高考物理力学求极值的常用方法

高考物理力学求极值的常用方法
高考物理力学求极值的常用方法

中学物理力学求极值的常用方法

一、知识要点

1.极值问题:指极小值和极大值。

注:极值不一定是最值。 2.求极值问题的两个途径:

物理过程或物理状态的极值通常与某一临界值有关,巧妙地建立一个含极值条件的物理模型,则可快捷地解决问题。

(1)物理方法:从物理过程的分析着手求解极值问题。

(2)数学方法:从数学方法角度思考,借助于代数、函数或函数图像知识求解极值问题。

二、应试策略

1.用二次函数求极值的方法求极值

一元二次函数

y=ax 2+bx +c (a ≠0),当

x=-a

b

2时,y 有极小值y 极=a b ac 442-,用a>0时y 有极小值,

a<0时y 有极大值。

例1.一辆小汽车从静止开始以3 m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车旁边匀建驶过

(1)汽车从开始运动后在追上自行车之前经多多长时间两者距最远?此最远距离是多少’ (2)汽车什么时候追上自行车?此时汽车的速度是多少?

解析:设汽车在追上自行车之前经t 时间两车相距最远,则△S =S 2-S 1,S 2=V 0t ,212

1at s = 得22

36t t s -

=? (1)当s s a b t 2362==-=时,△S 极=m

a b ac 6460442

32

2=?--=-或m t t s 62362=-=? (2)汽车追上自行车时两车位移相等,即△S =0,得t’=4s 。v t =at’=12m/s

答案:(1)2S ,6m ;(2)12m/s 。---可以利用配方法求解

点评:本题可以用v-t 图象求解,也可以用相距最远时二者速度相等这个结论来求解。 2.利用一元二次方程根的判别式求极值

将二次函数y=ax 2+bx +c (a ≠0),转化为二次方程ax 2+bx +c -y=0,其判别式Δ=b 2-4aC≥0,x 有实数解,若y≥A ,则y min =A ;若y≤A ,则y max =A 。Δ≤0,方程无实数解。 例2.一个质量为M 的圆环,用细线悬挂着。将两个质量为m 的有孔的小珠套在环上,且可沿环无摩擦滑动,如图所示。今将两小珠从环的顶端由静止开始释放。证明,当m >

3

2

M 时,圆环能升起。 证明:取小球为研究对象,受力如图(a ),由牛顿第二定律,得mg cosθ+N =R

v m 2

由动能定理得 mgR (1-cosθ)=2

1

mv 2

由此二式得 N =2mg -3mg cosθ 上式中,N >0,即 cosθ<

3

2

以环为研究对象,受力图如(b ),在竖直方向,由牛顿第二定律,有 T+2N’cosθ—Mg=Ma 当环恰好能上升时,a=0,可得 2N’cosθ=Mg

N’与N 为作用力与反作用力,则2(2mg -3mgcosθ)cosθ=Mg 即6mcos 2θ-4mcosθ+M=0

上式是关于cosθ的一元二次方程,cosθ为实数,则△≥0,即(4m )2-4(6m )M≥0,可得m ≥3

2M 当m =

32M 时,T 恰好为零,但不升起,所以取m >3

2

M 为升起条件。 3.利用三角函数求极值

用三角函数求极值,实际上是应用了正、余弦函数的有界性。 ①利用倍角公式将y =Asin ααcos 转化为y =2

1Asin2α的形式,当α=45o时,y 有极大值2A

②将三角函数y =asin θ+bcos θ,转化成)sin(22?θ++=

b a y 的形式,再利用其有界性求解。

例3.质量为m 的物体,在与水平方向成θ斜向上拉力F 牵引沿水平地面上匀速直线运动。已知物体与地面间的滑动摩擦系数为μ,求力F 的最小值及角θ。

解析。物体受力情况如图,根据牛顿第二定律得 Fcos θ-f =0 F N +Fsin θ-mg=0 f =μN

解得:F =θ

μθμsin cos +mg

可写成)

sin(12

?θμμ++=

mg

F ,其中2

2

1cos ,11sin μ

μ

?+=

+=

则1)sin(=+?θ时,F 有最小值2

min 1μ

μ+=

mg

F ,此时2

π

?θ=

+,μ

π

θ1

tan 2

1

--=

答案:

2

μ+mg

μ

π

1

tan 2

1

--

点评:利用三角函数的有界性求极值,是中学物理常用的解题方法。 4.利用图象法求极值

通过对物理过程的分析和所遵守的物理规律,找出相关变量之间的函数关系,作出物理图象,由图象再求得极值。通常要用到图象斜率、面积、截距、交点的物理意义等。

例4.甲、已两光滑斜面高度相同,乙斜面的总长度和甲斜面的总长度相同,只是由两部分组成如图所示,将两个相同的小球从两斜面的顶端同时释放,不计在拐角处的能量损失,则哪一个小球先滑到底端?

解析:小球沿甲斜面OB 做匀加速运动,设其加速度大小为a 1,小球沿乙斜面OD 段、DE 段分别做匀加速运

F N

G

f

F

θ

动,设其加速度大小分别为a 2和a 3,由图象和a=gsin θ可知a 3

由机械能守恒定律可知,两小球到达斜面底端时的速率大小相等,且

通过的路程(即斜面的总长度)相等.可用速率 时间图象求解。作两小球分别沿甲、乙两斜面运动的速率一时间图象如图所示。 因为速率一时间图线的斜率表示小球加速度的大小,图线与时间轴所围成的面积表示小球所通过的路程,则四边形ODEt 乙与三角形0Bt 甲面积相等时,显然有t 乙

答案:沿乙斜面的小球先滑到底端。

点评:本题抓住两球的路程相等,利用v-t 图斜率和面积的物理意义解决了时间的最小值问题。 5.利用作图法求极值

把复杂的物理过程或各物理量间的关系用几何图形表示,将物理问题转化为几何问题加以解决。 例5.有一小船位于60m 宽的河边,从这里起在下游80m 处河流变成瀑布。假设河水流速为5m/s ,为了使小船能安全渡河,船相对于静水的速度不能小于多少?

解析:设水速为V 水,船速为V 船,船对岸的实际速度为V 合。为使小船到达对岸而不至滑过瀑布A 处,过O 作船合速度的方向OA 和水速V 水,如图所示,由几何关系可知V 水与V 合垂直时,V 船最小,V 船方向与岸夹角应为θ。

由几何关系得 3

4

6080tan ==

θ,θ=53° s m v v /353cos =?

=

水船

答案:3m/s ,方向与岸成53°角斜向上游。

点评:本例巧妙利用作图法解决了渡河问题中的极值问题,也是V 船

设a 、b 均为正数,则ab b a 2≥+

①若ab= C (常数),当a=b 时取等号,即a+b 有极小值; ②若a+b=C (常数),当a=b 时取等号,即ab 有极大值。 例6.(2010年高考重庆卷,24)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如题图所示。已知握绳的手离地面高度为d ,手与球之间的绳长为

3

4

d ,重力加速度为g ,忽略手的运动半径和空气阻力。 (1)求绳断时球的速度大小V 1和球落地时的速度大小V 2。

(2)向绳能承受的最大拉力多大?

(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应是多少?最大水平距离为多少?

解析:(1)设绳段后球飞行时间为t ,由平抛运动规律,有竖直方向211

42

d gt =,水平方向1d v t =

得1v =

1

2

由机械能守恒定律,有

2221113

()224

mv mv mg d d =+-,得252v gd = (2)设绳能承受的最大拉力大小为T ,这也是球受到绳的最大拉力大小。

球做圆周运动的半径为34R d =,由圆周运动向心力公式,有 21mv T mg R -=,得11

3

T mg =

(3)设绳长尾l ,绳断时球的速度大小为3v ,绳承受的最大推力不变,

有 2

3mv T mg l

-= 得383v gl =绳断后球做平抛运动,竖直位移为d l -,水平位移为x ,时间为1t ,有2

112

d l gt -= 31x v t = 得 ()

3

l d l x -= 当2

d

l =

时,x 有极大值,max 23x = 答案:(1)12v gd =252v gd =

;(2)113T mg =(3)当2

d l =时,x 有极大值,max 233x =。 例7.(2010年高考江苏卷,14)(16分)在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的

浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg 的指点, 选手抓住绳由静止开始摆动,此事绳与竖直方向夹角α=30°,绳的悬挂点O 距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取中立加速度 g =10m/s 2,sin53°=0.8,cos53°=0.6

(1)求选手摆到最低点时对绳拉力的大小F ;

(2)若绳长l=2m, 选手摆到最高点时松手落入手中。设水对选手的平均浮力f 1=800N ,平均阻力f 2=700N ,求选手落入水中的深度d ;

(3)若选手摆到最低点时松手, 小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。

解析(1)动能定理 2

1(1cos )2

mgl mv α-= ,圆周运动 F ′-mg =m 2v l

解得F ′=(3-2cos α)mg

人对绳的拉力 F =F ′,则 F =1080N

(2)动能定理 mg (H -l cos α+d )-(f 1+f 2)d =0 ,则d=

1

2(cos )

mg H l f f mg

α-+-,解得 d =1.2m (3)选手从最低点开始做平抛运动x=vt , H-l=212

gt 解得2()(1cos )x l H l α=--

当2

H

l =

时,x 有最大值,解得l=1.5m 因此,两人的看法均不正确。当绳长钺接近1.5m 时,落点距岸边越远。 答案:(1)1080N ;(2)1.2m ;(3)当2

H

l =

时,x 有极大值1.5m ,两人的看法均不正确。 三、对应练习

1.(2010届福建省泉州市高三四校联考)如图所示,一小球用轻绳悬于O 点,用力F 拉住小球,使悬线保持偏离竖直方向750角,且小球始终处于平衡状态。为了使F 有最小值,F 与竖直方向的夹角θ应该是

A .900

B .450

C .150

D .00 答案:C 。

2.(2010年江苏苏锡常镇高三调研, 5)如图所示,有一光滑的半径可变的4

1

圆形轨道处于竖直平面内,圆心O 点离地高度为H 。现调节轨道半径,让一可视为质点的小球a 从与O 点等高的轨道最高点由静止沿轨道下落,使小球离开轨道后运动的水平位移S 最大,则小球脱离轨道最低点时的速度大小应为

A .gH

B .3gH

C .3

2gH D .34gH

解析:设圆形轨道的半径为R ,则抛出时的速度gR v 22

0=;

小球做平抛运动时,t v S 0=22

1gt R H =

- 解得 )(2R H R S -=,可知当R =H -R 即R =0.5H 时,S 有最大值,可解得V 0=gH

答案:A 。

3.公共汽车由停车站从静止出发以2m/s 2的加速度做匀加速运动,这时一辆载重汽车从后面超过公共汽车,载重汽车以10m/s 的速度匀速前进。问:经过多长时间公共汽车能追上载重汽车?经过多长时间两车相距最远?相距最远时两车之间的距离是多少?

解法二:解析法

公共汽车作初速度为零的匀变速直线运动,则 x 1=

2

1at 2=t 2 载重汽车作匀速直线运动 x 2=Vt =10t △x =x 2-x 1=10t -t 2

(1)当△x =0时公共汽车追上载重汽车,得t =10S 或t =0(舍去)

(2)当t =-)

1(210

-=5(S )时,△x 有极值,即△x =)1(41002--=25(m )

解法二:利用运动图象求解

因为公共汽车是做初速度零、加速度2m/s 2的匀加速度运动,而载重汽车是做匀速直线运动,且同时目向运动,它们的速度-时间图象如图示。速度时间图线与时间轴所围成面积表示物体通过的位移。由图可知:当t =O 时,△OAD 的面积等于矩形OCBD 的面积,故两车所通过的位移相等,即两车相遇。当两车速度相等,即t =5s 时两车相距最远,最远距离是 OCE S S ?=max ,解得其值为25m 。

H

O

a

S

750

F

θ O

答案:25m 。

4.如图所示,用力F 拉一物体在水平地面上匀速前进,物体的质量为m ,物体与地面间的动摩擦因数为μ,欲使F 为最小,则F 应与竖直方向成多大的夹角?最小的力为多大?

解析:设F 与竖直方向的夹角为θ,物体匀速前进则有

()F mg F sin cos θμθ=-

即()

F mg mg

=

+=

++μθμθμμθsin cos sin 12Φ 其中tg Φ=

μ,当θμ=?-=?-9090Φarctg 时,F 有最小值F min

F mg

min =

+μμ

12

答案:θμ=?-=?-9090Φarctg ,F mg

min =

+μμ

12

四、巩固加深

1.(2007年高考江苏,6)如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个

质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg 。现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块一同一加速度运动,则轻绳对m 的最大拉力

为 A .53mg μ B . 43mg μ C .2

3mg

μ D .mg μ3

解析:将用线关联的两个小m 和后面的2m 看成一个整体,且前一个m 所受静摩擦力达到最大值时,

根据牛顿第二定律得

μmg =4ma

单独分析前面的m 可得 μmg -T =ma

解得 T =

4

3mg

μ 答案:B 。

2.火车以速率V 1行驶,司机突然发现前方同一轨道上距离S 处有另一辆火车沿相同方向以较小的速率V 2做匀速运动。于是司机立即制动,使火车作匀减速运动,加速度大小为a .要使两车不相撞,求加速度a 应满足的条件。

解析:设经过时间t 两车相遇,则有 2122

1at t v s t v -=+ 即 02)(2122

=+-+s t v v at

为使两车不相撞,则上个方程应无解,即08)(412<--=?as v v z

解得 S

v v a 22

21)(->

m 2m

m

2m

F

答案:S

v v a 22

21)(->

点评:本题也可以用临界条件求解:当两车速度相等时,它们之间的距离恰好为0。

3.如图所示,物体静止在光滑水平面上,受到一个水平恒力F 1的作用,要使物体在水平面上沿OA 方向作直线运动,OA 与水平方向成θ角,则对物体施加的这个力F 2的最小值是多大?方向如何?

解析:根据力的平行四边形定则,物体受到的合力沿0A 方向,则另一个力F 2有大小、方向不同的若干个解,在这些解的当中有一个最小值,这个力的方向与合力方向垂直。如图所示。由几何关系可得F 2=F 1sinθ。

答案:F 2=F 1sinθ,方向与合力方向垂直。 4.(2010年高考浙江卷,22)在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为滑μ的轨道向下运动到B 点后水平滑

出,最后落在水池中。设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g=10m/s 2)。求:

(1)运动员到达B 点的速度与高度h 的关系; (2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离S BH 为多少?

(3若图中H =4m ,L =5m ,动摩擦因数μ=0.2,则水平运动距离要达到7m ,h 值应为多少?

解析:(1)设斜面长度为L 1,斜面倾角为α,根据动能定理

2101

()cos 2mg H h mgL mv μα--=

即2

01()2

mg H h mgL mv μ-=+ ,02()v g H h L μ=--

(2)根据平抛运动公式 X=v o t ,h=12gt 2

,得 2()x H L h h μ=--

(3)令x=2m ,H=4m,L=5m, μ=0.2,可得到:—h 2+3h-1=0

求出135 2.62()h m +=

=,235

0.38()h m -== 答案:(1)02()v g H h L μ=--;(2)2()x H L h h μ=--;(3)2.62m ,0.38m 。

附加题1.(09年江苏罗庚中学月考试题)如图所示,在同一竖直平面内的两正对着的相同半圆光滑

轨道,相隔一定的距离,虚线沿竖直方向,一小球能在其间运动,今在最高点A 与最低点B 各放一个压力传感器,测试小球对轨道的压力,并通过计算机显示出来,当轨道

距离变化时,测得两点压力差与距离x 的图像如图,g 取

10 m/s 2,不计空气阻力,求:

(1)小球的质量为多少? (2)若小球的最低点B 的速度为20 m/s ,为使小球能沿轨道运动,x 的最大值为多少? 解析(1)设轨道半径为R ,根据机械能守恒定律

H

L

h

A B

?F N /N

x m

5 10 15

x A

22

11(2)22

B A

mv mg R x mv =++ 在B 点:21B N v F mg m R -= , 在A 点:2

2A

N v F mg m R

+=

两点压力差:1226N N mgx

FN F F mg R ?=-=+ ,

由图象截距得 36=mg ,即kg m 05.0=

(2)因为图线的斜率21mg

k R

=

=得m R 1= 在A

点不脱离的条件为:A v ≥

, 解得:m x 5.17=

答案:0.05Kg;17.5m 。

附加题2.在平直公路上,有甲、乙两辆汽车,初始时甲车在前乙车在后,它们相距为x 0=100m ,不计汽车长度。若甲车以V 1=20m/s 的初速度开始做匀加速直线运动,同时乙车以V 2=30m/s 的初速度开始做匀加速直线运动,加速度为a 2=0.40m/s 2。求加速度a 1分别为何值时,甲、乙两车不相遇或相遇一次或相遇两次?

解法一:设经历时间t 时甲、乙两车相遇,则有 02112222

1

21x t a t v t a t v ++=+ 即 020020)4.0(2

1=+--t t a

若a 1=0.40m/s 2,t =10s 时相遇一次; 若a 1≠0.40m/s 2,由二次方程的求根公式)

4.0(2)

4.0(8002020112---±=

a a t 可知

当a 1<0.40m/s 2时,t 有两个实数解,一正一负,负值不台题意舍去,相遇一次;

当t 有两个正实数解,相遇两次;

当a 1=0.9m/s 2时,t =20s ,相遇一次; 当a 1>0.9m/s 2时,t 无实数解,不相遇。

解法二:选甲车为参照物,则需要将甲车的速度和加速度都反加给乙,那么 乙车相对甲车的初速为V 0=V 2-V 1=10 m/s ,加速度a =a 2-a 1=(0.4- a 1) m/s 2 得x 0=V 0t +

2

1at 2

,即(0.4- a 1) t 2+10t -100=0 当a 1< 0.4 m/s 2时,乙车相对甲车做匀加速直线运动,相遇一次; 当a 1=0.4 m/s 2时,乙车相对甲车做匀速直线运动,相遇一次;

当a 1> 0.4 m/s 2时,乙车相对甲车先做匀减速直线运动,后做反方向的匀加速直线运动,速度为0时两车间距最大:

)

4.0(2102012

0a a v x z --=-=

当0.40m/s 2< a 1<0.9m/s 2时,x>x 0= 100m ,两车相遇两次; 当a 1=0.9m/s 2n 时,x =x 0=100m ,两车相遇一次; 当a 1>0.9m/s 2时,x

答案:当a 1≤0.40m/s 2或a 1=0.9m/s 2时,两车相遇一次;当0.40m/s 2< a 1<0.9m/s 2时,两车相遇两次;当a 1>0.9m/s 2时,两车不相遇。

附加题3.一轻绳固定在O 点,另一端拴一小球,如图所示。拉起小球使轻绳水平,然后无初速度释放在小球运动到轻绳到达竖直位置的过程中,小球所受重力的功率何时最大?最大值是多少?

解析:如图所示,当小球运动到与竖直方向成θ角的C 点时,重力的功率为 P =mgVcos α=mgVsin θ

根据动能定理可得 mgLcos θ=

2

1mV 2

-0 解得 θθ2sin cos 2gL mg P =

设y =cos θsin 2

θ=

θθθ222sin sin cos 22

1

??? 因2cos 2θ+sin 2θ+sin 2

θ=2,为定值,由 33abc c b a ≥++可得

当2cos 2

θ=sin 2

θ,即 tan θ=2,cos θ=

33, sin θ=3

6时,y 有极大值,P 有最大值。 则y =

33ⅹ32=932,P 极=gl mg 33

2

答案:当tan θ=2时,P 极=

gl mg 33

2

O

高考物理难重点力学部分最易错易混的十大知识点全解析

高考物理难重点力学部分最易错易混的十大知识点全解析 可在对比三组概念中掌握: ①位移和路程:位移是由始位置指向末位置的有向线段,是矢量;路程是物体运动轨迹的实际长度,是标量,一般来说位移的大小不等于路程; ②平均速度和瞬时速度,前者对应一段时间,后者对应某一时刻,这里特别注意公式只适用于匀变速直线运动; ③平均速度和平均速率:平均速度=位移/时间,平均速率=路程/时间。 易错点2:不能把图像的物理意义与实际情况对应 易错分析: 理解运动图像首先要认清v-t和x-t图像的意义,其次要重点理解图像的几个关键点: ①坐标轴代表的物理量,如有必要首先要写出两轴物理量关系的表达式;②斜率的意义;③截距的意义;④“面积”的意义,注意有些面积有意义,如v-t图像的“面积”表示位移,有些没有意义,如x-t图像的面积无意义。 易错点3:分不清追及问题的临界条件而出现错误 易错分析: 分析追及问题的方法技巧:①要抓住一个条件,两个关系.一个条件:即两者速度相等,它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点;两个关系:即时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口. ②若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动. ③应用图像v-t分析往往直观明了。 易错点4:对摩擦力的认识不够深刻导致错误 易错分析:

摩擦力是被动力,它以其他力的存在为前提,并与物体间相对运动情况有关.它会随其他外力或者运动状态的变化而变化,所以分析时,要谨防摩擦力随着外力或者物体运动状态的变化而发生突变.要分清是静摩擦力还是滑动摩擦力,只有滑动摩擦力才可以根据来计算Fμ=μFN,而FN并不总等于物体的重力。 易错点5:对杆的弹力方向认识错误 易错分析: 要搞清楚杆的弹力和绳的弹力方向特点不同,绳的拉力一定沿绳,杆的弹力方向不一定沿杆.分析杆对物体的弹力方向一般要结合物体的运动状态分析。 易错点6:不善于利用矢量三角形分析问题 易错分析: 平行四边形(三角形)定则是力的运算的常用工具,所以无论是分析受力情况、力的可能方向、力的最小值等,都可以通过画受力分析图或者力的矢量三角形.许多看似复杂的问题可以通过图示找到突破口,变得简明直观。 易错点7:对力和运动的关系认识错误 易错分析: 根据牛顿第二定律F=ma,合外力决定加速度而不是速度,力和速度没有必然的联系.加速度与合外力存在瞬时对应关系:加速度的方向始终和合外力的方向相同,加速度的大小随合外力的增大(减小)而增大(减小);加速度和速度同向时物体做加速运动,反向时做减速运动.力和速度只有通过加速度这个桥梁才能实现“对话”,如果让力和速度直接对话,就是死抱亚里干多德的观点永不悔改的“顽固派”。 易错点8:不会处理瞬时问题 易错分析: 根据牛顿第二定律知,加速度与合外力的瞬时对应关系.所谓瞬时对应关系是指物体受到外力作用后立即产生加速度,外力恒定,加速度也恒定,外力变化,加速度立即发生变化,外力消失,加速度立即消失,在分析瞬时对应关系时应注意两个基本模型特点的区别: (1)轻绳模型:①轻绳不能伸长,②轻绳的拉力可突变;

函数的单调性、极值与最值问题

函数的单调性、极值与最值问题 典例9 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审 题 路 线 图 求f ′(x ) ――――――→讨论f ′(x ) 的符号 f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.

评分细则(1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.

跟踪演练9(优质试题·天津)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间; (2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2, g(x2))处的切线平行,证明x1+g(x2)=-2ln ln a ln a; (3)证明当a≥1e e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. (1)解由已知得h(x)=a x-x ln a, 则h′(x)=a x ln a-ln a. 令h′(x)=0,解得x=0. 由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表: 所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)证明由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处 的切线斜率为1x a ln a.由g′(x)= 1 x ln a,可得曲线y=g(x)在点

高中物理力学综合试题及答案

物理竞赛辅导测试卷(力学综合1) 一、(10分)如图所时,A 、B 两小球用轻杆连接,A 球只能沿竖直固定杆运动,开始时,A 、B 均静止,B 球在水平面上靠着固定杆,由于微小扰动,B 开始沿水平面向右运动,不计一切摩擦,设A 在下滑过程中机械能最小时的加速度为a ,则a= 。 二、(10分) 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可 伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在 O 的正上方,OB 之间的距离为H ,某一时刻,当绳的BA 段与 OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M 三、(10分)在密度为ρ0的无限大的液体中,有两个半径为 R 、密度为ρ的球,相距为d ,且ρ>ρ0,求两球受到的万有引力。 四、(15分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运动。在某一时刻质量为m 1的物体停下来,而质量为m 2的物体具有垂直连线方向的速度v ,求此时线的张力。 五、(15分)二波源B 、C 具有相同的振动方向和振幅, 振幅为0.01m ,初位相相差π,相向发出两线性简谐波,二波频率均为100Hz ,波速为430m/s ,已知B 为坐标原点,C 点坐标为x C =30m ,求:①二波源的振动表达式;②二波的 表达式;③在B 、C 直线上,因二波叠加而静止的各点位置。 六、(15分) 图是放置在水平面上的两根完全相同的轻 质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k ,弹簧的一端固定在墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x 0处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规定物体从最右端运动至最左端(或从最左端运动至最右端)为一个振动过程。求: (1)从释放到物体停止运动,物体共进行了多少个振动过程;(2)从释放到物体停止运动,物体共用了多少时间?(3)物体最后停在什么位置?(4)整个过程中物体克服摩擦力做了多少功? 七、(15分)一只狼沿半径为R 圆形到边缘按逆时针方向匀速 跑动,如图所示,当狼经过A 点时,一只猎犬以相同的速度从圆心 出发追击狼,设追击过程中,狼、犬和O 点在任一时刻均在同一直线上,问猎犬沿什么轨迹运动?在何处追击上? M O C y x v v B 0 v 0

高中物理力学选择题

物理力学选择题1.如图为A、B两质点作直线运动的v-t图象,已知两质点在同一直线上运动,由图知

A.两质点定从同一位置出发B.两质点定同时由静止开始运动 C.t2秒末两质点相遇D.0~t2秒时间内B质点可能领先A 2.a、b两物体同时、同地、同向做匀变速直线运动,若加速度相同,初速度不同,则在运动过程中,下列说法正确的是 A.a、b两物体速度之差保持不变B.a、b两物体速度之差与时间成正比C.a、b两物体位移之差与时间成正比D.a、b两物体位移之差与时间平方成正比3.放在水平光滑平面上的物体A和B,质量分别为M和m,水平恒力F作用在A上,A、B间的作用力为F1;水平恒力F作用在B上,A、B间作用力为F2,则 A.F1+F2=FB.F1=F2C.F1/F2=m/MD.F1/F2=M/m 4.完全相同的直角三角形滑块A、B,按图所示叠放,设A、B接触的斜面光滑,A与桌面的动摩擦因数为μ.现在B上作用一水平推力F,恰好使A、B一起在桌面上匀速运动,且A、B保持相对静止,则A与桌面的动摩擦因数μ跟斜面倾角θ的关系为 A.μ=tgθB.μ=(1/2)tgθC.μ=2·tgθD.μ与θ无关 5.如图一根柔软的轻绳两端分别固定在两竖直的直杆上,绳上用一光滑的挂钩悬一重物,AO段中张力大小为T1,BO段张力大小为T2,现将右杆绳的固定端由B缓慢移到B′点的过程中,关于两绳中张力大小的变化情况为 A.T1变大,T2减小B.T1减小,T2变大C.T1、T2均变大D.T1、T2均不变 6.质量为m的物体放在一水平放置的粗糙木板上,缓慢抬起木板的一端,在如图所示的几个图线中,哪一个最能表示物体的加速度与木板倾角θ的关系 7.一木箱在粗糙的水平地面上运动,受水平力F的作用,那么[] A.如木箱做匀速直线运动,F定对木箱做正功B.如木箱做匀速直线运动,F可能对木箱做正功C.如木箱做匀加速直线运动,F定对木箱做正功D.如木箱做匀减速直线运动,F定对木箱做负功8.吊在大厅天花板上的电扇重力为G,静止时固定杆对它的拉力为T,扇叶水平转动起来后,杆对它的拉力为T′,则[]

高考物理力学知识点之热力学定律综合练习(7)

高考物理力学知识点之热力学定律综合练习(7) 一、选择题 1.一定质量的理想气体,由初始状态A开始,状态变化按图中的箭头所示方向进行,最后又回到初始状态A,对于这个循环过程,以下说法正确的是() A.由A→B,气体的分子平均动能增大,放出热量 B.由B→C,气体的分子数密度增大,内能减小,吸收热量 C.由C→A,气体的内能减小,放出热量,外界对气体做功 D.经过一个循环过程后,气体内能可能减少,也可能增加 2.图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,当人从椅子上离开,M向上滑动的过程中() A.外界对气体做功,气体内能增大 B.外界对气体做功,气体内能减小 C.气体对外界做功,气体内能增大 D.气体对外界做功,气体内能减小 3.根据学过的热学中的有关知识,判断下列说法中正确的是() A.机械能可以全部转化为内能,内能也可以全部用来做功转化成机械能 B.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体 C.尽管科技不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降到-293 ℃D.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来 4.关于永动机和热力学定律的讨论,下列叙述正确的是() A.第二类永动机违背能量守恒定律 B.如果物体从外界吸收了热量,则物体的内能一定增加 C.保持气体的质量和体积不变,当温度升高时,每秒撞击单位面积器壁的气体分子数增多D.做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式没有区别 5.某同学将一气球打好气后,不小心碰到一个尖利物体而迅速破裂,则在气球破裂过程中( )

高中物理复习专题:力学基础选择题

力学基础(一) 1、如图所示,一根轻质细绳跨过定滑轮连接两个小球A 、B ,它们都穿在一根光滑的竖直杆上,不 计细绳与滑轮之间的摩擦,当两球平衡时OA 绳与水平方向的夹角为60°,OB 绳与水平方向的夹 角为30°,则球A 、B 的质量之比和杆对A 、B 的弹力之比分别为( ) A.13=B A m m B.33=B A m m C. 33=NB NA F F D. 2 3=NB NA F F 2、如图所示,倾角为θ的斜面体c 置于水平地面上,小物块b 置于斜面上, 通过细绳跨过光滑的定滑轮与沙漏a 连接,连接b 的一段细绳与斜面平行.在a 中的沙子缓慢流出的过程中,a 、b 、c 都处于静止状态,则( ) A .b 对c 的摩擦力一定减小 B .b 对c 的摩擦力方向可能平行斜面向上 C .地面对c 的摩擦力方向一定向右 D .地面对c 的摩擦力一定减小 3、如图所示,甲、乙两物块用跨过定滑轮的轻质细绳连接,分别静止在斜面AB 、AC 上,滑轮两侧细绳与斜面平行.甲、乙两物块的质量分别为m 1、m 2.AB 斜面粗糙,倾角为α,AC 斜面光滑,倾角为β,不计滑轮处摩擦,则以下分析正确的是( ) A .若m 1sin α>m 2sin β,则甲所受摩擦力沿斜面向上 B .若在乙物块上面再放一个小物块后,甲、乙仍静止,则甲所受的摩擦力一定变小 C .若在乙物块上面再放一个小物块后,甲、乙仍静止,则甲所受的拉力一定变大 D .若在甲物块上面再放一个小物块后,甲、乙仍静止,则甲所受拉力一定变大 4、如图所示,A 、B 两球质量均为m .固定在轻弹簧的两端,分别用细绳悬于O 点,其中球A 处在光滑竖直墙面和光滑水平墙面的交界处,已知两球均处于平衡状态,OAB 恰好构成一个正三角形,则下列说法正确的是( ) A .球A 可能受到四个力的作用 B .弹簧对球A 的弹力大于对球B 的弹力 C .绳OB 对球B 的拉力大小一定等于mg D .绳OA 对球A 的拉力大小等于或小于1.5mg 5、如图所示,光滑斜面静止于粗糙水平面上,斜面倾角θ=30°,质量为m 的小球被轻质细绳系住斜吊着静止于斜面上,悬线与竖直方向夹角α=30°,则下列说法正确的是 A .悬线对小球拉力是 B .地面对斜面的摩擦力是 C .将斜面缓慢向右移动少许,悬线对小球拉力减小 D .将斜面缓慢向右移动少许,小球对斜面的压力减小

高考物理一轮复习 力学部分 专题05 牛顿运动定律基础单元测试卷A卷

专题05 牛顿运动定律 1.下列关于牛顿第一定律的说法中正确的是( ) A. 牛顿第一定律是根据伽利略的理想斜面实验总结出来的 B. 牛顿第一定律可以用实验直接验证 C. 理想实验的思维方法与质点概念的建立一样,都是一种科学的抽象思维方法 D. 由牛顿第一定律可知,静止的物体一定不受外力作用 【答案】C 【解析】牛顿第一定律是牛顿在伽利略等前人实验的基础上,根据逻辑推理得出的,是以实验为基础, 2.把A、B两个弹簧测力计连接在一起,B的一端固定,用手沿水平方向拉测力计A,测力计B受到A的拉力为F,测力计A受到B的拉力为F',则() A. F与F'大小相等 B. F的方向水平向左 C. F'的方向水平向右 D. F'作用在测力计B上 【答案】A 【解析】根据牛顿第三定律的特点可知:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。故A正确;由题可知,测力计B受到A的拉力为F的方向向右。故B错误;测力计A受到B的拉力为F′方向为向左。故C错误;F′是测力计A 受到B的拉力,所以是作用在A上。故D错误。故选:A。 3.2016年10月17日,神舟十一号载人飞船发射成功宇航员在火箭发射与飞船回收的过程中均要经受超重与失重的考验,下列说法正确的是

A. 火箭加速上升时,宇航员处于超重状态 B. 飞船落地前减速下落时,宇航员处于失重状态 C. 火箭加速上升时,宇航员对座椅的压力小于自身重力 D.火箭加速上升过程中加速度逐渐减小时,宇航员处于失重状态 【答案】A 【解析】火箭加速上升时,加速度方向向上,宇航员处于超重状态。宇航员对座椅的压力大于自身重力,故A正确,CD错误。船落地前减速下落时,加速度向上,宇航员处于超重状态,故B错误;故选A。 4.如图所示,质量为m的物体放在粗糙的水平面上,物体与水平面间的动摩擦因数为μ,物体在方向与水平面成斜向下、大小为F的推力作用下,从静止开始运动,则物体的加速度为() A. B. C. D. 【答案】C 5.质量为45kg的小明站在电梯中的“体重计”上,当电梯竖直向下运动经过5楼时,“体重计”示数为50kg,如图所示.重力加速度取10m/s2.此时小明处于

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

2004年至2013年天津高考物理试题分类——力学综合计算题 (1)

2004年至2013年天津高考物理试题分类——力学综合计算 (2004年)24.(18分)质量kg m 5.1=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行s t 0.2=停在B 点,已知A 、B 两点间的距离m s 0.5=,物块与水平面间的动摩擦因数20.0=μ,求恒力F 多大。(2 /10s m g =) 解:设撤去力F 前物块的位移为1s ,撤去力F 时物块速度为v ,物块受到的滑动摩擦力 mg F μ=1 对撤去力F 后物块滑动过程应用动量定理得mv t F -=-01 由运动学公式得t v s s 2 1= - 对物块运动的全过程应用动能定理011=-s F Fs 由以上各式得2 22gt s mgs F μμ-= 代入数据解得F=15N (2005年)24.(18分)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为 0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态。木板突然受到水平向右的12N ·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E M 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2 ,求: (1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L 。 解:(1)设水平向右为正方向0v m I A = ① 代入数据解得s m v /0.30= ② (2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 上滑行的时间为t ,B 离开A 时A 和B 的初速分别为v A 和v B ,有 0)(v m v m t F F A A A CA BA -=+- ③ B B AB v m t F = ④ 其中F AB =F EA g m m F B A CA )(+=μ ⑤ 设A 、B 相对于C 的位移大小分别为s A 和s B ,有 2022 121)(v m v m s F F A A A A CA BA -= +- ⑥ AB B AB E s F = ⑦ 动量与动能之间的关系为 kA A A A E m v m 2= ⑧

高考物理力学知识点之分子动理论真题汇编含答案

高考物理力学知识点之分子动理论真题汇编含答案 一、选择题 1.关于热现象,下列说法正确的是() A.物体温度不变,其内能一定不变 B.物体温度升高,其分子热运动的平均动能一定增大 C.外界对物体做功,物体的内能一定增加 D.物体放出热量,物体的内能一定减小 2.下列说法中正确的是 A.液体分子的无规则运动是布朗运动 B.液体屮悬浮颗粒越大,布朗运动越明显 C.如果液体温度降到很低,布朗运动就会停止 D.将红墨水滴入一杯清水中,水的温度越高整杯清水都变成红色的时间越短 3.采用油膜法估测分子的直径,先将油酸分子看成球形分子,再把油膜看成单分子油膜,在实验时假设分子间没有间隙。实验操作时需要测量的物理量是 A.1滴油酸的质量和它的密度 B.1滴油酸的体积和它的密度 C.油酸散成油膜的面积和油酸的密度 D.1滴油酸的体积和它散成油膜的最大面积 4.用分子动理论的观点看,下列表述正确的是() A.对一定质量的气体加热,其内能一定增加 B.一定质量100℃的水转变成100℃的水蒸汽,其分子的平均动能增加 C.一定质量的理想气体,如果压强不变而体积增大,其分子的平均动能增加 D.如果气体温度升高,物体中所有分子的速率都一定增大 5.下列说法正确的是() A.给汽车轮胎充气时费力,说明分子间有斥力 B.温度是物体分子热运动的平均速率的标志 C.当分子间引力和斥力相等时,分子势能最小 D.高压密闭的钢筒中的油沿筒壁溢出,这是钢分子对油分子的斥力 6.测得一杯水的体积为V,已知水的密度为ρ,摩尔质量为M,阿伏伽德罗常数为NA,则水分子的直径d和这杯水中水分子的总数N分别为 A . A M d N VN ρ == B .A VN d N M ρ == C .A VN d N M ρ ==

高考物理超经典力学题集萃

高考物理经典力学计算题集萃 =10m/s沿x1.在光滑的水平面内,一质量m=1kg的质点以速度v 0 轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点 时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人

高考物理力学知识点之分子动理论经典测试题及答案

高考物理力学知识点之分子动理论经典测试题及答案 一、选择题 1.关于分子间的作用力,下列说法错误的是() A.分子之间的斥力和引力同时存在 B.分子之间的斥力和引力大小都随分子间距离的增大而减小 C.分子之间的距离减小时,分子力一直做正功 D.当分子间的距离大于109 米时,分子力已微弱到可以忽略 2.物质由大量分子组成,下列说法正确的是() A.1摩尔的液体和1摩尔的气体所含的分子数不相同 B.分子间引力和斥力都随着分子间距离减小而增大 C.当分子间距离减小时,分子间斥力增大,引力减小 D.当分子间距离减小时,一定是克服分子力做功 3.根据分子动理论,物质分子之间的距离为r0时,分子所受的斥力和引力相等,以下关于分子力和分子势能的说法正确的是 A.当分子间距离为r0时,分子具有最大势能 B.当分子间距离为r0时,分子具有最小势能 C.当分子间距离大于r0时,分子引力小于分子斥力 D.当分子间距离小于r0时,分子间距离越小,分子势能越小 4.下列说法正确的是( ). A.液体表面层的分子分布比较稀疏,分子之间只存在引力,故液体表面具有收缩趋势B.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动 C.当液晶中电场强度不同时,液晶对不同颜色光的吸收强度不同,就显示不同颜色D.高原地区水的沸点较低,这是高原地区温度较低的缘故 5.以下说法正确的是() A.机械能为零、内能不为零是可能的 B.温度相同,质量相同的物体具有相同的内能 C.温度越高,物体运动速度越大,物体的内能越大 D.0 ℃的冰的内能比等质量的0 ℃的水的内能大 6.甲、乙两个分子相距较远,它们之间的分子力弱到可忽略不计的程度.若使甲分子固定不动,乙分子逐渐靠近甲分子,直到不能再靠近的整个过程中,分子力对乙分子做功的情况是 A.始终做正功B.始终做负功 C.先做正功,后做负功D.先做负功,后做正功 7.下列说法正确的是() A.布朗运动的无规则性反映了液体分子运动的无规则性 B.悬浮在液体中的固体小颗粒越大,则其所做的布朗运动就越剧烈 C.物体的温度为0 ℃时,物体的分子平均动能为零 D.布朗运动的剧烈程度与温度有关,所以布朗运动也叫热运动

高考物理分值分布分析

高考物理分值分布分析 1、考点分值情况分析: (1)力学部分: 09年必考力学部分:38分,占物理总分34.5% 10年,必考力学部分42分,占物理总分的38.2%。 11年必考力学部分:47分,占物理总分42.7% 12年必考力学部分:38分,占物理总分34.5% 13年必考力学部分:50分,占物理总分45.5% 14年必考力学部分:49分,占物理总分44.5% (2)电磁部分: 09年必考电磁学部分: 57分,占物理总分51.8% 10年,电学部分共考查: 53分,占物理总分的48.2%。 11年必考电磁学部分: 48分,占物理总分43.6% 12年,电学部分共考查: 57分,占物理总分的51.8%。 13年必考电磁学部分: 45分,占物理总分40.9% 14年必考力学部分: 46分,占物理总分41.8% (3)选修部分:每年选考部分:15分,占物理总分13.6%。 2、整体内容分析: (1)必考部分:从所占分值来看,主要是以选修3-1为主,必修1、必修2共在42分左右,而选修3-2通常只考2个左右选择题。09年、10、12、13年高考都出现物理学史方面的题,所以在高考复习时要引起重视。万有引力部分在这五年中,每年都考了1道选择题,牛顿定律、机械能和电场、磁场总是高考的考查重点。实验题通常是考1道力学和1道电学题,一大一小,共15分,通常会以电学实验为大题,但11年就是以测加速度为大实验,12年全部为电学实验,所以还是不能一概而论。计算题在这五年中,09、10、11、13都是1道直线运动和1道带电粒子在电、磁场(或单纯的磁场)中运动题,尽管09年的直线运动题中会用到动能定理。而12年却出了一道关于力的平衡的计算题。 (2)选考部分:选修3-5:选择题在五年中有两年考了光电效应(09

二次函数最值问题与解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于 x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长 最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值 3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的 面积来得到

最新推荐推荐高三物理力学综合测试经典好题(含答案)教学内容

高三物理力学综合测试题 一、选择题(4×10=50) 1、如图所示,一物块受到一个水平力F 作用静止于斜面上,F 的方向与斜面平行, 如果将力F 撤消,下列对物块的描述正确的是( ) A 、木块将沿面斜面下滑 B 、木块受到的摩擦力变大 C 、木块立即获得加速度 D 、木块所受的摩擦力改变方向 2、一小球以初速度v 0竖直上抛,它能到达的最大高度为H ,问下列几种情况中,哪种情况小球不. 可能达到高度H (忽略空气阻力): ( ) A .图a ,以初速v 0沿光滑斜面向上运动 B .图b ,以初速v 0沿光滑的抛物线轨道,从最低点向上运动 C .图c (H>R>H/2),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 D .图d (R>H ),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 3. 如图,在光滑水平面上,放着两块长度相同,质量分别为M1和M2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F1、F2,当物块和木块分离时,两木块的速度分别为v1和v2,,物体和木板间的动摩擦因数相同,下列说法 若F1=F2,M1>M2,则v1 >v2,; 若F1=F2,M1<M2,则v1 >v2,; ③若F1>F2,M1=M2,则v1 >v2,; ④若F1<F2,M1=M2,则v1 >v2,;其中正确的是( ) A .①③ B .②④ C .①② D .②③ 4.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。若小车以1m/s2的加速度向右运动后,则(g=10m/s2)( ) A .物体A 相对小车仍然静止 B .物体A 受到的摩擦力减小 C .物体A 受到的摩擦力大小不变 D .物体A 受到的弹簧拉力增大 5.如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小 球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 3 10,则有关小球能够上 升到最大高度(距离底部)的说法中正确的是: ( ) A .一定可以表示为g v 22 B .可能为3 R C .可能为R D .可能为 3 5R 6.如图示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不 漏气。活塞下挂一砂桶,砂桶装满砂子时,活塞恰好静止。现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则 ( ) A .气体压强增大,内能不变 B .外界对气体做功,气体温度不变 C .气体体积减小,压强增大,内能减小 D .外界对气体做功,气体内能增加 7.如图所示,质量M=50kg 的空箱子,放在光滑水平面上,箱子中有一个质量m=30kg 的铁块,铁块与箱子的左端ab 壁相距s=1m ,它一旦与ab 壁接触后就不会分开,铁块与箱底间的摩擦可以忽略不计。用水平向右的恒力F=10N 作用于箱子,2s 末立即撤去作用力,最后箱子与铁块的共同速度大小是( ) θ F R F

(word完整版)高三物理力学综合测试题

实验高中高三物理力学综合测试题 (时间:90分钟) 一、选择题(共10小题,每小题4分,共计40分。7、8、9、10题为多选。) 1.一辆汽车以10m/s的速度沿平直公路匀速运动,司机发现前方有障碍物立即减速,以0.2m/s2的加速度做匀减速运动,减速后一分钟内汽车的位移是() A.240m B。250m C。260m D。90m 2.某人在平静的湖面上竖直上抛一小铁球,小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中一段深度。不计空气阻力,取向上为正方向,在下面的图象中,最能反映小铁球运动过程的v-t图象是() A B C D 3. 我国“嫦娥一号”探月卫星经过无数人的协 作和努力,终于在2007年10月24日晚6点05 分发射升空。如图所示,“嫦娥一号”探月卫星 在由地球飞向月球时,沿曲线从M点向N点飞行 的过程中,速度逐渐减小。在此过程中探月卫星 所受合力的方向可能的是() 4.设物体运动的加速度为a、速度为v、位移为s。现有四个不同物体的运动图象如图所示,假设物体在t=0时的速度均为零,则其中表示物体做单向直线运动的图象是() 5.如图所示,A、B两小球分别连在弹簧两端,B端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别为 A.都等于 2 g B. 2 g 和0 C. 2 g M M M B B A? + 和0 D.0和 2 g M M M B B A? + 6.如图1所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、B两点,用E A、E B表示A、B两处的场强,则() A.A、B两处的场强方向相同 B.因为A、B在一条电场上,且电场线是直线,所以E A=E B C.电场线从A指向B,所以E A>E B a t a t 2 4 6 -1 1 2 5 6 -1 1 C 3 4 1 S t v 2 4 6 -1 1 2 4 6 -1 1 A B v v v v

高中物理力学部分知识点归纳

高中物理力学部分知识点归纳 1、基本概念:力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速 2、基本规律:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变 化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);功能原理(非重力做功与物体机械能变化之间的关系);机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

3、基本运动类型:运动类型受力特点备注直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析匀变速直线运动同上且所受合外力为恒力 1. 匀加速直线运动 2. 匀减速直线运动曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向合外力指向轨迹内侧(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心(合外力充当向心力)一般圆周运动的受力特点向心力的受力分析简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析 4、基本方法:力的合成与分解(平行四边形、三角形、多边形、正交分解);三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);针对简谐运动的对称法、针对简谐波图像的描点法、平移法 5、常见题型:合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

2015高考物理一轮复习—专题系列卷:力学综合

解答题专练卷(一)力学综合 1.如图1所示,蹦床运动员正在训练大厅内训练,大厅内蹦床的床面到天花板的距离是7.6 m,在蹦床运动的训练室内的墙壁上挂着一面宽度为1.6 m的旗帜。身高1.6 m的运动员头部最高能够上升到距离天花板1 m的位置。在自由下落过程中,运动员从脚尖到头顶通过整面旗帜的时间是0.4 s,重力加速度为10 m/s2,设运动员上升和下落过程中身体都是挺直的,求: 图1 (1)运动员的竖直起跳的速度; (2)运动员下落时身体通过整幅旗帜过程中的平均速度; (3)旗帜的上边缘距离天花板的距离。 2.(2014·江西重点中学联考)如图2(a)所示,小球甲固定于足够长光滑水平面的左端,质量m=0.4 kg的小球乙可在光滑水平面上滑动,甲、乙两球之间因受到相互作用而具有一定的势能,相互作用力沿二者连线且随间距的变化而变化。现已测出势能随位置x的变化规律如图(b)所示中的实线所示。已知曲线最低点的横坐标x0=20 cm,虚线①为势能变化曲线的渐近线,虚线②为经过曲线上x=11 cm点的切线,斜率绝对值k=0.03 J/cm。 图2 试求:(1)将小球乙从x1=8 cm处由静止释放,小球乙所能达到的最大速度为多大? (2)小球乙在光滑水平面上何处由静止释放,小球乙不可能第二次经过x0=20 cm的位

置?并写出必要的推断说明。 (3)小球乙经过x=11 cm时加速度大小和方向。 3.如图3所示,物块A的质量为M,物块B、C的质量都是m,都可看作质点,且m

相关文档
最新文档