝;④可自由调变产品壁厚、纤维与

树脂比例。缺点:①现场污染大;②树脂含量高;③制品强度较低。

?拉挤成型(型材)

?拉挤成型是将浸渍过树脂胶液的连续纤维束或带状织物在牵引装置的作用下通过成型模定型,在模中或固化炉中固化,制成具有特定横截面形状和长度不受限制的复合材料型材的方法。拉挤成型属于连续成型工艺。可用切割机将拉挤的型材切割成要求的长度。

?拉挤成型工艺流程如下:玻璃纤维粗砂排布→浸胶→预成型→挤压模塑及固化→牵引→切割→制品。

?原料:1) 树脂基体:要求粘度低、固化过程无挥发物等;2) 热固性基体主要有不饱和聚酯树脂、环氧树脂、乙烯基酯树脂等;热塑性基体主要有聚丙烯、ABS、尼龙、聚碳酸酯、聚砜、聚醚砜、聚亚苯基硫醚等;3) 增强体:要求纤维本身强度高、不易产生静电、集束性好;4) 大部分是玻璃纤维,其次是聚酯纤维和其他纤维。在玻璃纤维中,应用最多的是无捻粗纱;5) 辅助材料:内脱模剂、填料等;6) 内脱模剂:硬脂酸锌、硬脂酸钙、硬脂酸铝和烷基磷酸酯等。?优缺点:优点:①生产效率高,便于实现自动化;②制品中增强材料的含量一般为40 ~ 80 % ,能够充分发挥增强材料作用,制品性能稳定可靠;③生产过程中无边角废料,产品不需后加工,因此较其他工艺省工、省原料、省能耗;

④生产过程中树脂损耗少;⑤制品的纵向和横向强度可任意调整,以适应不同制品的使用要求;⑥其长度可根据需要定长切割。缺点:产品形状单调,只能生产线形型材,而且横向强度不高。

第六章陶瓷基复合材料

金属基纳米复合材料制备工艺

金属基纳米复合材料制备工艺 材料研1203 石南起Z1205020金属基纳米复合材料是以金属及合金为基体,以高性能的第二相为增强体,与一种或几种金属或非金属纳米级增强体结合的复合材料,因兼有金属和纳米相而具有独特的结构特征和物理、化学及力学性能,成为一种新兴的纳米复合材料和新型金属功能材料。 1.金属基纳米复合材料的种类和基本性能 (1)相对于传统的金属材料来说,具有较高的比强度与比刚度; (2)与聚合物基复合材料相比,它又具有优良的导电性与耐热性; (3)与陶瓷基材料相比,它又具有高韧性和高冲击性能。 2.金属基纳米复合材料的种类 金属基复合材料是以金属为基体,以高强度的第二相为增强体而制得的复合材料。因此,对这种材料的分类既可按基体来进行、也可按增强体来进行。 按增强体类型分为:1.颗粒增强复合材料;2.层状复合材料;3.纤维增强复合材料。 按基体类型分为:1.铝基复合材料;2.镍基复合材料;3.钛基复合材料;4.镁基复合材料。 按用途分为:1.结构复合材料;2.功能复合材料。 3.金属基纳米复合材料性能特征 金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。综合归纳金属基复合材料有以下性能特点。 A.高比强度、比模量 B. 良好的导热、导电性能 C.热膨胀系数小、尺寸稳定性好 D.良好的高温性能和耐磨性 E.良好的断裂韧性和抗疲劳性能 F.不吸潮、不老化、气密性好 4.金属基纳米复合材料制备工艺的分类: (1)固态法:粉末冶金法、真空热压扩散结合、热等静压、超塑性成型 / 扩散结合、模压。(2)液态法:液态浸渗、真空压铸、反压铸造、半固态铸造。 (3)喷射成型法:等离子喷涂成型、喷射成型。 (4)原位生长法。 制备金属基纳米复合材料的具体方法有机械合金化法、熔融纺丝法、粉末冶金法、机械诱发自蔓延高温合成反应法、真空蒸发惰性气体凝聚及真空原位加压法等。 A.机械合金化法 将按合金粉末金属元素配比配制的试料放入立滚、行星或转子高能球磨机中进行高能球磨,制得纳米晶的预合金混合粉末,为防止粉末氧化,球磨过程中采用惰性气体保护;球磨制得的纳米晶混合粉经烧结致密化形成金属基纳米复合材料。在球磨过程中,大量的碰撞现象发生在球粉末与磨球之间,被捕获的粉末在碰撞作用下发生严重的塑性变形,使粉末反复的焊合和断裂。经过“微型锻造”作用,元素粉末混合均匀,晶粒尺度达到纳米级,层状结构达到1um下,比表面积大大增加。由于增加了反应的接触面积,缩短了扩散距离,元素粉末间能充分进行扩散,扩散速率对反应动力的限制减小,而且晶粒产生高密度缺陷,储备了大量的畸变能,使反应驱动力大大增加。 B.高能球磨法 20世纪60年代末,美国首先用高能球磨法制备出氧化物弥散强化合金,高能球磨法是利

金属基复合材料的种类与性能

金属基复合材料的种类与性能 摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。金属基复合材料正是为了满足上述要求而诞生的。 关键词:金属;金属基复合材料;种类;性能特征;用途 1. 金属基复合材料的分类 1.1按增强体类型分 1.1.1颗粒增强复合材料 颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。 1.1.2层状复合材料 这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。 层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。 由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。 1.1.3纤维增强复合材料 金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。 短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。 当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。 1.2按基体类型分 主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。在这里主要介绍这几种材料 1.2.1铝基复合材料 这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。再制造铝基复合材料时通常并不是使用纯铝而是铝合金。这主要是由于铝合金具有更好的综合性能。

PTFE复合材料填料与性能

PTFE复合材料填料与性能 文献类型:pdf 和txt 出版时间:1996 作者:任杰[1] 黄岳元[2] 关键词:聚四氟乙烯复合材料填料 期刊名称:有机氟工业.1996(1).-14-21 全文长度:11336个字 文献来源:https://www.360docs.net/doc/9d15737290.html, 第六图书馆机构:[1]西安石油学院[2]西北大学 查看次数:121 分类号:TQ325.407 TQ050.45 全文:PTFE复合材料填料与性能第六图书馆聚四氟乙烯复合材料填料有机氟工业任杰黄岳元[1]西安石油学院[2]西北大学1996第六图书馆二·1·4有机氟工业1g96年特种含氟药品的合成无疑是一条捷径,另外值得提上一笔的是,SF具有一定CsO。的氧化性,导致一些出乎意料的副产物的生会参考文献1Apema.p]nEH,Bai.ThmpnRC·JAme.slLJeo ̄.rChm.Se1117)34eo.0(9938成,者在使用CSF对某些复杂结构的芳烃笔sO。底物进行氟化时就曾深受其困扰,而,ua然Zpn等恰恰利用了CsO。的这种氧化性.现了一SF发种新的氧化氟化法:oH/018)692SabrS,ZpnM,JOr.Chm.5<9530.tveua.ge.3tvorS,ZpnM.7FurSaIeualo.Chm.118)9e91577(4tve.SabrS.KoiIZua.7,Flo.Chm.5sr:pnMuve4(912819)6Ac—CH—Cs吐F—SArF—莰(r、1前言PE聚四氟乙烯)有“料王”称,TF(虽塑之有优良的润滑性能,有耐高低温和出色的化学稳具轰甜寺(北大学)西,辑、。7PF-E复合材料填料与性能T、查..一—(安石油学院)西———f。j堑——?-—u'——~—垂—、J性、吸附性、化性、点等方面与常规材料相比催熔显示出许多特异性能,在应用价值极大可以潜设想,把粒径111m的金属超细粉体若~0,0n定性等优点,仍存在冷流变形大.磨性能差但耐等缺点只有改性,过材料复合的方法,满足通来工业部门某些领域对PF复合材料的特异性TE能要求。如果配方和制造方法正确,TF复合PE这是单用PE、属、机物和有机物所不能TF金无得到的,是其他复合材料所不能替代的,工也在程应用中占有重要地位。用作PE填料,会使复合材料的生产工艺TF将及综合性能大为改善和提高。21铜粉.铜是富有韧性的金属,性好,有良好的塑具性好,良好的耐蚀性,大气、水、水中有有在海淡很好的耐蚀性。TF中填充铜粉可改善其机械PE性能和提高耐磨性,高抗蠕变性、压强度、提抗硬材料可以具有许多优良的综合性能和多种用途,延展性,易加工,良好的机械性能,容有导热导电目前市场上,TE复合时填料品种很多,度及尺寸稳定性PF已被研究过的填料有20余种,能满足使用要0但在铜粉中填充石墨和PE或填充MozTFS求的只不过3o余种.致可归纳为金属填料、大无和PE可以制成以铜为基体的铜基自润滑复TF机物填料及有机物填料三大类现予以介绍。2金属填料及性能金属填料包括铜粉及其合金、粉、粉、铅铝锑粉、粉、粉、粉、粉、粉、粉等。可采钼镍锡铁钨银也用金属纤维、金属纤维等。这需要不同的填充镀舍材料。铜粉含量达6时.限P0极V值高于其他一般材料22铝粉.铝和铜一样本身有

金属基纳米复合材料

金属基纳米复合材料 摘要:本论文主要介绍了纳米复合材料的设计(包括结构设计和功能设计),讨论了金属基复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对金属基纳米复合材料的发展进行了展望 。 关键词:纳米复合材料简介金属基复合材料特性金属基复合材料制备方法碳纳米管金属基纳米复合材料展望 引言:金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、耐湿性好、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉积和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业,而使其应用越来越广泛,进入到生产生活的各个方面。 纳米复合材料简介 纳米材料是由纳米量级(1—100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数的比值随着粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。由于纳米材料的特异性能,纳米材料有着广泛的应用。 根据纳米复合材料的功能特性和使用时的侧重点,可将其粗略地分为结构纳米复合材料和功能纳米复合材料两大类。前者主要用在产品或工程的结构部件上,着重在材料的结构强度、刚性、韧性、耐热性能等机械、物理、力学性质和耐化学腐蚀与耐恶劣环境能力上的赋予;后者侧重在利用材料的特殊光、电、声、热、磁敏感应、信息贮存与传输、能量贮存与释放等性能及效应来实现某种功能。根据纳米复合材料的复合途径可分为:纳米相—纳米相复合材料,纳米相—常规块体复合材料及复合纳米薄膜。根据复合材料组分的性质可分为无机—无机纳米、有机—有机纳米以及无机—有机纳米复合材料。 金属基纳米复合材料的特性 金属基纳米复合材料的力学性能主要具有如下的特点:高强度和高韧性,高比强度和高比模量,抗蠕变和抗疲劳性好,高温性能好,断裂安全性高等。 1.微观结构 研究人员用超声波气态原子化法和热挤压锻造制备纳米复合材料,研究其微观结构演化、热稳定性和ɑ-Al纳米相生长动力学,发现:原子化粉末的微观结构受基体中溶质过饱和度、隐含微应力、溶质大小、分布状态和沉积纳米相的体 (Ni,Fe)纳米相积分数等因素影响;在热的结晶过程中,ɑ-Al相的沉积和Al 3

纳米复合材料发展与现状

纳米复合材料发展与现状 201041505118 李少军10材料一班 1 纳米复合材料 超细粒子(或纳米粒子)是指尺度介于原子、分子、离子与块状材料之间,粒径在1~100nm范围以内的微小固体颗粒。随着物质的超细化,产生了块状材料不具有的表面效应、小尺寸效应、量子效应,从而使超细粒子与常规颗粒材料相比具有一系列优异的物理、化学性质。纳米粒子经压制、烧结或溅射组合而成的具有某些特定功能的结构即纳米材料。它断裂强度高、韧性好、耐高温,纳米复合同时也提高材料的硬度、弹性模量、Weibull模数,并对热膨胀系数、热导率、抗热震性产生影响。[1] 纳米复合主要指在微米级结构的基体中引入纳米级分散相。纳米复合材料(复合超微细颗粒)表现出许多与模板核本质不同的性质,如不同的表面组成、磁性、光学性能、稳定性及表面积等。纳米复合材料涉及的范围广泛,它包括纳米陶瓷材料、纳米金属材料、纳米磁性材料、纳米催化材料、纳米半导体材料、纳米聚合材料等。纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。纳米材料是物质以纳米结构按一定方式组装成的体系。它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。纳米材料也被人们誉为21 世纪最有前途的材料。由于纳米材料本身所具有的特殊性能。作为一种全新性能的先进复合材料,在微电子、信息、汽车、宇航、国防、冶金、机械、生物、医药、光学等诸多领域有极广泛的应用前景。 2 纳米复合材料的分类 研究纳米复合材料的一个重要目的是改进并提高块体材料的性能,或通过结构复合来发现块材料中并不存在的性能或效应。和块体材料相比,纳米复合材料的物理和化学性质将更多地依赖于材料的表面缺陷和量子尺寸效应。目前.纳米复合材料的种类繁多,可分为:固态纳米复合材料和液态纳米复合材料。基质材料对于纳米粒子的结构具有稳定作用;而基质材料的不同,又可将纳米复合材料区分为:无机基纳米复合材料和聚合物基纳米复合材料。聚合物基包括单聚合物、共聚合物和聚合物的混合;无机基则包括玻璃,如多孔玻璃、分子筛、溶胶一凝胶玻璃和陶瓷等。[2]还可根据纳米粒子的物理性质可将纳米复合材料区分为:半导体纳米复合材料、铁电体微晶复合材料、染料分子纳米复合材料、稀土纳米复合材料、金属(合金)纳米复合材料、光学纳米复合材料(非线性、发光、光折变等)、磁性纳米复合材料等。 3 纳米复合材料的制备 3.1 溶胶- 悬浮液混合法

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

铝基复合材料简述

铝基复合材料 1. 铝基复合材料的基本性能 1.1 强度,模量与塑性 铝基复合材料比强度和比刚度高.高温性能好。更耐疲劳和更耐磨,阻尼性 能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。 增强体的加入在提高铝基复合材料强度和模量的同时。降低了塑性。 另外增强相的加入又赋予材料一些特殊性能,这样不同金属与合金基体及不 同增强体的优化组合。就使金属基复合材料具有各种特殊性能和优异的综合性能。 尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工 和价格低廉的优点,更加引起人们的注意。 1.2 耐磨性 高的耐磨性是铝基复合材料(SiC、A1203)增强的特点之一 颗粒体积分数对复合材料摩擦系数的影响显著,而颗粒尺寸对复合材料摩擦系数影响不大。 与基体合金相比,铝基复合材料表现出良好的抗磨损性能,并随着加入颗粒 尺寸的减小和数量的增多而变强。在滑动磨损实验中,颗粒及纤维增强的铝基复合材料的耐磨性有两个数量级的提高,但随着磨粒尺寸的增大,载荷中冲击成分的提高使其耐磨性迅速下降。材料的耐磨性的好坏取决于强化机制、增强相之间的相互制约及与基体在变形过程中的协调作用。当然,也与增强相类型及基体合金的性能有关。 增强相的聚结显著降低材料的耐磨性。 1.3 疲劳与断裂韧性 铝基复合材料的疲劳强度和疲劳寿命一般比基体金属高,这与刚度及强度的提高有关,而断裂韧性却下降。影响铝基复合材料疲劳性能和断裂的主要因素有:增强物与基体的界面结合状态、基体与增强物本身的特性和增强物在基体中的分布等。界面结合状态良好,可以有效地传递载荷,并阻止裂纹扩展,提高材料的断裂韧性。 目前对复合材料疲劳断裂过程的研究分为疲劳裂纹的萌生和扩展两个方面。现有的研究工作在实验的基础上得出疲劳裂纹萌生于SiC 附近。SiC与铝合金界

耐磨金属材料的最新研究现状

耐磨金属材料的最新研究现状 关键词:耐磨材料;锰钢;抗磨白口铸铁;技术进展 摘要:耐磨金属材料被广泛地应用于工业生产的各个领域, 而随着科学技术和现代工业的高速发展,由于金属磨损而引起的能源和金属材料消耗增加等所造成的经济损失相当惊人。近年来,对金属磨损和耐磨材料的研究,越来越引起国内外人们的广泛重视。本文概述了国内外耐磨金属材料领域研究开发的现状及取得的一系列新进展。 0 引言 随着科学技术和现代工业的高速发展,机械设备的运转速度越来越高,受摩擦的零件被磨损的速度也越来越快,其使用寿命越来越成为影响现代设备(特别是高速运转的自动生产线)生产效率的重要因素。尽管材料磨损很少引起金属工件灾难性的危害,但其所造成的能源和材料消耗是十分惊人的。据统计,世界工业化发达的国家约30%的能源是以不同形式消耗在磨损上的。如在美国,每年由于摩擦磨损和腐蚀造成的损失约1000亿美元,占国民经济总收入的4%。而我国仅在冶金、矿山、电力、煤炭和农机部门,据不完全统计,每年由于工件磨损而造成的经济损失约400亿元人民币[1]。因此,研究和发展耐磨材料,以减少金属磨损,对国民经济的发展有着重要的意义。 1国外耐磨金属材料的发展 国外耐磨材料的生产和应用经过了多年研究与发展的高峰期,现已趋于稳定,并有自己的系列产品和国家标准、企业标准。经历了从高锰钢、普通白口铸铁、镍硬铸铁到高铬铸铁的几个阶段,目前已发展为耐磨钢和耐磨铸铁两大类。 耐磨钢除了传统的奥氏体锰钢及改性高锰钢、中锰钢以外,根据其含量的不同可分为中碳、中高碳、高碳合金耐磨钢;根据合金元素的含量又可分为低合金、中合金及高合金耐磨钢;根据组织的不同还可分为奥氏体、贝氏体、马氏体耐磨钢。而耐磨铸铁主要包括低合金白口铸铁和高合金白口铸铁两大类。二者中最具有代表性的是低铬白口铸铁和高铬白口铸铁,而且这两种材料目前在耐磨铸铁中占有主导地位。马氏体或贝氏体、马氏体组织的球墨铸铁在制作小截面耐磨件方面也占有一席之地,中铬铸铁则应用较少。从整体上看,合金白口铸铁的耐磨性优于耐磨铸钢,但后者韧性好,在诸如衬板、耐磨管道等方面有着广泛的应用[2]。 2 我国耐磨金属材料的发展 据统计,国内每年消耗金属耐磨材料约达300万吨以上,应用摩擦磨损理论防止和减轻摩擦磨损,每年可节约150亿美元。近年来,针对设备磨损的具体工况和资源情况,研制出多种新型耐磨材料。主要有改性高锰钢、中锰钢、超高锰钢

常用复合材料介绍

非金属材料及复合材料 学习目标:了解非金属材料和复合材料的种类、性能特点及应用,特别是塑料、橡胶、陶瓷、复合材料的性能特点及应用。 本章导读:塑料与橡胶为有机高分子材料,与金属相比质量轻,具有金属材料不可比拟的特殊性能,使用极为广泛;陶瓷为无机非金属材料,具有高硬度、耐蚀的性能,除日用陶瓷外,工业上使用的特种陶瓷更具有其独特的性能,在机械加工、航空航天、化学工业等领域都有应用;复合材料是由两种或多种材料组成的多相材料,具有较好的综合性能,其应用越来越受到广泛的重视,大家熟悉的玻璃钢、塑钢门窗、羽毛球拍等,都是用复合材料制造的。 第一节塑料与橡胶 塑料与橡胶属高分子材料,目前,全世界合成高分子材料的年产量按体积计已超过钢铁材料,并正以每年14%的速度增长,其使用领域广泛,涉及工业制造及日常生活。 高分子材料是由若干原子按一定规律重复地连接而成的长链分子,长链分子的最大伸直长度可达毫米级,其分子量一般大于5000。高分子材料按来源可分为天然高分子(天然橡胶、蚕丝、皮革、木材等)和合成高分子化合物(塑料、橡胶等)。 合成高分子化合物是由一种或几种单体(简单结构的低分子化合物)聚合而成的,因此高分子化合物又称高聚物或聚合物。如聚乙烯分子就是由单体乙烯经聚合反应连接而成: n(CH2=CH2)—— --[ CH2—CH2 ]-- n 乙烯聚乙烯 高分子化合物的化学组成一般并不复杂,是由重复连接的结构单元组成的,这种重复连接的结构单元称为“链节”,如聚乙烯中的 --[ CH-2—CH2 ]--。大分子链之间存在的相互作用力使链节连接起来,其连接方式决定了高分子化合物的性能。 一、塑料 1.塑料的组成 塑料的主要组成是合成树脂和添加剂。合成树酯是具有可塑性的高分子化合物的统称,它是塑料的基本组成物,它决定了塑料的基本性能,塑料中合成树酯含量一般为30%~100%。树酯在塑料中还起粘结剂的作用,许多塑料的名称是以树酯来命名的,如聚苯乙烯塑料的树酯就是聚苯乙烯;添加剂的作用主要是改善塑料的某些性能或降低成本,常用的添加剂有填充剂、增塑剂、稳定剂、润滑剂、固化剂、着色剂等。

金属基纳米复合材料的研究现状与发展前景

金属基纳米复合材料的研究现状与发展前景 摘要:本文综述了金属基纳米复合材料的制备方法和金属基纳米复合材料的特性,分析了金属基纳米复合材料的微观结构,介绍了国内外相关研究现状及应用的最新进展。文中指出了金属基纳米复合材料现阶段研究中存在的几个重要问题,展望了金属基纳米复合材料的未来发展趋势。 关键词:纳米材料;金属基纳米复合材料;机械合金化;微观结构;塑性流动;断裂行为;碳纳米管 1.发展历史 1.1概述 纳米材料是由纳米量级(1-100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数之比随粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。 []3-1。 由于纳米材料的特异性能,纳米材料有着广泛的应用 金属基纳米复合材料用颗粒、晶须、纤维增强金属基体,具有原组分不具有的特殊性能或功能,为设计和制备高性能的功能材料提供了新的机遇[]4。所以,金属基纳米复合材料已成为纳米材料工程的重要分支,世界上各发达国家已经把纳米复合材料的研究放在重要地位。 1.2分类

纳米复合材料按基体材料类型可以分为金属基纳米复合材料、陶瓷基纳米复合材料、聚合物基纳米复合材料。金属基复合材料兼具金属与非金属的综合性能,在韧性、耐磨性、热膨胀、导电性等多种机械物理性能方面比同性材料优异得多。金属基纳米复合材料是由纳米级的金属或非金属粒子均匀地弥散在金属及合金基体中而成,较之传统的金属基复合材料,其比强度、比模量、耐磨性、导电、导热性能等均有大幅度的提高。因此,金属基纳米复合材料在航空航天、汽车,电子等高科技领域有极大的应用前景。如碳化硅纤维与颗粒增强钛合金用于大推力飞机压气机部件,颗粒增强铝基复合材料广泛用于航空、航天及汽车、电子领域。 2.制备工艺 2.1机械合金化法 制备金属基纳米材料的MA 法:将按合金粉末金属元素配比配制的试料放入立滚、行星或转子高能球磨机中进行高能球磨,制得纳米晶的预合金混合粉末,为防止粉末氧化,球磨过程中采用惰性气体保护;球磨制得的纳米晶混合粉经烧结致密化形成金属基纳米复合材料。在球磨过程中,大量的碰撞现象发生在球粉末与磨球之间,被捕获的粉末在碰撞作用下发生严重的塑性变形,使粉末反复的焊合和断裂。经过“微型锻造”作用,元素粉末混合均匀,晶粒尺度达到纳米级,层状结构达到 m 1μ 以下,比表面积大大增加。由于增加了反应的接触面积,缩短了扩散距离,元素粉末间能充分进行扩散,扩散速率对反应动力的限制减小[]5 ,而且晶粒产生高密度缺陷,储备了大量的畸变能,使反应驱动力大大增加。实验研究表明,在球磨阶段元素粉末晶粒度达到20-50nm 左右,甚至几个纳米,球磨温升在30-40K 左右[]6 可使互不相溶的W ,Cu 等合金元素、或溶解度较低的合金粉末如W ,Ni ,Fe 等发生互扩散,形成具有一定溶解度或较大溶解度的 W-Cu ,E-Ni-Fe 超饱和固溶体和Ni 非晶相。 最近,黄等[]7用行星式高能球磨机制备了)(30-20Fe Cu Al 20-80=χχχ三元非晶纳米合金粉末,发现成分为204040Fe Cu Al 的粉末球磨时逐步非晶化,球磨33h 后,非晶化程度最大,最小颗粒尺寸达到5.6进一步球磨,非晶晶化,颗粒尺寸

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

耐磨复合材料代替传统耐磨材料已成为行业发展的必然趋势

耐磨复合材料代替传统耐磨材料已成为行业发展的必然趋势 相关机构分析认为,现代工业发展对耐磨材料的性能提出了更高的要求,大部分耐磨材料既需要具备良好的韧性,又必须具有高强度特性,但是,一种材料同时具有高韧性和高强度,在实际中很难做到,而复合材料正好可以满足这一要求。因此,开发新型耐磨复合材料成为工业生产亟待解决的问题之 一。" 2011~20年年增长率将达5%~10% 目前,国内外对耐磨复合材料的研究在逐年增多,复合锤头、衬板、鄂板、斗齿等耐磨复合材料已经得到很好的应用,复合的管、辊类机械零件等也得到了研究并有了很好的实际生产应用。 随着工艺过程的改进和材料的优化,耐磨复合材料的应用将更加广泛。由于磨损问题实际上在工业中是不可避免以及客观存在的,因此,耐磨材料行业也称之为一个“不朽的行业”。相关机构初步统计,2009年,我国用于磨料磨损工况的耐磨材料年用量已由2004年的约200万吨增长到2009年的350万吨以上,年复合增长率达到 11."8%;预计2011~20年的年增长率将达到5%~10%。耐磨复合材料是在传统耐磨材料基础上发展起来的新兴技术和产品,随着工业的不断进步和市场需求的不断升级,耐磨复合材料在部分应用领域替代传统耐磨材料已成为必然趋势,前景十分广阔。 基建需求推动耐磨复合材料的下游应用 耐磨复合材料的应用领域广泛,其中,工程机械、矿山矿石、水泥砂石是最主要的下游应用领域。 1.工程机械对部件耐磨性的要求逐渐提高 目前,我国工程机械行业实现销售收入跃居世界首位,成为工程机械制造大国。根据《中国工程机械行业“十二五”规划》的预测数据,预计到2015年,

我国对工程机械的市场需求将达到8370亿~8510亿元;2015年工程行业销售规模将达到9000亿元水平,年平均增长率大约为17%。在工程机械中,挖掘机的斗齿、铲齿,摊铺机的螺旋叶片,搅拌机的叶片,混凝土搅拌站的叶片与衬板等磨损最严重的部位,也是对耐磨材料需求最多的部位。 近年来,随着我国能源、铁路、公路、运输等基础领域建设的推进,工程机械整机及配件的产销量不断增长,市场对具备耐磨损、抗冲击、耐腐蚀的斗齿、衬板、渣浆泵过流件等工程机械耐磨材料部件的需求也飞速增长。2009年,挖掘机斗齿类耐磨材料年用量约15万吨左右,杂质泵过流件与管道类耐磨材料16万吨。 相关机构认为,目前,市场上使用较多的工程机械耐磨材料部件还是传统的耐磨材料,随着工程施工技术及机械制造技术不断提高,下游客户对在恶劣工况中能保证使用过程不断裂、使用寿命更长的具有更高耐磨性的耐磨复合材料部件的需求将不断增长。 2.矿山矿石开采需要耐磨性更强的配件 矿产资源是国民经济和社会发展的重要物质基础。根据国土资源部的统计数据,“十一五”期间我国固体矿山矿石产量从2005年的52亿吨增长到2010年的90亿吨,净增加38亿吨;铁矿石产量由2001年的21701万吨增长至2012年的 13 963."7万吨,年均增长率达到 19."69%。根据国土资源部发布的《全国矿产资源规划(2008~2015年)》,2015年我国铁矿石年开采量将达11亿吨以上,铜矿石达130万吨以上,铅锌达700万吨以上。 在矿山矿石开矿与选矿过程中,破碎机的锤头、掘进机的斗齿、球磨机的衬板和磨球、提升机的钢丝绳和衬板、通风机的叶片等都属于易磨损失效部件。这些磨损最严重的部件,也是对耐磨材料需求最多的地方。

SMC复合材料介绍精编版

S M C复合材料介绍集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

S M C复合材料介绍SMC是Sheetmoldingcompound的缩写,SMC复合材料,SMC模塑料即片状模塑料(俗称玻璃钢材料)。主要原料由SMC专用纱、不饱和树脂、低收缩添加剂,填料及各种助剂组成。SMC具有优越的电气性能,耐腐蚀性能,质轻及工程设计容易、灵活等优点,其机械性能可以与部分金属材料相媲美,因而广泛应用于电气、电子、车辆、建筑、化工、航空等行业中。 SMC复合材料作为目前世界上最先进和最为推广的电气设备外壳制造材料,有着与其它非金属材料和金属材料无法比拟的优势: 一、优良的电气绝缘性能:SMC是一种优异的绝缘材料;具有高性能的绝缘电阻,防止漏电,在高度频下能保持良好的介电性能,不反射、不阻断微波的传播,不生锈可长期使用。绝缘防护和抗爬电指标符合DIN/VDE 相关标准。这种材料不仅具有极佳的电绝缘性,而且在高频下亦能保持良好的介电性能,不受电磁作用,不反射电磁波。 二、优质的阻燃材料:SMC复合材料阻燃性能可达到FVO级,烟气毒性等级为准安全级。我公司的材料可满足国内外UL94要求。 三、优良的耐腐蚀性能:SMC复合材料可有效抵海水、汽油、酒精、电解盐、醋酸、盐酸、钠钾化合物、尿、沥青、各种酸碱土壤及酸雨的腐蚀。产品本身具有良好的抗老化性能,且制品表面具有一层耐紫外线能力极强的防护层,双重防护合产品具有更高的抗老化性能。

四、优良的机械性能:SMC复合材料主要由优异的绝缘材料维网状分子结构和特种增强纤维共同作用,使该材料具有良好的抗冲性,易于机械加工,便于钻孔和切割,定位准确,具有很高的拉伸强度、弯曲和冲击韧性。 五、环保无毒材料:SMC复合材料是一种不含卤素,无对人体有害物质,是一种新型的环保材料,满足未来绿色发展需要。 六、热导率低、膨胀系数小:SMC复合材料是一种耐高温热变形率低,绝热性可降低环境温差对箱体内部的影响,同金属材料相比可有效减少箱体内部凝露的发生。 七、优异的耐紫外线抗老化性能:在非金属材料中,纤维增强聚酯材料有着优秀的抗老化性能。经过抗老化性能测试表明,使用地点不同,所处气候带不同,其表面最大老化程度小因此对箱体的机械性能没有明显的影响。令外我公司可采取了一种特殊的耐紫外线表面处理工艺,更加强化了其耐老化性能。 八、使用寿命长:SMC复合材料所制造的电气设备箱体外壳,能适合各种恶劣天气,使用寿命长,其寿命远远超过了金属等传统材料。 九、质轻安装方便:SMC复合材料所制造的电气设备箱体外壳,生产工艺快、造形美观安装方便。箱体采用模压高温一次成形或开板式结构组合,模块化安装,适于搬运,安装简单,可现场组装或拆卸,使用方便。适合应用于人流密公共场所或人员长期触及到电气设备外壳的场所,能避免箱体触电现象的发生。

金属基纳米复合材料

金属基纳米复合材料 摘要:综述了复合材料的重要作用和金属基纳米复合材料作为复合材料材料中的一种,它的力学和磁学性能,分析了金属基纳米复合材料的微观结构,介绍了国内外相关研究现状及应用的最新进展。主要指出了金属基纳米复合材料的制备方法,在此基础上提出了研究中存在的几个重要问题,展望了金属基纳米复合材料的未来发展趋势。 关键字:复合材料;金属基纳米复合材料;微观结构;性能;应用。 1. 引言 现代高科技的发展更紧密地依赖于新材料的发展,同时也对材料提出了更高、更苛刻的要求,高温、高压、高强度、低密度、耐磨、柔韧性……。当前作为单一的金属、陶瓷、聚合物等材料各自固有的局限性而不能满足现代科学技术发展的需要。复合材料特别是先进复合材料就是为了满足以上高技术发展的需求而开发的高性能的先进材料〔1〕。复合材料是应现代科学技术而发展出来的具有极大生命力的材料。 复合材料是两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。而金属基纳米复合材料是复合材料中的一种。纳米材料是由纳米量级的纳米粒子组成的固体材料。纳米微粒有基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应〔2〕。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数之比随粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑和超塑性等。金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、不吸湿、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业。 2. 复合材料的历史 6000年前人类就已经会用稻草加粘土作为建筑复合材料。近代,水泥复合材料已广泛地应用于高楼大厦和河堤大坝等的建筑,发挥着极为重要的作用。现在,先进复合材料包括有树脂基复合材料、CC复合材料陶瓷和金属基复合材料和纳米复合材料,在各个领域有广泛的应用。现

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

耐磨金属材料的最新研究进展

耐磨金属材料的最新研究进展 关键词:耐磨材料;锰钢;抗磨白口铸铁;技术进展 摘要:耐磨金属材料被广泛地应用于工业生产的各个领域, 而随着科学技术和现代工业的高速发展,由于金属磨损而引起的能源和金属材料消耗增加等所造成的经济损失相当惊人。近年来,对金属磨损和耐磨材料的研究,越来越引起国内外人们的广泛重视。本文概述了国内外耐磨金属材料领域研究开发的现状及取得的一系列新进展。 中图分类号:TG142.72 0 引言 随着科学技术和现代工业的高速发展,机械设备的运转速度越来越高,受摩擦的零件被磨损的速度也越来越快,其使用寿命越来越成为影响现代设备(特别是高速运转的自动生产线)生产效率的重要因素。尽管材料磨损很少引起金属工件灾难性的危害,但其所造成的能源和材料消耗是十分惊人的。据统计,世界工业化发达的国家约30%的能源是以不同形式消耗在磨损上的。如在美国,每年由于摩擦磨损和腐蚀造成的损失约1000亿美元,占国民经济总收入的4%。而我国仅在冶金、矿山、电力、煤炭和农机部门,据不完全统计,每年由于工件磨损而造成的经济损失约400亿元人民币[1]。因此,研究和发展耐磨材料,以减少金属磨损,对国民经济的发展有着重要的意义。 1国外耐磨金属材料的发展 国外耐磨材料的生产和应用经过了多年研究与发展的高峰期,现已趋于稳定,并有自己的系列产品和国家标准、企业标准。经历了从高锰钢、普通白口铸铁、镍硬铸铁到高铬铸铁的几个阶段,目前已发展为耐磨钢和耐磨铸铁两大类。 耐磨钢除了传统的奥氏体锰钢及改性高锰钢、中锰钢以外,根据其含量的不同可分为中碳、中高碳、高碳合金耐磨钢;根据合金元素的含量又可分为低合金、中合金及高合金耐磨钢;根据组织的不同还可分为奥氏体、贝氏体、马氏体耐磨钢。而耐磨铸铁主要包括低合金白口铸铁和高合金白口铸铁两大类。二者中最具有代表性的是低铬白口铸铁和高铬白口铸铁,而且这两种材料目前在耐磨铸铁中占有主导地位。马氏体或贝氏体、马氏体组织的球墨铸铁在制作小截面耐磨件方面也占有一席之地,中铬铸铁则应用较少。从整体上看,合金白口铸铁的耐磨性优于耐磨铸钢,但后者韧性好,在诸如衬板、耐磨管道等方面有着广泛的应用[2]。 2 我国耐磨金属材料的发展 据统计,国内每年消耗金属耐磨材料约达300万吨以上,应用摩擦磨损理论防止和减轻摩擦磨损,每年可节约150亿美元。近年来,针对设备磨损的具体工况

相关文档
最新文档