箔条云对电磁波衰减效应研究

箔条云对电磁波衰减效应研究
箔条云对电磁波衰减效应研究

箔条云对电磁波的衰减效应研究

摘要:箔条干扰是最廉价有效的无源干扰之一,适用范围广泛。本文研究了箔条云对电磁波的整体遮挡效应。对不同箔条分布形式进行了计算,结果表明,这一方法是有效正确的,证明了箔条遮挡效应对于干扰的重要意义。

关键词:箔条云无源干扰正态密度球分布电磁衰减

中图分类号:tn972 文献标识码:a 文章编

号:1674-098x(2011)06(b)-0006-02

1 引言

箔条是雷达电子对抗中最典型的一种无源干扰方式,它通过爆炸或者散播等方式将大量的金属波条散步空中,形成具有很大雷达散射截面的目标,从而达到干扰雷达的作用。同时波条这种无源干扰方式具有成本低,易于制作,适应性强的特点,因而在军事行动中具有广泛而实用的效果[1]。

回波能量是雷达工作的主要相关体,回波能量的强弱直接决定了雷达的工作能力和效果。我们尝试从通常被忽略的箔条云的遮挡效应方面论述箔条对雷达的干扰,推导了箔条云对电磁波的衰减计算公式,结果表明箔条云的遮挡效应是“压制系数倍乘器”,证明了这一设想的可行性。

2 箔条云对电磁波的衰减

强度为ei平面波照射雷达目标时,目标的雷达散射截面的计算公式如下:

电磁波传输损耗

电磁波传输损耗及远场区的场强预测 广播电视无线电波的频段较高,电磁波信号传输时以直射波为主,但是也存在反射、绕射和散射等。电磁波在空间传播时,向外传输的电磁波以球面波的形式向外发射,距离越大,球面半径就越大,单点的电磁信号就越小,空间损耗也就越大。另外,电磁波在空间传播的过程中会受到空气中的尘埃、水滴、水汽等物质的影响,造成反射和散射;电磁波在接近地表传输时,会由于地表不是绝对光滑,而是存在高低起伏、树木遮挡、建筑物遮挡、大型水面或湖面的影响,而产生反射、绕射等情况,这样,电磁波信号到达接收天线时就会由各种传播方式传播到的所有信号叠加而成。因为各个地区的地形存在很大差异,同一地区各个方向上的建筑物、树木、河流湖泊等情况也不尽相同,因此这种不是由于空间球面扩散而产生的损耗就是很难预测的;同时,由于各个区域的电磁覆盖情况都不一样,随之带来的电磁干扰情况也不一样,这就更为场强覆盖预测带来难度。 一、球面传播的电磁波的空间损耗

Pr :接收信号功率 Pt :发射信号功率 Gt :发射天线增益 Gr :接收天线增益 d :接收和发射天线之间的距离 λ:射频信号波长 有球面面积可计算得 自由空间传播路径损耗(发射天线和接收天线都为点源天线)可写为: 可以看出,传输距离越大,空间损耗越大,频率越高,传输损耗越大。 二、 实际电磁波的传播损耗 电磁波在空间传播时,都会受到空气中的粒子、地面建筑物、地面植被等其他物体的影响,而产生反射、折射、绕射、散射等。电磁波通常不会按照球面波的传输损耗到达接收天线。这样,实际电磁波的传播损耗,在自由空间传播路径损耗的基础上还要加上一些修正值。传播损耗按照性质分类可分为:经验模型、半经验模型、确定性模型。 MHZ mi MHZ Km r t fs f d f d d d P P dB L 1010222log 20log 2058.36log 20log 2045.324log 20)4(log 10log 10)(1010++=++=??????=??????-==λππλ()/24t r r t G G P P d πλ=

电磁波的危害和防护

电磁波的危害和防护 随着经济的发展和物质文化生活水平的不断提高,各种家用电器——电视机、空调器、电脑、手机等已经成为现代都市家庭不可或缺的东西。然而,各种家用电器和电子设备在使用过程中会产生多种不同波长和频率的电磁波。在特定条件下,这些电磁波可能成为“电磁污染”,危害到人们的健康。 1 电磁污染危害人体的机理 电磁污染危害人体的机理主要是热效应、非热效应和累积效应等。 热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,导致体温升高,从而影响到体内器官的正常工作。 非热效应:人体的器官和组织都存在微弱的电磁场,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场将遭到破坏,人体也会遭受损伤。 累积效应:热效应和非热效应对人体的伤害具有累积效应,其伤害程度会随时间和影响程度发生累积,久而久之会成为永久性病态。对于长期接触电磁波辐射的群体,即使电磁波功率很小、频率很低,也可能被诱发意想不到的病变。 2 电磁污染的危害

1998年世界卫生组织调查显示,电磁辐射对人体有五大影响:(1)电磁辐射是心血管疾病、糖尿病、癌突变的主要诱因之一; (2)电磁辐射会对人体生殖系统、神经系统和免疫系统造成直接伤害; (3)电磁辐射是造成孕妇流产、不育、畸胎等病变的诱发因素之一; (4)过量的电磁辐射直接影响儿童身体组织、骨骼发育,导致视力、肝脏造血功能下降,严重者可导致视网膜脱落; (5)电磁辐射可使男性性功能下降、女性内分泌紊乱。 3 电磁波的防护 3.1电磁环境标准及相关规定 为控制现代生活中电磁波对环境的污染,保护人们身体健康,1989年12月22日我国卫生部颁布了《环境电磁波卫生标准》( GB9175-88),规定居住区环境电磁波强度限制值:长、中、短波应小于lOV/m,超短波应小于5V/m,微波应小于10μW/cm2。我国有关部门还制订了《电视塔辐射卫生防护距离标准》,国家环保局也颁布了《电磁辐射环境保护管理办法》。

11.5 电磁波传播特性

实验11.5 电磁波传播特性 Part 1 电磁波参量的测量 一、实验目的 1. 研究电磁波在良导体表面的反射。 2. 利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v 。 二、实验仪器 (1)三厘米固态信号发生器1台; (2)电磁波综合测试仪1套; (3)反射板(金属板)2块; (4)半透射板(玻璃板)1块。 三、实验原理和方法 1. 自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路程上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 2K v f K πλλω=?? ==? 得到电磁波的主要参数K 和v 等。 电磁波参量测试原理如图1所示,P T 和P R 分别表示发射和接收喇叭天线,A 和B 分别表示固定和可移动的金属反射板,C 表示半透射板(有机玻璃板)。由P T 发射平面电磁波,在平面波前进的方向上放置成45°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A 板方向传播,另一束向B 板方向传播。由于A 和B 为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线P R 处。于是P R 收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。

移动反射板B ,当P R 的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波 0j i E E e φ-= 当入射波以入射角θ1向介质板C 斜入射时,在分界面上产生反射波r E 和折射波t E 。设C 板的反射系数为R ,T 0为由空气进入介质板的折射系数,T c 为由介质板进入空气的折射系数。固定板A 和可移动板B 都是金属板,反射系数均为-1。在一次近似的条件下,接收喇叭天线P R 处的相干波分别为 12100200j r c j r c E RT T E e E RT T E e φφ--=-=- 这里 ()()()1131 223132 K l l KL K l l K l l L KL φφ=+==+=++?= 其中,ΔL =|L 2-L 1|为B 板移动距离,而1r E 与2r E 传播的路程差为2ΔL 。 由于1r E 与2r E 的相位差为21=2K L φφφ?-=?,因此,当2ΔL 满足 ()20,1,2, L n n λ?== 1r E 与2r E 同相相加,接收指示为最大。 当2ΔL 时满足 图1 电磁波参量测试原理图

电磁波衰减

[吸收系数]absorption coefficient 又称“衰减系数”当电磁波进入岩石中时,由于涡流的热能损耗,将使电磁波的强度随进入距离的增加而衰减,这种现象又称为岩石对电磁波的吸收作用。吸收或衰减系数β的大小和电磁波角频率ω、岩石导电率σ、岩石导磁率μ、岩石 介电系数ε有关, 1 ) 1( 22 2 2 - + = δ ω σ με ω β 。在导体中则简化为:2 ωμσ β= 。 第十六章机械波和电磁波 振动状态的传播就是波动,简称波. 激发波动的振动系统称为波源 16-1机械波的产生和传播 1. 机械波产生的条件 (1)要有作机械振动的物体,亦即波源. (2)要有能够传播这种振动的介质 波源处质点的振动通过弹性介质中的弹性力,将振动传播开去,从而形成 机械波。 波动(或行波)是振动状态的传播,是能量的传播,而不是质点的传播。 ◆质点的振动方向和波的传播方向相互垂直,这种波称为横波. ◆质点的振动方向和波的传播方向相互平行,这种波称为纵波. 2.波阵面和波射线 ●在波动过程中,振动相位相同的点 连成的面称为波阵面(wave surface)●波面中最前面的那个波面称为波前(wave front)波面 波 线

●波的传播方向称为波线(wave line)或波射线平面波球面波 3. 波的传播速度 由媒质的性质决定与波源情况无关 ●液体和气体中纵波传播速度 B-介质体变弹性模量 ρ-介质密度 ● 在 固 体 G-介质切变模量 中 Y-介质杨氏模量 4.波长和频率 ●一个完整波的长度,称为波长.

●波传过一个波长的时间,叫作波的周期 ●周期的倒数称为频率. 振动曲线波形曲线图形 研究 对象某质点位移随时间变化规律 某时刻,波线上各质点位移随位置变 化规律 物理意义由振动曲线可知 周期T. 振幅A 初相φ0 某时刻方向参看下一时刻 由波形曲线可知该时刻各质点 位移,波长λ,振幅A 只有t=0 时刻波形才能提供初相 某质点方向参看前一质点 特征对确定质点曲线形状一定曲线形状随t 向前平移 16-2 平面简谐波波动方程 ●前进中的波动,称为行波. ●描述介质中各质点的位移随时间变化的数学函数式称为行波的波动表式(或波 动方程)

噪声衰减公式(建议收藏)

点声源随传播距离增加引起的衰减 在自由声场(自由空间)条件下,点声源的声波遵循着球面发散规律,按声功率级作为点声源评价量,其衰减量公式为:.。.。..文档交流 (8—1) 式中: △L—-距离增加产生衰减值,dB; r——点声源至受声点的距离,m. 在距离点声源,r1处至r2处的衰减值: △L=20 lg(r1/r2)(8-2) 当r2=2 r1时,△L=—6dB,即点声源声传播距离增加1倍,衰减值是6 dB. 点声源的几何发散衰减实际应用有两类: a.无指向性点声源几何发散衰减的基本公式是: L(r)=L(r0)-20 lg(r/r0)(8—3) 式中:L(r),L(r0)—-分别是r,r0处的声级。 如果已知r0处的A声级,则式(8-4)和式(8-3)等效: L A(r)=L A(r0)-20 lg(r/r0) (8—4) 式(8-3)和式(8-4)中第二项代表了点声源的几何发散衰减: A div=20 lg(r/r0) (8-5)

如果已知点声源的A声功率级L WA,且声源处于自由空间,则式(8—4)等效为式(8—6): L A(r)=L WA-20 lgr—11 (8—6) 如果声源处于半自由空间,则式(8—4)等效为式(8—7): L A(r)=L WA-20 lgr-8 (8—7) b.具有指向性声源几何发散衰减的计算见式(8-8)或式(8-9): L(r)=L(r0)-20 lg(r/r0)(8-8) L A(r)=L A(r0)—20 lg(r/r0)(8—9) 式(8-8)、式(8-9)中,L(r)与L(r0),LA(r)与L A(r0)必须是在同一方向上的声级.。..。.。文档交流 文档交流感谢聆听

无线电波的传播特性

无线电波的传播特性 传播特性(一) 移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式: 1.表面波传播 表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播. 当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射. 从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播. 2.天波传播 短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波. 电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广. 在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作. 传播特性(二) 1.空间波传播 当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响. 空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右. 空间波除了受地面的影响以外,还受到低空大气层即对流层的影响. 移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.

室内传播和路径损耗计算及实例(完整版)

室内传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态范围;b)电磁波的传播损耗。 动态范围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态范围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态范围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= . (λ/4πR)2 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) () 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=时(f=可得出: =-Gr-Gt++20log(R) () R的单位为米。 图2-1表示了信号频率,天线的增益为0dBi时的自由空间的损耗曲线。

电磁波衰减

第十六章机械波和电磁波 振动状态的传播就是波动,简称波. 激发波动的振动系统称为波源 16-1机械波的产生和传播 1. 机械波产生的条件 (1)要有作机械振动的物体,亦即波源. (2)要有能够传播这种振动的介质 波源处质点的振动通过弹性介质中的弹性力,将振动传播开去,从而形成 机械波。 波动(或行波)是振动状态的传播,是能量的传播,而不是质点的传播。 ◆ 质点的振动方向和波的传播方向相互垂直,这种波称为横波. ◆ 质点的振动方向和波的传播方向相互平行,这种波称为纵波. 2.波阵面和波射线 ● 在波动过程中,振动相位相同的点连成的面称 为波阵面(wave surface) ● 波面中最前面的那个波面称为波前(wave front) ● 波的传播方向称为波线(wave line)或波射线 波面波 线 平面波 球面 波 3. 波的传播速度 由媒质的性质决定与波源情况无关 ● 液体和气体中纵波传播速度 B-介质体变弹性模量 ρ-介质密度

● 在 固 体 中G-介质切变模量 Y-介质杨氏模量 4.波长和频率 ● 一个完整波的长度,称为波长. ● 波传过一个波长的时间,叫作波的周期 ● 周期的倒数称为频率.

16-2 平面简谐波波动方程 ● 前进中的波动,称为行波. ● 描述介质中各质点的位移随时间变化的数学函数式称为行波的波动表式(或波 动方程) 设坐标原点的振动 为: O 点运动传到 p 点需 用时 相位 落后 所以 p 点的运动方 程: 1.平面简谐波的波动表式 定义 k 为角波 数 又 因此下述表达式等价: 为波的 相位

● 波在某点的相位反映该点媒质的“运动状态”, 所以简谐波的传播也是媒质振动相位的传播。 设 t 时刻x处的相位经 dt 传到(x +dx)处, 则有 于 ——相速度(相速) 是得到 简谐波的波速就是相速 2.行波动力学方程 将平面波的波函数对空间和时间求导,可得 ——波动方程。各种平面波所必须满足的线性偏微分方 程 若 y1,y2 分别是它的解,则(y1+y2)也是它的解,即上述波动方程遵从叠加原理。 3.波动方程推导(以一维纵波为例) 取棒中任一小质元原长 dx,质量为dm=ρSdx 受其它部分的弹性力为 f 和 f+df 质元的运动学方程 为: 根据弹性模量的定 义:

第六章 平面电磁波的传播

第六章 平面电磁波的传播 习题6.1 已知自由空间中均匀平面电磁波的电场: y e x t E )210cos(37.738 ππ-?=V/m ,求 (1)电磁波的频率,速度,波长,相位常数,以及传播方向。 (2)该电磁波的磁场表达式。 (3)该电磁波的坡印廷矢量和坡印廷矢量的平均值。 题意分析: 已知均匀平面电磁波的一个场量求解另一个场量,以及相关的参数,这是均匀平面波问题中经常遇到的问题。求解问题的关键在于牢记均匀平面电磁波场量表达形式的基本特点,场矢量方向和波的传播方向之间的关系以及相关公式。 解: (1)求电磁波的频率,速度,波长,相位常数,以及传播方向 沿x 轴正方向传播的电磁波的电场强度瞬时表达式为: y y y e x t E E )c o s (2φβω+-= 电场表达式的特点有: 电磁波角频率 8103?=πω (rad/s ) 由f πω2=,可以得到 电磁波的频率为: 8 10 5.12?==π ω f (Hz ) 电磁波在自由空间的传播速度 8103?==c v (m/s ) 电磁波的波长λ满足式 f v vT = =λ 210 5.110 38 8=??= = ∴f v λ(m ) 相位常数: πβ2= (rad/m ) 分析电磁波的传播方向: 方法一:直接判断法 比较均匀平面电磁波的电场表达式可以看出,均匀平面电磁波的电场表达式中x π2项前面的符号为“-”,该电磁波是沿x 轴正方向传播的电磁波。

方法二:分析法 电场表达式是时间t 和坐标x 的函数,若要使E 为不变的常矢量,就应使组合变量(x t ππ21038-?)在t 和x 变化时为一定值。即,当时间变量t 变为t t ?+,位置变量x 变为x x ?+时,有下式成立: )(2)(10321038 8x x t t x t ?+-?+?=-?ππππ 由上式可得: t x ??= ?π π21038 这说明在电磁波的传播过程中,随着时间的增加(0>?t ),使电场保持定值的点的坐标也在增加(0>?x ),所以电磁波的传播方向是由近及远,沿x 轴正方向逐步远离原点。 (2)求该电磁波的磁场表达式 电磁波的传播方向为x 轴正方向,电场分量为y 轴方向,根据坡印廷矢量的 定义:H E S ?=,电场,磁场以及电磁波的传播方向应遵循右手螺旋定律,所 以本题中磁场的方向应为z 轴方向,三者的方向关系下如图所示。 z 在自由空间中,正弦均匀平面电磁波的电场和磁场分量的比值为固定值,是 空间的波阻抗:Ω=3770Z ,所以磁场分量H 的表达式为: z z z e x t e x t e Z E H )210cos(31.0)210cos(3377 7.738 80ππππ-?=-?== (A/m ) (3)求该电磁波的坡印廷矢量表达式和坡印廷矢量的平均值 根据坡印廷矢量的定义:H E S ?=,得 ])210cos(31.0[])210cos(37.73[8 8z y e x t e x t H E S ππππ-??-?=?= x e x t )210(3cos 773.8 2ππ-?= (W/m 2) 坡印廷矢量的平均值:

室内传播和路径损耗计算与实例(完整版)

室传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在2.4GHz工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态围;b)电磁波的传播损耗。 动态围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= Gt.Gr. (λ/4πR)2 (2.1) 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式2.1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2.2) 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=12.3cm时(f=2.44GHz)可得出: PL2.44=-Gr-Gt+40.2+20log(R) (2.3) R的单位为米。 图2-1表示了信号频率2.44GHz,天线的增益为0dBi时的自由空间的损耗曲线。 注意:在此公式中收发天线的极化要一致(匹配),天线的极化不同会产生另一损耗系数。一般情况下对于理想的线极化天线,极化损耗同两个天线的极化方向的夹角的余弦的平方成正比。例如:两个偶极天线的方向夹角为45°时,极化损耗系数为-3dB左右。

电磁波的特征参数

电磁波的特征参数 与声波和水波相似,电磁波具有波的性质,可以发生折射等现象。它的速度,波长,频率之间满足关系式: 传播速度=波长×频率。 电磁波在空气中的传播速度为光速,波长λ=300/频率F(GHz)mm。从同步卫星到地球的传播时间大约1/8秒。 波速不变,波长和频率成反比 电磁波的重要特性有:①电磁波可以在真空中传播.②电磁波可以在真空中传播.③电磁波也会产生电磁污染. 电磁波为横波,可用于探测、定位、通信等等 传播速度约为光速(3*108m/s),不需要介质,伴随着能量的传播而传播

长波波长1000米以上,中波波长100-1000米,短波波长10-100米,超短波和微波波长为10米以下由于长波的波长很长,地面的凹凸与其他参数的变化对长波传播的影响可以忽略. 在通信距离小于300km时,到达接收点的电波,基本上是表面波.长波穿入电离层的深度很浅,受电离层变化的影响很小,电离层对长 波的吸收也不大.因而长波的传播比较稳定.虽然长波通信在接收点 的场强相当稳定,但是它有两个重要的缺点: 1、于表面波衰减慢,发射台发出的表面波对其他接受台干扰很强 烈. 2、天电干扰对长波的接收影响严重,特别是雷雨较多的夏季. 中波能以表面波或天波的形式传播,这一点和长波一样.但长波 穿入电离层极浅,在电离层的下界面即能反射.中波较长波频率 高,故需要在比较深入的电离层处才能发生反射.波长在3000 -2000米的无线电通信,用无线或表面波传播,接收场强都很 稳定,可用以完成可靠的通信,如船舶通信与导航等.波长在20 00-200m的中短波主要用于广播,故此波段又称广播波段. 3、与长,中波一样,短波可以靠表面波和天波传播.由于短波频率 较高,地面吸收较强,用表面波传播时,衰减很快,在一般情况下,短波的表面波传播的距离只有几十公里,不适合作远距离通信 和广播之用.与表面波相反,频率增高,天波在电离层中的损耗 却减小.因此可利用电离层对天波的一次或多次反射,进行远距 离无线电通信.

空间传播衰耗公式及其他一些经验值详解

WLAN室内传播模型 无线局域网室内覆盖的主要特点是:覆盖范围较小,环境变动较大。一般情况下我们选取以下两种适用于WLAN的模型进行分析。由于室内无线环境千差万别,在规划中需根据实际情况选择参考模型与模型系数。 (1) Devasirvatham模型 Devasirvatham模型又称线性路径衰减模型,公式如下: Pl(d,f)[dB]为室内路径损耗= 其中,为自由空间损耗= d:传播路径;f:电波频率;a:模型系数 (2) 衰减因子模型 就电波空间传播损耗来说,2.4GHz频段的电磁波有近似的路径传播损耗。公式为: PathLoss(dB) = 46 +10* n*Log D(m) 其中,D为传播路径,n为衰减因子。针对不同的无线环境,衰减因子n的取值有所不同。在自由空间中,路径衰减与距离的平方成正比,即衰减因子为2。在建筑物内,距离对路径损耗的影响将明显大于自由空间。一般来说,对于全开放环境下n的取值为2.0~2.5;对于半开放环境下n的取值为2.5~3.0;对于较封闭环境下n的取值为3.0~3.5。典型路径传播损耗理论计算值如表1。

现阶段可提供的2.4GHz电磁波对于各种建筑材质的穿透损耗的经验值如下: ●隔墙的阻挡(砖墙厚度100mm ~300mm):20-40dB; ●楼层的阻挡:30dB以上; ●木制家具、门和其他木板隔墙阻挡2-15dB; ●厚玻璃(12mm):10dB(2450MHz) 开阔空间内,设计覆盖距离尽量不要超过30m。 ●如果天线目标区域之间有20mm左右薄墙阻隔时,设计覆盖距离尽量不要超过20m。 ●如果天线与目标区域之间有较多高于1.5m的家具等阻隔时,设计覆盖距离尽量不要超过20m。 ●如果天线安装在长走廊的一端,设计覆盖距离尽量不要超过20m。 ●如果天线与目标区域之间有一个拐角时,设计覆盖距离尽量不要超过15m。 ●如果天线与目标区域之间有多个拐角时,设计覆盖距离尽量不要超过10m。 ●不要进行隔楼层进行覆盖。

噪声衰减计算

噪声衰减计算 1.点声源衰减计算公式:△L=10log(1/4πr2) 距离点声源r1、r2,噪声衰减计算公式:△L=20log(r1/r2); 式中:△L——衰减量r——点声源至受声点的距离 经验值:距离增加一倍,衰减6dB(A)。 点声源距离衰减值表 距离(米)△L dB(A)距离(米)△L dB(A)距离(米)△L dB(A)514403210040 1020503420046 1523.5603530049.5 2026703740052 2528803850054 3029.59039 2.线声源衰减计算公式:△L=10lg(1/2πrl); r——线声源至受声点的距离,m;l——线声源的长度,m。 1)当r/l<0.1时,例如,公路等,可视为无限长线声源,此时,在距离线声源r1~r2处的衰减值为:△L=10log(r1/r2) 2)当r2=2r1时,线声源传播距离增加一倍,衰减值3dB(A)。

3.面声源 面声源随传播距离的增加引起的衰减值与面源形状有关。 例如,一个许多建筑机械的施工场地: 设面声源短边是a,长边是b,随着距离的增加,引起其衰减值与距离r的关系为: 1)当rr>a/π,在r处,距离r每增加一倍,A div=-(0~3)dB; 3)当b>r>b/π,在r处,距离r每增加一倍,A div=-(3~6)dB; 4)当r>b,在r处,距离r每增加一倍,A div=-6dB。 4.噪声叠加 噪声的叠加两个以上独立声源作用于某一点,产生噪声的叠加。 声能量是可以代数相加的,设两个声源的声功率分别为W1和W2,那么总声功率W总=W1+ =I1+I2。 W2。而两个声源在某点的声强为I1和I2时,叠加后的总声强I 总 但声压不能直接相加。由于I1=P12/ρc;I2=P22/ρc,故P总2=P12+P22, 又(P1/P0)2=10(Lp1/10),(P2/P0)2=10(Lp2/10)故总声压级: LP=10lg[(P12+P22)/P02] LP=10lg[10(Lp1/10)+10(Lp2/10)]

海水中电磁波传播特性的研究

海水中电磁波传播特性的研究 摘要:利用电磁场传播所满足的Maxwell 方程组,计算和分析出电磁波在导电媒质中传播时的特征;并以海水为例,得出一些有意义的结论,为海水中通信、信号探测、引信研究等方面工作提供理论依据。 关键词:导电媒质;电磁波;传播 一 .前言 对海水中一般性的电磁问题已进行过初步的讨论分析,尽管只有低频电磁波在海水中能传播可观的距离,但电磁波在其中传播时所呈现出来的性质和在普通绝缘媒质中有很大的区别。正是这些特异性质引起了广泛的关注,并且已开始在众多应用中得到体现。以电磁场传播所满足的Maxwell 方程组为出发点,计算和分析了电磁波在导 电媒质中传播 时的一些特征,并以海水这种导电媒质为例,分析了电磁波在其中传播时的特征,得到一些有意义的结论。 二. 主体 1 电磁波传播时导电媒质中电荷的分布特征 对于均匀的导电媒质,根据以下方程: 电流连续方程 91610()N σε -≈?Ωg 欧姆定律的微分形式 j E σ= 介质中的高斯定理 E ρε ?=g 其中:j 为电流密度矢量;ρ为电荷分布体密度;ε为介质的电容率。可得出导电媒质中的电荷分布体密度满足微分方程: t ρρσε?=-? 从而解得任意时刻的电荷体密度为: 0()0()t t t e σ ερρ--= 可见:电磁波经过时,导电媒质中的电荷分布的体密度随时间呈指数衰减,若初始时电荷体密度为0,则以后保持为0,与有无电磁波在其中传播无关。由各种导电媒质的σ、ε可以计算ρ的衰减快慢。例如海水,取14.4()m σ-=Ωg ,

90.710/N m ε-=?,可以计算91610()N σε -≈?Ωg ,可见其衰减是很快的,也就是说,在均匀导电媒质中不可能有净的自由电荷出现。衰减的电荷实际上是在定向运动,必将在导电媒质表面和非均匀处重新出现。 2 电磁波在导电媒质中的传播特征 电磁波在导电媒质中传播时,振幅不断衰减,电场和磁场强度矢量不再同相,存在色散现象;同时磁场强度比电场强度大得多,电磁波能量中以磁场能量为主,且传播时存在返流现象,这是电磁波在导电媒质中传播时出现的特殊性质。 由麦克斯韦方程组,可得H 、E 和均匀非损耗媒质中的一样,仍然满足亥姆霍兹方程: 22()()0E H k E H ?+= 其中:22k i μωεμωσ=-。 (1)方程的解仍然可为平面单色波形式0exp(())E E i k r t ω=-g ,0exp(())H H i k r t ω=-g ,但波矢量为一复数矢量。为简单起见,可设波矢量沿某单一方向,此时其实部与虚部均为单一方向的矢量,波矢量可表示为: 1122001111()22k i k i k αβ??????=+=+???????????? 其中:0k 为波传播方向的单位方向矢量;12 112α?=??? ;12 112β?=???。 将它们代入平面波表达式中,可见此时的平面波为阻尼横波 000exp()exp(())E k r i k r w t βα--g g g ,其振幅有衰减,这是因为自由电子在入射电场的驱动下形成电流,部分电磁场的能量转变成焦耳热. (2)此时电磁波的等相面的速度可由0k r t const αω-=g ,两边求导得到:v ρωα =,可见即使媒质的电磁性质σ、ε、μ和频率无关,色散现象仍然存在。 (3)将E 、H 的表达式代入麦克斯韦方程组中,即可以得到两者的关系式为:

简述电磁波的主要特点

1.简述电磁波的主要特点?○1电磁波是横波。2电磁波的传播不需要介质。3电磁 波具有能量。 2.造成高层大气电离的主要机理有哪些?一是太阳辐射的光致电离;二是来自太阳或 其他星体高能离子的碰撞电离。 3.写出四种对流层折射率剖面模型,当其全部应用于对流层时对精度进行排序。 大气模型可分为线性模型、指数模型、双指数模型、分段模型。精度由低到高排列线性模型、指数模型、双指数模型和分段模型。 4.地波不宜采用水平极化波传播,为什么?地波不宜采用水平极化波传播。这是 因为当电场为水平极化时,电场平行于地面,传播中在地面上产生较大的感应电流,使电波产生很大的衰减。 5.按物理机制或传播情况的不同,对流层传播可分为哪四种传播方式?1视线传 播2对流层散射传播3障碍绕射传播4大气波导传播 6.根据收发两端处的空间位置不同,视距传播一般主要分为哪三种?并举例说明? 第一类是地面上的视距传播,例如无线电中继通信、电视广播以及移动通信;第二类是地面和空中目标,如飞机、通信卫星等之间的视距传播;第三类是空间通信系统之间的视距传播,如飞机之间、宇宙飞行器之间等。 7.简述对流层散射传播的优点和缺点。优点1它不受电离层的影响,不像短波那 样要按季节和昼夜变换工作频率;2与微波接力通信相比较,它所需的中继站少,并且比较安全和保密,具有经济和战略意义;3传输容量较大,即可传送多达几十路甚至几百路的语言信号,又可传送高速数据,还可传送电视信号;4在一定程度上不怕高山、湖海和沙漠等自然障碍。 8.简述多普勒频移产生的原因。原因是电离层经常性的快速运动以及反射层高度 的快速变化,使传播路径的长度不断地变化,从而信号的相位也随之产生变化。 9.简述长波天波传播的特点。1传播损耗小。2场强有明显的日变化。场强的季 节变化不明显。4传播情况稳定。 10.简述地面(或海面)和传播介质对雷达性能的影响。1电波在大气层传播时的 衰减;2由大气层引起的电波折射;3由于地面(海面)产生的反射波和直接波的干涉效应,使天线方向图分裂成波瓣状。 计算题 课本P70 第7题计算方法P45 2.已知发射天线的高度为h 1=900米,接收天线的高度为h 2 =400米,考虑到大气不均匀性 对无线电波传播轨迹的影响,地球半径用等效地球半径处理,球直射波所到达的最远距离 d.(地球半径r=6370km) 计算方法课本P106 3.设O为球面波的原点,S为球面波的波前,PQ为与S相切的平面,假设在此平面上有一直径为PQ=20m的抛物面天线,当频率为10GHz的平面波垂直投射到PQ平面上时,求远场条件。(控制条件宽严的常数m取值为8)图计算方法为课本P13 1

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频 VLF 3-30KHz 超长波 1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航 低频 LF 30-300KHz 长波 10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航 中频 MF 中波 1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航 高频 HF 3-30MHz 短波 100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频 VHF 30-300MHz 米波 10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频 UHF 分米波空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频 SHF 3-30GHz 厘米波 10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频 3~30Hz SLF 超低频 30~300Hz ULF 特低频300~3000Hz VLF 甚低频 3~30kHz LF 低频 30~300kHz 中波,长波 MF 中频 300~3000kHz 100m~1000m 中波AM广播 HF 高频3~30MHz 10~100m 短波短波广播 VHF 甚高频30~300MHz 1~10m 米波 FM广播 UHF 特高频300~3000MHz ~1m 分米波 SHF 超高频 3~30GHz 1cm~10cm 厘米波 EHF 极高频 30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射;另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反

频率是怎么影响自由空间损耗的

频率是怎样影响空间链路损耗的 摘要:在计算链路损耗时,频率也是重要的组成项。人们通常说,频率越大, 损耗越大。本文从天线接收电磁波的功率方面来解释频率是怎样影响空间损耗的。 关键词:频率、损耗、天线、有效面积 引言:自由空间损耗公式 L fs=32.45dB+20log10d km f MHz(1) 中,d km表示距离,单位是公理,f MHz表示频率,单位是兆赫兹。 这表明,自由空间的损耗不但和距离有关,而且和频率有关。公式符合一般的 经验,比方说波长越短衍射能力越差,遇到障碍物后的损耗就越大。公式是表达的自 由空间损耗,没有遇到障碍物。这又该怎么解释呢? 可以设想一个简单的例子,在自由空间中,有一个孤立系统的点光源在以 100W的功率发光。根据基本的能量守恒定律,以点光源为球心,半径为1Km的圆球,在此球面上得到的光能量应该也是100W。 以此为例,如果换成电磁波点源的话,不论电磁波的频率是多少,在半径1km 的球面上,单位面积的功率应该是一样的。也就是单位面积的功率和频率没有关系, 只和距离有关系。 这似乎是矛盾的,看自由空间损耗公式,损耗和频率有关;从能量守恒的角度 考虑,损耗和频率没有关系。 关键看看自由空间损耗公式是怎么推到出来的,频率f是何时引入的。 一、天线的接收功率 在自由空间中,由点源发射的正弦波应该沿径向传播,因此,我们成此电源为各向同 性的。现在假设发射功率为P rad瓦(W),则距点源d米(m)处电波的单位面积功率为 P fs=P rad/4πd2(w/m2)(2) 式中f s表示自由空间。对于非各向同性的天线(辐射源)而言,若观测点与天线的距离与天线的尺寸相比足够大,则辐射功率P rad可由P t G t表示,其中P t为传递给发射机天线 的功率(3),G t为发射机天线的增益(4)。

无线电波在自由空间传播时的距离计算方法

无线电波在自由空间传播时的距离计算方法 无线电波在自由空间传播时的距离计算方法 所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。 通信距离与发射功率、接收灵敏度和工作频率有关。 [Lfs](dB)=32.44+20lgd(km)+20lgf(MHz) 式中Lfs为传输损耗, d为传输距离, 频率的单位以MHz计算。 由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB. 下面的公式说明在自由空间下电波传播的损耗 Los = 32.44 + 20lg d(Km) + 20lg f(MHz) Los 是传播损耗,单位为dB d是距离,单位是Km f是工作频率,单位是MHz 下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为 -105dBm的系统在自由空间的传播距离:

1. 由发射功率+10dBm,接收灵敏度为-105dBm Los = 115dB 2. 由Los、f 计算得出d =30公里 这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。 假定大气、遮挡等造成的损耗为25dB,可以计算得出通信距离为: d =1.7公里 结论: 无线传输损耗每增加6dB, 传送距离减小一倍。 无线传输路径分析是无线传输网络设计的重要步骤,通过对传输路径的分析便于网络设计者根据无线链路的裕量大小选择合适类型的天线(方向,极化,增益等指标),安装天线高度,选择合适的馈缆和长度等。下面将简单介绍一下无线传输路径分析中的自由空间损耗的计算,信号接收强度的计算,链路系统裕量的计算几个主要方面的内容。 1.自由空间损耗的计算 自由空间损耗是指电磁波在传输路径中的衰落,计算公式如下: Lbf=32.5+20lgF+20lgD Lbf=自由空间损耗(dB) D=距离(km) F=频率(MHz) 2400MHz:Lbf=100+20lgD

相关文档
最新文档