等电子原理及其应用

等电子原理及其应用
等电子原理及其应用

电子秤工作原理

电子秤的原理 1.工作原理:电子秤的工作原理以电子元件(称重传感器,AD转换电路,单片机电路,显示电路,键盘电路,通讯接口电路,稳压电源电路等电路组成。 2.使用功能:电子秤采用现代传感器技术、电子技术和计算机技术一体化的电子称量装置,才能满足并解决现实生活中提出的"快速、准确、连续、自动"称量要求,同时有效地消除人为误差,使之更符合法制计量管理和工业生产过程控制的应用要求。 3.电子秤是国家强制检定的计量器具,他的合格产品是有检定分度值e和细分值D的标准,是受国家计量法保护的产品。 4.电子秤的分类: 1).按原理分:电子秤机械秤机电结合秤 2).按功能分:计数秤计价秤计重秤 3).按用途分:工业秤商业秤特种秤 4).按放置位置分类:桌面秤指全称量在30Kg以下的电子秤台秤:指全称量在30-300Kg 以内的电子秤地磅:指全称量在300Kg以上的电子秤 4.精密天平 5).按精确度分类: I级:特种天平精密度≥1/10万 II级: 2.高精度天平 1/1万≤精密度<1 /10万 III级: 3.中精度天平 1/1000≤精密度<1/1万 IV级:普通秤1/100≤精密度<1/1000 电子秤的原理方框图解读 第一部分电子秤的原理方框图: 程式 K/B(按键) ↑ Fx →传感器→ OP放大→ A/D转换→ CPU →显示驱动→显示屏记忆体 工作流程说明:当物体放在秤盘上时,压力施给传感器,该传感器发生形变,从而使阻抗发生变化,同时使用激励电压发生变化,输出一个变化的模拟信号。该信号经放大电路放大输出到模数转换器。转换成便于处理的数字信号输出到CPU运算控制。CPU根据键盘命令以及程序将这种结果输出到显示器。直至显示这种结果。 第二部分秤的分类: 1.按原理分:电子秤机械秤机电结合秤 2.按功能分:计数秤计价秤计重秤 3.按用途分:工业秤商业秤特种秤

光电子器件与技术

《光电子器件与技术》课程教学大纲 Photoelectron Apparatus and Techniques 课程代码:26105420 课程性质:专业方向理论课(选修) 适用专业:电子信息科学与技术 开课学期:6 总学时数:32 总学分数:2.0 修订年月:2006年6月 执 笔:张学习 一、课程的性质和目的 本课程为电子信息科学与技术专业的专业方向选修课,是以应用为主的工程技术基础类课程。其任务是掌握光电子器件的基本原理以及一些典型的光电子器件的工作方式,使学生系统地掌握光电子器件与技术的基本原理和基础知识,培养学生使用和分析光电子器件的能力。 二、课程教学内容及学时分配 (一)光控器件的基础 1、光电器件的物理基础; 2、激光信号调制的理论基础; 3、波导器件的理论基础和波导器件传光的基本理论。 (二)电、磁光控器件 1、空间光调制器; 2、电光调制器; 3、磁光调制器和调制器件。 (三)典型的声光控制器件 1、声光器件的控制作用; 2、声光控制器件的类型与参数; 3、声光器件的应用。 (四)无源光波导控制器件 1、波导开关器件; 2、几何光学波导器件; 3、无源光波导调制器。 (五)半导体激光器件 1、半导体激光器的特性与分类; 2、典型的半导体激光器和半导体激光器目前的发展方向与途径。 (六) 固体激光器 1、固体激光器的基本结构、关键技术; 2、新型固体激光器的应用。 本章知识点为:固体激光器的基本结构,DPSSL的特性与关键技术。 (七) 高能激光器 1、高能激光器的特性; 2、高能化学激光器和自由电子激光器。 (八) 高速光电探测器件 1、光电二极管、分离探测器的应用; 2、多元探测器及其应用和发展。 (九) 电荷耦合固体成像器件 1、CCD电荷耦合器件的工作基本原理; 2、CCD器件的特性与应用。 总学时:32,其中:理论学时32。具体分配参见下表: 序号 课 程 内 容 理论学时

通用计数器附其应用

第七章通用计数器及其应用 电子计数器是一种多功能的电子测量仪器。它利用电子学的方法测出一定时间内输入的脉冲数目,并将结果以数字形式显示出来。通常电子计数器按照它的功能可分为以下三类:1)通用计数器通常指多功能计数器。它可以用于测量频率、频率比、周期、时间间隔和累加计数等,如配以适当的插件,还可以测量相位、电压等电量。 2)频率计数器其功能为测频和计数。测频范围很宽,在高频和微波范围内的计数器均属于此类。 3)计算计数器带有微处理器、具有计算功能。它除具有计数器功能外,还能进行数学运算、求解比较复杂的方程式,能依靠程控进行测量、计算和显示等全部工作。 图7-1 通用电子计数器方框图 一、通用电子计数器的基本组成 电子计数器的基本组成原理方框图见图7-1。这是一种通用多功能电子计数器。电路由A、B输入通道、时基产生与变换单元、主门、控制单元、计数及显示单元等组成。电子计数器的基本功能是频率测量和时间测量,但测量频率和测量时间时,加到主门和控制单元的信号源不同,测量功能的转换由开关来操纵。累加计数时,加到控制单元的信号则由人工控制。至于计数器的其它测量功能,如频率比测量、周期测量等则是基本功能的扩展。(一)A、B输入通道 输入通道送出的信号,经过主门进入计数电路,它是计数电路的触发脉冲源。为了保证计数电路正确工作,要求该信号具有一定的波形、极性和适当的幅度,但输入被测信号的幅

度不同,波形也多种多样,必须利用输入通道对信号进行放大、整形,使其变换为符合主门要求的计数脉冲信号。输入通道共有两路。由于两个通道在测试中的作用不同,也各有其特点。 A 输入通道是计数脉冲信号的输入电路。其组成如图7-2(a )所示。 7-2 输入通道方框图 当测量频率时,计数脉冲是输入的被测信号经整形而得到的。当测量时间时,该信号是仪器内部晶振信号经倍频或分频后再经整形而得到的。究竟选用何种信号,由选通门的选通控制信号决定。 B 输入通道是闸门时间信号的通路,用于控制主门是否开通。该信号经整形后用来触发双稳态触发器,使其翻转。以一个脉冲启开主门,而以随后的一个脉冲关门。两脉冲的时间间隔为开门时间。在此期间,计数器对经过 A 通道的计数脉冲计数。为保证信号在一定的电平时触发,输入端可对输入信号电平进行连续调节。在施密特电路之后还接有倒相器,从而可任意选择所需要的触发脉冲极性。 有的通用计数器闸门时间信号通路有两路,分别称为B 、C 通道。两通道的电路结构完全相同。B 通道用来作门控双稳的“启动”通道,使双稳电路翻转;C 通道用作门控双稳“停止”通道,使其复原。两通道的输出经由或门电路加至门控双稳触发器的输入端。 (二)主门 主门又称信号门或闸门,对计数脉冲能否进入计数器起着闸门的作用。主门电路是一个标准的双输入逻辑门,如图7-3所示。它的一个输入端接入来自门控双稳触发器的门控信号,另一个输入端则接收计数用脉冲信号。在门控信号有效期间,计数脉冲允许通过此门进入计数器计数。 在测量频率时的门控信号为仪器内部的闸门时间选择电路送来的标准信号,在测量周期或时间时则是整形后的被测信号。 图7-3 主门电路

电子称的原理及组成

原理及组成 电子秤,属于衡器的一种,是利用胡克定律或力的杠杆平衡原理测定物体质量的工具。电子秤主要由承重系统(如秤盘、秤体)、传力转换系统(如杠杆传力系统、传感器)和示值系统(如刻度盘、电子显示仪表)3部分组成。按结构原理可分为机械秤、电子秤、机电结合秤三大类。 工作流程 工作流程说明:当物体放在秤盘上时,压力施给传感器,该传感器发生形变,从而使阻抗发生变化,同时使用激励电压发生变化,输出一个变化的模拟信号。该信号经放大电路放大输出到模数转换器。转换成便于处理的数字信号输出到CPU运算控制。CPU根据键盘命令以及程序将这种结果输出到显示器。直至显示这种结果。 使用功能 电子秤采用现代传感器技术、电子技术和计算机技术一体化的电子称量装置,才能满足并解决现实生活中提出的"快速、准确、连续、自动"称量要求,同时有效地消除人为误差,使之更符合法制计量管理和工业生产过程控制的应用要求。 质量检定 电子秤是国家强制检定的计量器具, 他的合格产品是有检定分度值e和细分值D的标准,是受国家计量法保护的产品。 分类 1、按原理分:电子秤机械秤机电结合秤 多功能电子秤 2、按功能分:计数秤计价秤计重秤 3、按用途分:工业秤商业秤特种秤 4、按放置位置分类: 桌面秤指全称量在30Kg以下的电子秤 台秤指全称量在30-300Kg以内的电子秤 地磅指全称量在300Kg以上的电子秤 精密天平

5、按精确度分类: I级:特种天平精密度≥1/10万基准衡器 II级:高精度天平 1/1万≤精密度<1/10万精密衡器 III级:中精度天平1/1000≤精密度<1/1万工业.商业衡器 IV级:普通秤1/100≤精密度<1/1000 粗衡器 特点 1.实现远距离操作; 2.实现自动化控制; 3.数字显示直观、减小人为误差; 4.准确度高、分辨率强; 5.称量范围广; 6.特有功能:扣重、预扣重、归零、累计、警示等; 7.维护简单; 8.体积小; 9.安装、校正简单; 10.特种行业,可接打印机或电脑驱动; 11.智能化电子秤,反应快,效率高; 专业术语 1.最大称量:一台电子秤不计皮重,最大秤重能力(满载值),即所能称量的最大的载荷; 2.最小称量:一台电子秤在低于该值时会出现的一个相对误差; 3.安全载荷:120%正常称量范围; 4.额定载荷:正常称量范围; 5.允许误差:等级检定时允许的最大偏差; 6.感量:一台电子秤所能显示的最小刻度;通常用“d”来表示; 7.最小刻度:起跳值,例︰60Kg×5g,5g即为最小刻度,即最小感量; 8.刻度间隔:感量=( e ),表示每一跳会增加多少重量,例如︰ 300g×0.001g,0.001g即为感量; 9.刻度间隔数:如秤由10g起跳,每10g为一刻度直到最大秤量共为多少个刻度数, 例如︰100kg×10g,(100×1000)÷10=10000,10000即为刻度间隔数; 10.精密度:感量与全称量的比值。例:秤量6000g最小刻度(感量)0.5g。即05/6000=1/12000 1/12000即为此秤之精密度; 11.电磁干扰:无线电波所产生之干扰通称之,例如︰大哥大手机所发出的电波。 12.解析量:一台具有计数功能的电子秤,所能分辩的最小刻度; 13.解析度:一台具有计数功能的电子秤,内部具有分辩能力的一个参数; 14.内部解析度:即内部精密度,如5 COUNT 1跳,则5 COUNT即为内部解析度,

常用光电子器件介绍

主要光电子器件介绍 【内容摘要】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,本文从几种常见的光电子器件的介绍来展示光纤通信技术的发展。 【关键词】 光纤通信光电子器件 【正文】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。 将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。从宏观上来看,光纤通信主要包括光纤光缆、光电子器件及光通信系统设备等三个部分,本文主要介绍几种常见的光电子器件。 1、光有源器件 1)光检测器 常见的光检测器包括:PN光电二极管、PIN光电二极管和雪崩光电二极管(APD)。目前的光检测器基本能满足了光纤传输的要求,在实际的光接收机中,光纤传来的信号及其微弱,有时只有1mW左右。为了得到较大的信号电流,人们希望灵敏度尽可能的高。 光电检测器工作时,电信号完全不延迟是不可能的,但是必须限制在一个范围之内,否则光电检测器将不能工作。随着光纤通信系统的传输速率不断提高,超高速的传输对光电检测器的响应速度的要求越来越高,对其制造技术提出了更高的要求。 由于光电检测器是在极其微弱的信号条件下工作的,而且它又处于光接收机的最前端,如果在光电变换过程中引入的噪声过大,则会使信噪比降低,影响重现原来的信号。因此,光电检测器的噪声要求很小。 另外,要求检测器的主要性能尽可能不受或者少受外界温度变化和环境变化的影响。 2)光放大器 光放大器的出现使得我们可以省去传统的长途光纤传输系统中不可缺少的光-电-光的转换过程,使得电路变得比较简单,可靠性也变高。 早在1960年激光器发明不久,人们就开始了对光放大器的研究,但是真正开始实用化的研究是在1980年以后。随着半导体激光器特性的改善,首先出现了法布里-泊罗型半导体激光放大器,接着开始了对行波式半导体激光放大器的研究。另一方面,随着光纤技术的发展,出现了光纤拉曼放大器。80年代后期,掺稀土元素的光纤放大器脱颖而出,并很快达到实用水平,应用于越洋的长途光通信系统中。 目前能用于光纤通信的光放大器主要是半导体激光放大器和掺稀土金属光纤放大器,特别是掺饵光纤放大器(EDFA)倍受青睐。1985年英国南安普顿大学首次研制成掺饵光纤,1989年以后掺饵光纤放大器的研究工作不断取得重大

电子秤原理

悬臂梁应变片原理 上面和下面贴四片应变片组成全桥,然后端部收到的力,就和全桥应变输出值成正比。经过标定, 有系数就可以通过系数乘以应变值得到力。 悬臂梁:梁的一端为不产生轴向、垂直位移和转动的固定支座,另一端为自由端。 在工程力学受力分析中,比较典型的简化模型。在实际工程分析中,大部分实际工程受力部件 都可以简化为悬臂梁。 应变片结构及原理 应变片是由排列成栅状的高阻金属丝、高阻金属箔或半导体粘贴在绝缘的基片上构成。上面贴有覆盖片(即保护片),电阻丝两端焊有较粗的铜丝作引线,以便与测量电路连接。 通过 其中,R K:比例 电子秤原理 一、相当于一个电子地磅,传感器的多少与量程和精度有关。 电子地磅结构组成和工作原理 1、结构组成 主要由承载器、称重显示仪表(下简称仪表)、称重传感器(下简称传感器)、连接件、限位装置及接线盒等零部件组成,还可以选配打印大屏幕显示器、计算机和稳压电源等外部设备。 2、工作原理 被称重物或载重汽车置于承载器台面上,在重力作用下,通过承载器将重力传递至称重传感器,使称重传感器弹性体产生变形,贴附于弹性体上的应变计桥路失去平衡,输出与重量数值成正比

例的电信号,经线性放大器将信号放大。再经A/D转换为数字信号,由仪表的微处理机(CPU)对重量信号进行处理后直接显示重量数据。配置打印机后,即可打印记录称重数据,如果配置计算机可将计量数据输入计算机管理系统进行综合管理。 利用应变电测原理称重。在称重传感器的弹性体上粘贴有应变计,组成惠斯登电桥。在无负荷时,电桥处于平衡状态,输出为零。当弹性体承受载荷时,各应变计随之产生与载荷成比例的应变, 由输出电压即可测出外载重量! 称重传感器可以说是电子秤中最重要的一个部件之一,除了称重传感器然后就是IC,主要为两个核心元件,称重传感器本身只是一个模拟信号,当一个重量压到称重传感器上面时,传感器中的弹 不 1、高温环境对传感器造成涂覆材料熔化、焊点开化、弹性体内应力发生结构变化等问题。对于高 温环境下工作的传感器常采用耐高温传感器;另外,必须加有隔热、水冷或气冷等装置。 2、粉尘、潮湿对传感器造成短路的影响。在此环境条件下应选用密闭性很高的传感器。不同的传 感器其密封的方式是不同的,其密闭性存在着很大差异。 常见的密封有密封胶充填或涂覆;橡胶垫机械紧固密封;焊接(氩弧焊、等离子束焊)和抽真空充 氮密封。 从密封效果来看,焊接密封为最佳,充填涂覆密封胶为量差。对于室内干净、干燥环境下工作的传感器,可选择涂胶密封的传感器,而对于一些在潮湿、粉尘性较高的环境下工作的传感器,应选择膜片热套密封或膜片焊接密封、抽真空充氮的传感器。

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

计数器原理分析及应用实例

计数器原理分析及应用实例 除了计数功能外,计数器产品还有一些附加功能,如异步复位、预置数(注意,有同步预置数和异步预置数两种。前者受时钟脉冲控制,后者不受时钟脉冲控制)、保持(注意,有保持进位和不保持进位两种)。虽然计数器产品一般只有二进制和十进制两种,有了这些附加功能,我们就可以方便地用我们可以得到的计数器来构成任意进制的计数器。下面我们举两个例子。在这两个例子中,我们分别用同步十进制加法计数器74LS160构成一个六进制计数器和一个一百进制计数器。 因为六进制计数器的有效状态有六个,而十进制计数器的有效状态有十个,所以用十进制计数器构成六进制计数器时,我们只需保留十进制计数器的六个状态即可。74LS160的十个有效状态是BCD编码的,即0000、0001、0010、0011、0100、0101、0110、0111、1000、1001[图5-1]。 图5-1 我们保留哪六个状态呢?理论上,我们保留哪六个状态都行。然而,为了使电路最简单,保留哪六个状态还是有一点讲究的。一般情况下,我们总是保留0000和1001两个状态。因为74LS160从1001变化到0000时,将在进位输出端产生一个进位脉冲,所以我们保留了0000和1001这两个状态后,我们就可以利用74LS160的进位输出端作为六进制计数器的进位输出端了。于是,六进制计数器的状态循环可以是0000、0001、0010、0011、0100和1001,也可以是0000、0101、0110、0111、1000和1001。我们不妨采用0000、0001、0010、0011、0100

和1001这六个状态。 如何让74LS160从0100状态跳到1001状态呢?我们用一个混合逻辑与非门构成一个译码器[图5.3.37b],当74LS160的状态为0100时,与非门输出低电平,这个低电平使74LS160工作在预置数状态,当下一个时钟脉冲到来时,由于等于1001,74LS160就会预置成1001,从而我们实现了状态跳跃。 图5.3.37b用置数法将74160接成六进制计数器(置入1001) 比这个方案稍微繁琐一点的是利用74LS160的异步复位端。下面这个电路中[图5.3.34],也有一个由混合逻辑与非门构成的译码器。 图5.3.34用置零法将74LS160接成六进制计数器

计数器及其应用

计数器的应用 一、实验目的 1、学习用集成触发器构成计数器的方法 2、掌握中规模集成计数器的使用及功能测试方法 3、运用集成计数器构成1/N分频器 二、实验原理 计数器是一个用以实现计数功能的时序部件,它不仅可用来及脉冲数,还常用作数子系统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数制的不同,分为二进制计数器、十进制计数器和任意进制计数器。根据计数器的增减趋势,又分为加法、减法和可逆计数器。还有可预制数和可变程序功能计数器等等。目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能和工作波形图以及引出端的排列,就能正确运用这些器件。 1、用D触发器构成异步二进制加/减计数器 图7—1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T触发器,在由低位触发器的Q端和高一位的CP端相连接。 若将图7—1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。

2、中规模同步集成计数器 同步集成计数器基本类型见表7-1。 表7-1 同步计数器芯片型号和功能 ⑴同步4位二进制计数器 74LS161的功能见表7-2,74LS163的功能见表7-3,引脚图见图7-2。LD 为置数控制端,CLR 为置0控制端, D 0~D 3为并行数据输入端,Q 0~Q 3为输出端,CO 为进位输出端。 ⑵4位十进制同步计数器 74LS160的功能见表7-4,引脚图见图7-2。74LS162的功能见表7-5,引脚图见图7-2。 表7-2 74LS161的功能表 输 入 输 出 CP LD CLR EP ET Q × × 0 × × 全“L ” ↑ 0 1 × × 预置数据 ↑ 1 1 1 1 计数 × 1 1 0 × 保持 × 1 1 × 保持 型号 功能 型号 功能 74LS161 4位十进制同步计数器(异步 清除) 74LS190 4位十进制加/减同步计数器 74LS163 4位二进制同步计数器(异步 清除) 74LS191 4位二进制加/减同步计数器 74LS160 4位十进制同步计数器(同步 清除) 74LS192 4位十进制加/减同步计数器(双时钟) 74LS162 4位二进制同步计数器(同步 清除) 74LS193 4位二进制加/减同步计数器(双时钟)

第一节 电子衍射的原理

第一节电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c 是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。

1.2 电子衍射谱的成像原理 在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。 Fresnel (菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。 小孔的直接衍射成像(不加透镜)就是一个典型的Fresnel(菲涅尔)衍射(近场衍射)现象。在电镜的图像模式下,经常可以观察到圆孔的菲涅尔环。 Fraunhofer(夫朗和费)衍射是远场衍射,它是平面波在与障碍物相互作用后发生的衍射。严格地讲,光束之间要发生衍射,必须有互相叠加,平行光严格意义上是不能叠加的,所以在没有透镜的前提下,夫朗和费衍射只是一种理论上的概念。但是在很多情况下,可以将衍射当成夫朗和费衍射来处理,X射线衍射就是这样一种情况。虽然X射线是照射在晶体中的不同晶面上,但是由于晶面间距的值远远小于厄瓦尔德球(X射线波长的倒数),即使测试时衍射仪的半径跟晶面间距比也是一个非常大的值,所以X射线衍射可以当成夫朗和费衍射处理,因为此时不同晶面上的X射线叠加在一点上时,它们的衍射角仍然会非常接近布拉格角。

光电子与微电子器件及集成重点专项2019年度项目申报指南

附件4 “光电子与微电子器件及集成”重点专项 2019年度项目申报指南 为落实《国家中长期科学和技术发展规划纲要(2006—2020年)》《2006—2020年国家信息化发展战略》提出的任务,国家重点研发计划启动实施“光电子与微电子器件及集成”重点专项(以下简称“本重点专项”)。根据本重点专项实施方案的部署,现提出2019年度项目申报指南。 本重点专项的总体目标是:发展信息传输、处理与感知的光电子与微电子集成芯片、器件与模块技术,构建全链条光电子与微电子器件研发体系,推动信息领域中的核心芯片与器件研发取得重大突破,支撑通信网络、高性能计算、物联网等应用领域的快速发展,满足国家发展战略需求。 本重点专项按照硅基光子集成技术、混合光子集成技术、微波光子集成技术、集成电路与系统芯片、集成电路设计方法学和器件工艺技术6个创新链(技术方向),共部署49个重点研究任务。专项实施周期为5年(2018—2022年)。 2019年度项目申报指南在核心光电子芯片、光电子芯片共性支撑技术、集成电路与系统芯片、集成电路设计方法学和器件工 —1—

艺技术5个技术方向启动19个研究任务,拟安排国拨总经费概算6.75亿元。凡企业牵头的项目须自筹配套经费,配套经费总额与专项经费总额比例不低于1:1。 各研究任务要求以项目为单元整体组织申报,项目须覆盖所申报指南方向二级标题(例如:1.1)下的所有研究内容并实现对应的研究目标。除特殊说明外,拟支持项目数均为1~2项。指南任务方向“1.核心光电子芯片”和“2.光电子芯片共性支撑技术”所属任务的项目实施周期不超过3年;指南任务方向“3.集成电路与系统芯片”、“4.集成电路设计方法学”和“5.器件与工艺技术”所属任务的项目实施周期为4年。基础研究类项目,下设课题数不超过4个,参研单位总数不超过6个;共性关键技术类和应用示范类项目,下设课题数不超过5个,参与单位总数不超过10个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1~2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评分评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支持的方式。建立动态调整机制,第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.核心光电子芯片 1.1多层交叉结构的光子集成芯片(基础研究类) 研究内容:聚焦基于硅基多维度交叉结构的光子集成芯片,—2—

电子秤原理及其相关结构构成知识

电子秤原理及其相关结构构成知识 第一部分电子秤的原理方框图: 程式 K/B(按键) ↑ Fx → 传感器→ OP 放大→ A/D转换→ CPU → 显示驱动→ 显示屏↓ 记忆体工作流程说明:当物体放在秤盘上时,压力施给传感器,该传感器发生形变,从而使阻抗发生变化,同时使用激励电压发生变化,输出一个变化的模拟信号。该信号经放大电路放大输出到模数转换器。转换成便于处理的数字信号输出到CPU运算控制。CPU 根据键盘命令以及程序将这种结果输出到显示器。直至显示这种结果。 第二部分秤的分类: 1.按原理分:电子秤机械秤机电结合秤 2.按功能分:计数秤计价秤计重秤 3.按用途分:工业秤商业秤特种秤 第三部分秤的种类: 1.桌面秤指全称量在30Kg以下的电子秤 2.台秤指全称量在30-300Kg以内的电子秤 3.地磅指全称量在300Kg以上的电子秤 4.精密天平 第四部分按精确度分类: I级:特种天平精密度≥1/10万 II级:高精度天平 1/1万≤精密度<1/10万 III级:中精度天平1/1000≤精密度<1/1万 IV级:普通秤1/100≤精密度<1/1000 第五部分专业术语: 1.最大称量:一台电子秤不计皮重,所能称量的最大的载荷; 2.最小称量:一台电子秤在低于该值时会出现的一个相对误差; 3.安全载荷: 120%正常称量范围; 4.额定载荷:正常称量范围; 5.允许误差:等级检定时允许的最大偏差; 6.感量:一台电子秤所能显示的最小刻度;通常用“d”来表示; 7.解析量:一台具有计数功能的电子秤,所能分辩的最小刻度; 8.解析度:一台具有计数功能的电子秤,内部具有分辩能力的一个参数; 9.预热时间:一台秤达到各项指标所用的时间; 10.精度:感量与全称量的比值; 11.电子秤使用环境温度为: -10摄氏度到 40摄氏度 12.台秤的台面规格: 25cm X 30cm 30cm X 40cm 40cm X 50cm 42cm X 52cm 45cm X 60cm 第六部分电子秤的特点: 1.实现远距离操作; 2.实现自动化控制; 3.数字显示直观、减小人为误差; 4.准确度高、分辩率强; 5.称量范围广; 6.特有功能:扣重、预扣重、归零、累计、警示等; 7.维护简单; 8.体积小; 9.安装、校正简单; 10.特种行业,可接打印机或电脑驱动; 11.智能化电子秤,反应快,效率高; 第七部分电子秤检查过程: 1.首先整体检查:有无磨损和损坏; 2.能否开机:开机后是否从0到9依次显示、数字是否模糊、能否归零; 3.有无背光; 4.用砝码测试能否称重; 5.充电器是否完好,能否使用; 6.配件是否齐全; 第八部分传感器类型: 1.电阻式:价格适中、精度高、使用广泛; 2.电容式:体积小、精度低; 3.磁浮式:特高精度、造价高; 4.油压式:现市场上已淘汰; 显示器种类: 1.LCD(液晶显示):免插电、省电、附带背光; 2.LED:免插电、耗电、很亮; 3.灯管:插电、耗电、很高; K/B(按键)类型: 1.薄膜

异质结在光电子器件中的应用

异质结在光电子器件中的应用 在实际的光电子器件中,往往包含一个或多个异质结。这是因为异质结是由具有不同的电学性质和光学性质的半导体组成的,还可以通过适当的晶体生长技术控制异质结势垒的性状,因此异质结在扩大光电子器件的使用范围,提高光电子器件性能,控制某些特殊用途的器件等方面起到了突出的作用。在光纤通信、光信息处理等方面的具体应用如下: 1异质结光电二极管 光电二极管是利用光生伏打效应工作的器件,工作时要加上反向偏压,光照使结的空间电荷区和扩散区内产生大量的非平和载流子,这些非平衡载流子被内建电场和反向偏压电场漂移,就会形成很大的光电流。其工作特性曲线如下图所示: 图2.1 光电二极管的工作特性曲线 光电二极管往往作为光电探测器使用,此时希望它有宽的光谱响应范围和高的光电转化率。在包含有异质结的光电二极管中,宽带隙半导体成为窄带隙半导体的入射窗口,利用此窗口效应,可以使光电二极管的光谱响应范围加宽。图2.2(a)画的是由宽带隙E g1和窄带隙E g2两种半导体组成的异质结,在入射光子能量满足E g1>hv> E g2的条件下,入射光就能透过半导体1而被半导体2吸收。显然,透过谱与吸收谱的曲线重叠部分是该光电探测器的工作波段范围。图2.2(b)是同质结光电探测器响应的情况,

显然同质结的工作波段范围是很窄的。 光子能量/ev 12 E =E 入射光光子能量/ev 12E >E 入射光 (a )(b ) 图2.2 异质结光带二极管和同质结光电二极管的光谱特性 2异质结光电晶体管 图2.3分别是InP/InGaAs 异质结光电晶体管的典型结构图和能带图。发射区由宽禁带的n 型InP 材料做成,基区和收集区由窄禁带的InGaAs 材料做成。光电晶体管工作时一般采用基区浮置的方式,以减少引线分布电容。在集电极和发射极之间加电压,使发射极对基区正向偏置,而集电极对基区反向偏置。入射光子流照在宽带发射区上,当光的波长合适时发射区基本是透明的,光在窄带区中靠近宽带一侧被吸收而产生电子-空穴对。电子被发射结的自建电场所吸引从基区向发射区漂移,而空穴将流向基区。如果光在宽带区中也部分吸收的话,电子和空穴的流动方向也是这样的。因为基区是浮置的,电子和空穴这样的流动将促使发射极的电位更负,而基区的电位更正。这相当于发射结的p-n 正向偏置更加强。也就是说,光的吸收和光生载流子的流动等效于在光电晶体管的发射结上加了一个正向的信号。从而是发射区向基区注入更多的电子。这些电子以扩散的方式通过基区到达基区和集电区的边界,被方向偏置的集电极收集成为集电极电流,从而完成放大的目的。所以,光电晶体管不但能用于检测光信号,还能将光信号转换成的电信号放大。

全吸收型电子光子簇射计数器的工作原理

全吸收型电子光子簇射计数器通常包括:碘化钠晶体组成的闪烁谱仪和铅玻璃切伦科夫计数器。碘化钠晶体(辐射长度λo=2.6cm,临界能量 Ec=12.5MeV)和铅玻璃(例如含有53%氧化铅的透明玻璃,λo=2.84cm,Ec=17.3MeV;折射率n≈1.65)都能有效地引起电子光子级联簇射,它们既是簇射介质,又是对带电粒子灵敏的探测元件。 簇射产生的次级粒子(正负电子)在碘化钠晶体中沉积能量,晶体又把沉积的能量成比例地转换成闪烁荧光,经光电倍增管转换成与能量成正比的电荷量输出。在铅玻璃中簇射产生的正负电子,当它们的速度超过切伦科夫阈速度(见切伦科夫辐射)──相应电子动能Ek》150keV 时,正负电子将产生切伦科夫光,光的产额和超过阈速度的次级正负电子的径迹长度成正比。切伦科夫光由光电倍增管成比例地转换成电荷输出。 因此,在一定测量精度范围内,输出电荷量和次级正负电子的径迹总长度成正比,即和入射电子或光子的总能量成正比。全吸收型电子光子簇射计数器通常做成积木式结构。每块晶体(或铅玻璃)由独立的光电倍增管来收集光,各光电倍增管输出电荷量的总和正比于入射高能电子或光子的能量。 能量沉积在各单元的分配代表了簇射次级粒子数目的横向(与入射粒子方向垂直的平面内)分布,分析各单元输出电荷量的分布重心,就能确定入射电子或光子的空间方位。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/9e12429533.html,。

电子秤的原理方框图

第一部分电子秤的原理方框图: 程式K/B(按键) ↑ Fx → 传感器→ OP放大→ A/D转换→ CPU → 显示驱动→ 显示屏 ↓ 记忆体 工作流程说明:当物体放在秤盘上时,压力施给传感器,该传感器发生形变,从而使阻抗发生变化,同时使用激励电压发生变化,输出一个变化的模拟信号。该信号经放大电路放大输出到模数转换器。转换成便于处理的数字信号输出到CPU运算控制。CPU根据键盘命令以及程序将这种结果输出到显示器。直至显示这种结果。 第二部分秤的分类: 1.按原理分:电子秤机械秤机电结合秤 2.按功能分:计数秤计价秤计重秤 3.按用途分:工业秤商业秤特种秤 第三部分秤的种类:1.桌面秤指全称量在30Kg以下的电子秤 2.台秤指全称量在30-300Kg以内的电子秤 3.地磅指全称量在300Kg以上的电子秤 4.精密天平 第四部分按精确度分类:I级:特种天平精密度≥1/10万II级:高精度天平1/1万≤精密度<1/10万III级:中精度天平1/1000≤精密度<1/1万IV级:普通秤1/100≤精密度<1/1000 第五部分专业术语: 1.最大称量:一台电子秤不计皮重,所能称量的最大的载荷; 2.最小称量:一台电子秤在低于该值时会出现的一个相对误差; 3.安全载荷:120%正常称量范围; 4.额定载荷:正常称量范围; 5.允许误差:等级检定时允许的最大偏差; 6.感量:一台电子秤所能显示的最小刻度;通常用“d”来表示; 7.解析量:一台具有计数功能的电子秤,所能分辩的最小刻度; 8.解析度:一台具有计数功能的电子秤,内部具有分辩能力的一个参数; 9.预热时间:一台秤达到各项指标所用的时间; 10.精度:感量与全称量的比值; 11.电子秤使用环境温度为:-10摄氏度到40摄氏度12.台秤的台面规格:25cm X 30cm

闪烁计数器工作原理及应用

闪烁计数器的工作原理 闪烁计数器是一种利用射线引起闪烁体的发光而进行记录的辐射探测器。1947年由J.W. 科尔特曼和H.P.卡尔曼所发明。它由闪烁体、光电倍增管(见光电管)和电子仪器等单元组成。 它是由闪烁体(也称荧光体)和光电倍增管构成。常用的闪烁体有NaI(TI)[铊激活]、ZnS(Ag)和有机晶体“蒽”等,它们在射线照射下会发光(闪烁)。它的工作原理是:射线在闪烁体中产生的光子,打到光电倍增管的阴极上产生光电子,光电子的电子流通过倍增管放大并被阳极接收,形成了一个电脉冲,再由仪器的其他部件加以放大记录。碘化钠晶体常用来测量γ射线,硫化锌晶体常用来测量α射线。闪烁计数器的优点是,效率高、记录快,可以测定射线的能量。 闪烁计数器的应用 射线同闪烁体相互作用,使其中的原子、分子电离或激发,被激发的原子、分子退激时发出微弱荧光(见固体发光),荧光被收集到光电倍增管,倍增的电子流形成电压脉冲,由电子仪器放大分析和记录。利用这种现象可探测带电粒子。可用的闪烁体种类很多,用得较多的有NaI(加微量Tl)、CSI(加微量Tl)、ZnS(加微量Ag )等无机盐晶体和蒽、茋、对联三苯等有机晶体,也有用液体、塑料或气体的闪烁体。闪烁计数器的优点是效率高,有很好的时间分辨率和空间分辨率,时间分辨率达10^-9秒,空间分辨率达毫米量级。它不仅能探测各种带电粒子,还能探测各种不带电的核辐射;不仅能探测核辐射是否存在,还能鉴别它们的性质和种类;不但能计数,还能根据脉冲幅度确定辐射粒子的能量。在核物理和粒子物理实验中应用十分广泛。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/9e12429533.html,/

电子衍射的原理

第一节 电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g 是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。 1.2 电子衍射谱的成像原理

在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。 Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。 小孔的直接衍射成像(不加透镜)就是一个典型的Fresnel(菲涅尔)衍射(近场衍射)现象。在电镜的图像模式下,经常可以观察到圆孔的菲涅尔环。 Fraunhofer(夫朗和费)衍射是远场衍射,它是平面波在与障碍物相互作用后发生的衍射。严格地讲,光束之间要发生衍射,必须有互相叠加,平行光严格意义上是不能叠加的,所以在没有透镜的前提下,夫朗和费衍射只是一种理论上的概念。但是在很多情况下,可以将衍射当成夫朗和费衍射来处理,X射线衍射就是这样一种情况。虽然X射线是照射在晶体中的不同晶面上,但是由于晶面间距的值远远小于厄瓦尔德球(X射线波长的倒数),即使测试时衍射仪的半径跟晶面间距比也是一个非常大的值,所以X射线衍射可以当成夫朗和费衍射处理,因为此时不同晶面上的X射线叠加在一点上时,它们的衍射角仍然会非常接近布拉格角。 论:X射线并非严格的夫朗和费衍射,但可以将其当成夫朗和费衍射处理。 电子衍射是有透镜参与的Fraunhofer(夫朗和费)衍射,所以与X射线衍射的相比,它才是严格的远场衍射。

相关文档
最新文档