国际热核聚变材料辐射装置调研 - IFMIF

国际热核聚变材料辐射装置调研 - IFMIF
国际热核聚变材料辐射装置调研 - IFMIF

信息资源类型:调研报告

国际热核聚变材料辐射装置- IFMIF

李天鹞

中国科学院核能安全技术研究

1.介绍

The International Fusion Materials Irradiation Facility(国际热核聚变材料辐射装置),IFMIF,是一个用于测试聚变用材料的装置,其目的是测试核聚变反应堆所用材料的可行性。

IFMIF的建设准备工作按预期已经在2006年开始,尽管发挥其实际的测试功能至少被排在2017年之后。其中有两个平行的氘核加速器,产生的氘核粒子束撞击锂元素标靶,反应后产生大量高能中子来照射样本材料和被测试成分。该装置可以通过在适当的周期内(几年)产生大量且能量适中的中子来模拟未来商业聚变反应堆中材料受照射情况,从而可以测试在极端情况下材料的长期行为。

聚变发展至今,安全、经济可行性与尊重环境将是热核聚变能源进行大规模普及必不可少的条件,而其中材料的抗辐照性和低活化性问题则是一个关键。IFMIF这一装置将着力于发展相关聚变材料,当它们曝露在高能粒子环境当中时,能否有足够的抗辐照能力。材料的测试需要强大的高能粒子源流(中子)。但是,目前尚没有达到高于数兆电子伏特的强大中子源流。IFMIF将提供这样的高能中子流,以便能够在其整个使用寿命周期上测试用于热核聚变反应堆材料样品。

该项目由欧盟、日本、俄罗斯及美国等共同参与的能源领域的最大国际合作项目之一,同时也是聚变领域最重要的两个国际合作项目之一(另外一个是ITER)。

2.结构

图1——总体3维视图

如图1所示,IMFIF由几个部分组成:加速器、靶、测试室和电力系统等。其中加速器、锂循环系统和处理系统都位于地面之下,主要的电力系统和热室等设施在地面上。

测试室中有三个垂直测试组件,其中两个(VTA1/VTA2)用于测试中高通量区,而一个垂直通量照射管(VIT)则用于低通量和超低通量的测试。三个测试组件适用于很广的中子通量范围,在测量中可从0.01dpa/y跨度到50dpa/y。运用IFMIF实验的测试结果,能逐步建立一个先进的聚变反应堆工程设计数据库,以便掌握并运用各种材料。

锂靶部分由两部分组成。一部分是靶本身,该部分必须呈现稳定的锂射线束,以便于氘核撞击后产生中子。第二部分是锂循环,该循环消除靶组件中氘粒子束的热沉积。锂循环可以保持锂的高纯度以满足辐射安全,还能最大限度的减少热锂流对循环系统结构材料的腐蚀。

加速器系统是IFMIF的核心部分,每个约长50,产生的粒子束旋转90度后几乎重叠,共同射向锂靶。IFMIF要求250mA的氘粒子束,因此两个平行加速器分别产生125mA、40MeV 的粒子束通过90度的转向而重叠产生250mA的氘粒子束。这种技术的优势在于不仅保留了射频直线加速器技术的当前功能,并且能允许在其中一个加速器出状况的情况下另一台125mA的加速器仍能正常运行,因此可以方便维修与更换部件。每个125mA的加速器有足够的降额,但不能升级,若要升级则需提供新的模块。

运行过程:氘核进入加速器——加速器加速氘核——高速氘核轰击液态锂靶——产生高能中子——中子流进入测试室——高能中子流辐照材料——测试材料辐射性质

图2-总体一维图

3.实验

IFMIF实验的首要任务是开发聚变材料数据来确定材料能否适用于整个堆芯寿期。同时,IFMIF产生的实验数据也可以作为其他裂变堆和加速器实验装置的验证标准并可用于校准其数据。

IFMIF可以测得特殊材料的活化特性和放射特性等数据,并将数据分析后用于材料的安全、维修、回收、退役和废物处理系统中。

聚变所用材料广泛且复杂,例如放射环境相当严峻的第一壁和包层处的结构材料,这也

是聚变商用化在经济性和科技性上所遇到的最大难题;包层必须满足辐射屏蔽和氚增殖以及

热能转换等功能;瓷绝缘子和光学材料在聚变等离子体的加热、控制和诊断上是必不可少的;还有偏滤器和超导磁体等等。因此,IFMIF应开发一个类似于ASME压力容器规范设计代码

的聚变材料数据库,未来的聚变装置将会应用数据库中的材料性质数据。数据库中也将包含

材料在辐照前和辐照后的性能对比等。IFMIF开发的聚变材料数据将应用于以下几个方面:

1.根据材料辐照特性开发相关工程数据库。

2. 修正和校准裂变堆辐照和其他的轻重离子仿真实验产生的数据。

3. 通过IFMIF 测试的材料将应用于ITER 。

实验参数

实验材料的选择必须要有针对性,对于不同用途的材料要进行不同的实验。对不同的材料,施加的计量和温度等参数也大为不同,不同部件辐照后所关注的参数也有所不同。下面几个表将具体列出不同部件的实验参数。

表1-聚变包层和结构材料在IFMIF 中高通量区测试

表1中显示了不同成分的包层和结构材料在IFMIF 中高通量区进行实验时所需施加的剂量和温度实验参数。

表2-陶瓷增殖器样品测试

表2中显示了陶瓷氚增殖器中不同类型的样子所需要不同尺寸、温度和实验项目等实验参数。

Materials

Dose (dpa)Temp. (o C)FM1, FM2, FM3*, I1, I2*

20-150300FM1, FM2, FM3*, Van 1, Van 2, Van 3*, I1, I2*,

SiC1

20-150400FM1, FM2, FM3*, Van 1, Van 2, Van 3*, I1, I2*

20-150500Van 1, Van 2, Van 3*, SiC1, SiC2, I3

20-150600SiC1, SiC2, I3

20-150800SiC1, SiC2, I320-1501000样品

直径厚度温度类型

(mm)(mm)(°C)400现场氚释放600

中子辐照800锂泵辐射损伤机械完整性尺寸变化密度变化抗断强度微观结构变化氚/氦滞留热导率400500600400结构500

6001.5

兼容性30 dpa max.5 1.5小球1010

温度梯度球床

11

温度梯度增殖剂5测试项目剂量

Disk 102最大30dpa ITER DEMO Inboard Mid-Plane Outboard Mid-Plane SS-316 钢

20.317.5MANET 钢

20.217.3V-15Cr-5Ti

20.918.9Al 2O 3

18.817.6Li 4SiO 4

9.4 5.7BeO 11.110.82.0 MWy/m 2

表3-DEMO和ITER第一壁不同材料的dpa

表3中显示了第一壁在两个聚变堆中用不同材料时的dpa参数。

冷却剂入口压力0.12-0.35 MPa

当量平均水力直径10.5 mm

冷却液泵流速11.0-25.0 m/s

雷诺数3x104

基本膜层散热系数t1030 W/m2K

质量流率0.2 kg/s

体积流量0.17 m3/s

冷却剂入口温度50 °C

冷却剂出口温度62 °C

压降< 0.04 MPa

所需压缩比 1.2

压缩产生的温升10 K

表4-氦冷却剂参数

实验类型:

●封装实验PIE

封装实验大多数是为了测试高通量区结构材料。为避免测试室冷却剂的污染,大多数实验样品分别封装起来。每个样品尺寸取决于包装壁和样品本身的最大温差,该最大温差不能超过10°C。0

在高通量区(10-20dpa)进行的辐照实验,测试组件将会在辐照装置停机时取出并更换。因此,必须严格把关温度控制和中子通量及剂量的监测。从其他反应堆辐照或者辐照实验中我们深知温度变化对材料的属性及辐照缺陷的产生有非常大的影响。因此需要在粒子束变化或中断的情况下控制温度。一些受辐照后的低剂量封装实验利用介质和IFMIF测试室中的低剂量区域。

●原位实验((In-situ Experiment)

原位实验需要建立一个材料设计数据库,在某些情况下必须保证材料数据测量的正确性。然而,由于IFMIF中高通量区高通量区的原位实验仪器太占体积,因此只有一小部分原位实验是为结构材料设计的。(例如,蠕变/疲劳实验和辐射影响的应力腐蚀开裂IASCC)。对于其他材料都要进行原位实验,特别是瓷增殖器、瓷绝缘子、射频窗

口和诊断材料(光纤电缆、窗口、电磁线圈等)。对于所能预见的原位实验,以下进

一步说明:

●结构材料:

蠕变/疲劳试验:原位蠕变和疲劳实验清楚地表明,辐照和机械负荷不能同时由常规辐照模拟。结果表明,常规PIE高估了辐照对元器件的使用寿命的影响,因此这种做法过于保守。理论上讲这样也是合理的,在辐照后的测试中辐射硬化效果是强于原位条件下辐照退火缺陷。原位研究需要进一步研究IASCC现象。因此,需要对此类现象的研究而开发专用原位测试设备进行现场测试。

●陶瓷增殖器:

大多数聚变包层的设计都利用了运行中持续不断的氚再生(回收)recovery。

在照射下,其辐照特性、机械完整性和热性能等变化会导致氚释放性能的退化

degradation of tritium release performance。原位氚回收实验得出材料的预期寿命,随后进行PIE照射耐久性评估,材料通过评估将应用于DEMO聚变堆中。另外,其聚变增殖包层设计将用到陶瓷增殖器。水分(HTO或H2O)对陶瓷增殖器的辐照行为有很大影响,特别是其中Li2O和材料性能。因此,耐辐照性测试采用气体。因此,所有的辐照试验、原位氚回收测试和PIE照射耐久性评估评价;热性能和相容性等原位实验中环境中的水含量和样品的温度皆由鼓风和温度控制

系统控制。(例如,间隙气体控制等)。

而瓷增殖器的微结构变化(Li2O)取决于温度和温度梯度将会影响氚释放行为和耐辐照性。因此,氚释放和耐辐照性测试将会有两种样品类型。即1)照射温度控制在不同温度下的标本,条件是温度分布相当平缓2)具有较大的温度梯度的标本。为测试结构材料的相容性,样品的辐照温度应控制在某种程度上,以获得各种包层设计的兼容性数据。

●陶瓷绝缘子:

近期的研究表明,在外加电场的情况下,陶瓷绝缘体受辐照有可能使其电阻率下降,该现象被称为辐射感应电气降解(RIED)。而陶瓷绝缘子在辐照过程中没有的辐射诱导电阻率(RIC)在辐照后产生了。因此,绝缘陶瓷的电阻率的原位实验需要测试样品的RIC和RIED,以及辐射诱导电力等其他电现象。尽管辐照后可以检测到RIED现象,但为诱导该现象则必须在照射过程中对样品外加一个持续电场。液态金属自冷增殖包层上涂有一层薄的绝缘涂层,RIED现象对电势梯度的为100kv/m薄绝缘涂层有很重要的价值。

由于RIC现象和RIED现象将会增加介电耗损,并且关于陶瓷的介电特性和剂量在不同温度下的关系也只有相当有限的可靠数据,所以绝缘陶瓷的介电耗损原位实验同样有很重要的意义。除此之外,有一些受照射陶瓷有可能在常温储存下产生点退火缺陷,这会导致照射末期测量的介电损耗较低。原位测量的陶瓷绝缘体的热导也会因为受照后的点退火缺陷降低。在测量介电特性和热传导性的测量方法上,低温输运系统可以代替原位测量,并起到更好的效果。低温输运系统中,样品受照后迅速拿出测试室并放入低温储存装置中储存至可以测量。这样便可以避免点退火缺陷。

辐照中可以测量光纤或窗口材料的发光现象。另一方面,可以在照射后检测到光吸收的辐射损伤。然而,光吸收会发生在低剂量区。因此,原位实验中的光学诊断材料对于确定它们的光学性质是有益的。在上述电特性的情况下也是同样。

最后一类原位测试涉及到样机组件的照射。(例如,电磁线圈连接到长脉冲集成)很明显,低和非常低通量的测试室区域测量需很灵活,这样才能适应各种

各样样机测试组件的预期几何形状和其他不可预见的原位实验。

低温原位辐照:

预期在未来十年内低温辐照装置将会广泛使用,但如今缺缺乏该装置。如果IFMIF能开发大部分超低通量区(温度在4K—200K)的材料辐射性质,那将是

非常有用的。灵活的低温辐照装置将用于实验超导磁体材料、高分子绝缘等的照

射。可以预见,各种超导材料的物理性质实验以及其他测试,例如在磁稳态材料

的电阻率(通常是铜或铝)等将会进行原位实验。IFMIF测试辐照后材料的低温

传导性能将也是一个不可或缺的功能。

IFMIF也具备电子回旋加热系统(Electron Cyclotron Heating—ECH)在低温下的选择窗口进行材料辐照的窗口选择功能。它并不是要像ECH绝缘子(或为

了防止照射后点退火缺陷而利用冷冻传输系统的介电特性那样进行原位测量。

4.总结与展望

本文对IFMIF的调研有一些针对性也有许多不足,下面将指出。

1.该调研报告对IFMIF的总体设计、设施布局、功能用途以及原理有简要的介绍。对其功能和建成后

将做的实验做了一个比较详细的介绍,并详细介绍了部分辐照相关的参数。

2.对IFMIF建成所遇到的理论困难以及工程建设所遇到的诸多问题并未给出详细的介绍和解答,也并

未给出工程设计的参数。

3.在其功能介绍前并未介绍IFMIF内的装置布局和用途等特点,比如测试室的高通量区等区域的特点。同时,在对IFMIF调研的过程中可以得知IFMIF测试的数据将会用在ITER中,也将会在未来建成数据库后得到广泛的使用,随着IFMIF的发展,相信聚变事业也将会逐步完善并最终投入商用阶段。

5.参考资料

[1] M. Martone, ENEA Frascati Report, IFMIF-International Fusion Materials Irradiation Facility Conceptual Design Activity, Final Report, IFMIF-CDA Team, RT/ERG/FUS/96/11 (December, 1996)

[2]KuoTian, Dirk Eilert, Tobias Heupel, Thomas Ihli, Karlheinz Lang, Martin Mittwollen, Anton Moeslang, Nicola Scheel, Erwin Stratmanns,IFMIF target and test cell—Conceptual designs, boundary condition definitions and current status of preliminary engineering design Original Research Article,Fusion Engineering and Design, V olume 85, Issues 10–12, (December 2010, Pages 2282-2287)

核聚变反应堆的原理很简单

核聚变反应堆的原理很简单,只不过对于人类当前的技术水准,实现起来具有相当大的难度。 物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中正电的吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和92个电子。 核聚变是指由质量轻的原子(主要是指氢的同位素氘和氚)在超高温条件下,发生原子核互相聚合作用,生成较重的原子核(氦),并释放出巨大的能量。1千克氘全部聚变释放的能量相当11000吨煤炭。其实,利用轻核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的爆炸性核聚变,瞬间能量释放只能给人类带来灾难。如果能让核聚变反应按照人们的需要,长期持续释放,才能使核聚变发电,实现核聚变能的和平利用。 如果要实现核聚变发电,那么在核聚变反应堆中,第一步需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。 第二步,由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。 质量轻的原子核间静电斥力最小,也最容易发生聚变反应,所以核聚变物质一般选择氢的同位素氘和氚。氢是宇宙中最轻的元素,在自然界中存在的同位素有:氕、氘(重氢)、氚(超重氢)。在氢的同位素中,氘和氚之间的聚变最容易,氘和氘之间的聚变就困难些,氕和氕之间的聚变就更困难了。因此人们在考虑聚变时,先考虑氘、氚之间的聚变,后考虑氘、氘之间的聚变。重核元素如铁原子也能发生聚变反应,释放的能量也更多;但是以人类目前的科技水平,尚不足满足其聚变条件。 为了克服带正电子原子核之间的斥力,原子核需要以极快的速度运行,要使原子核达到这种运行状态,就需要继续加温,直至上亿摄氏度,使得布朗运动达到一个疯狂的水平,温度越高,原子核运动越快。以至于它们没有时间相互躲避。然后就简单了,氚的原子核和氘的原子核以极大的速度,赤裸裸地发生碰撞,结合成1个氦原子核,并放出1个中子和17。6兆电子伏特能量。 反应堆经过一段时间运行,内部反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变。这个过程只要将氦原子核和中子及时排除出反应堆,并及时将新的氚和氘的混合气输入到反应堆内,核聚变就能持续下去;核聚变产生的能量一小部分留在反应体内,维持链式反应,剩余大部分的能量可以通过热交换装置输出到反应堆外,驱动汽轮机发电。这就和传统核电站类似了。 核聚变消耗的燃料是世界上十分常见的元素--氘(也就是重氢)。氘在海水中的含量还是比较高的,只需要通过精馏法取得重水,然后再电解重水就能得到氘。新的问题出现了,仅仅有氘还是不够的,尽管氘-氘反应也是氢核聚变的主要形式,但我们人类现有条件下,

国际热核聚变实验堆项目 《国际热核聚变实验反应堆计划》阅读答案

国际热核聚变实验堆项目《国际热核聚变实验反应堆计划》 阅读答案 【--营销计划】 国际热核聚变实验反应堆计划简称“国际热核计划”,俗称“人造太阳”计划,因为它的原理类似太阳发光发热,即在上亿摄氏度的超高温条件下,利用氢的同位素氘、氚的聚变反应释放出核能。氘和氚可以从海水中提取,核聚变反应不产生温室气体及核废料。由于原料取之不尽,以及不会危害环境,核聚变能源成为未来人类新能源的希望所在。 国际热核计划采用的是可控热核聚变能,它的研究分惯性约束和磁约束两种途径。惯性约束是利用超高强度的激光在极短时间内辐射靶板来产生聚变。磁约束是利用强磁场可以很好地约束带电粒子这个特性,构造一个特殊的磁容器,建成聚变反应堆,在其中将聚变材料加热至数亿摄氏度高温,实现聚变反应。20世纪下半叶,聚变能的研究取得了重大进展,磁约速研究大大领先于其他途径。科学家研究出一种类似于面包图形状的环形器,这种面包圈形状的装置被称作“托卡马克”。在这类装置上进行的物理实验取得了一个个令人鼓舞的进展,比如等离子体温度己达4.4亿摄氏度,脉冲聚变输出功率超过16兆瓦。这些成就表明:在这类装置上产生聚变能的可行性已被证实。

为了点燃“人造太阳”,科学家将在法国南部的卡达拉舍建造一台规模庞大的设备:一个直径28米、高30米、由1000多万个零部件组成的大型圆柱体设备。假如成功的话,核聚变能源将具备重要的、无与伦比的优势。核聚变反应释放的能量大得超出人们的想象。形象地说,就是三瓶矿泉水就可以为一个4口之家提供一年的动力。不过,一些批评者却认为,核聚变反应堆其实并没有那么保险,还是存在放射性氢原子泄漏、污染环境的可能性。他们还认为,核聚变反应堆可以被怀有恶意的人滥用,用于生产核武器。支持者的反驳理由是核聚变发电站没有温室气体排放问题,也不会生成长久的、也就是半衰期很长的核废料。 不管怎样,世界上许多国家的政府对核聚变发电寄予厚望,愿意在今后30到40年的时间内投入100亿欧元左右的资金,进行“人造太阳”计划。 xx年1 1月2 1日,参加热核计划的7方代表在法国总统府正式签署了联合实验协定及相关文件,全面启动了世界瞩目的人类开发新能源的宏伟计划。在前两年,人们已经开始砍伐松林,为实验堆开辟地盘。按计划,xx年,热核实验反应堆将点燃它的第一把核聚变之火。随后,实验堆将运行15到20年。 5.下列各项中不是“核聚变能源成为未来人类新能源的希望所在”的理由的一项是

常用材料热辐射系数

热分析材料导热系数汇总 材料导热系数 Metal Material Conductivity Density W/m-C kg/m 3 Aluminum, 2024, Temper-T3 121 2.80E+03 Aluminum, 2024, Temper-T351 143 2.80E+03 Aluminum, 2024, Temper-T4 121 2.80E+03 Aluminum, 5052, Temper-H32 138 2.68E+03 Aluminum, 5052, Temper-O 144 2.69E+03 Aluminum, 6061, Temper-O 180 2.71E+03 Aluminum, 6061, Temper-T4 154 2.71E+03 Aluminum, 6061, Temper-T6 167 2.71E+03 Aluminum, 7075, Temper-O 130 2.80E+03 Aluminum, 7075, Temper-T6 130 2.80E+03 Aluminum, A356, Temper-T6 128 2.76E+03 Aluminum, Al-Cu, Duralumin, 95%Al-5%Cu 164 2.79E+03 Aluminum, Al-Mg-Si, 97%Al-1%Mg-1%Si-1%Mn 177 2.71E+03 Aluminum, Al-Si, Alusil, 80%Al-20%Si 161 2.63E+03 Aluminum, Al-Si, Silumim, 86.5%Al-1%Cu 137 2.66E+03 Aluminum, Pure 220 2.71E+03 Beryllium, Pure 175 1.85E+03 Brass, Red, 85%Cu-15%Zn 151 8.80E+03 Brass, Yellow, 65%Cu-35%Zn 119 8.80E+03 Copper, Alloy, 11000 388 8.93E+03 Copper, Aluminum bronze, 95%Cu-5%Al 83 8.67E+03 Copper, Brass, 70%Cu-30%Zn 111 8.52E+03 Copper, Bronze, 75%Cu-25%Sn 26 8.67E+03 Copper, Constantan, 60%Cu-40%Ni 22.7 8.92E+03 Copper, Drawn Wire 287 8.80E+03 Copper, German silver, 62%Cu-15%Ni-22%Zn 24.9 8.62E+03 Copper, Pure 386 8.95E+03 Copper, Red brass, 85%Cu-9%Sn-6%Zn 61 8.71E+03

核聚变

学年论文 核聚变——未来的新能源 班级:08113 学号:27 姓名:宋广佳 指导教师:姚大力

核聚变——未来的新能源 0811327 宋广佳 【摘要】:氢弹应用的正是聚变原理,这是人类利用核聚变能的首次成功尝试。两个氢原子合为一个氦原子,叫核聚变,太阳就因此释放出巨大能量。核聚变产生的能量比核裂变还要多,而其辐射却要少得多,而且核聚变燃料可以说是取之不尽、用之不竭的。 关键词:核聚变未来新能源国际合作项目研究 能源是社会发展的基石。古人伐木为薪,后来柴薪逐渐被煤、石油、天然气等化石燃料取代。而今,化石能源面临“危机”,同时又对环境造成严重污染。以煤炭、石油、天然气等化石能源替代柴薪的第一次能源革命,带来了社会、经济的迅速发展。然而这些宝贵的化石能源是不可再生的,据估计,100年后地球上的化石能源将会枯竭。面对即将来临的能源危机,人类开始寻找新能源。回顾人类发展的历史,每一次高效能新能源的利用,都会使社会进入一个新的时代,带来一次新的飞跃。新能源的开发是社会发展的重要基础。 能源分为一次能源和二次能源,化石能源、太阳能、风能、地热能、核能、潮汐能等为一次能源,而焦煤、蒸汽、液化气、酒精、汽油、电能为二次能源。其次,按利用状况,可分为常规能源和新能源。前者是指在不同历史时期的科技发展水平下已被广泛应用的能源,现阶段指煤、石油、天然气、水能和核裂变能五种;后者指由于技术、经济或能源品质等因素而未能大规模使用的能源,如太阳能、风能、海洋能、地热能等。为了社会的稳定发展,人们正在利用高新科学技术开发新的能源。从长远来看,核能将是继石油、煤和天然气之后的主要能源,人类将从“石油文明”走向“核能文明”。原子弹、氢弹的爆炸,使人们认识到原子核内蕴藏着巨大的能量,核电站正是合理利用核能的一个途径。而今,太阳能、地热能、海洋能、生物能等各种新能源也正在开发过程中。日本政府于1993年就提出旨在开发利用新能源的“新阳光计划”,每年都要为新能源技术开发拨款约362亿日元。日本新能源利用的目标是,到2008年争取使新能源在一次能源中所占的比重由目前的1%提高到3%。美国《国家综合能源战略》确定的新能源开发利用目标是,发展先进的可再生能源技术,开发非常规的甲烷资源,发展氢能的储存、分配和转化技术。 为什么太阳能源源不断地向外释放能量,好像永远不会枯竭?这个疑问直到爱因斯坦提出了狭义相对论才有了答案。在极高的温度下,太阳物质发生核聚变反应,释放出巨大的聚变能,其中极小一部分来到地球,成为地球一切生命和能源之源。 一、什么叫核聚变 世界上的每一种物质都处于不稳定状态,有时会分裂或合成,变成另外的物质。物质无论是分裂还是合成,都伴随着能量的转移过程。大家熟知的原子弹利用的则是裂变原理,目前的核电站也是利用核裂变来发电的。核裂变虽然能产生巨大能量,但裂变堆的核燃料蕴藏极为有限,不仅其强大辐射会伤害人体,而且废料也很难处理,可能遗害千年。1946年,第一颗原子弹在广岛上空引爆,此后不久,氢弹爆炸又获得成功。氢弹应用的正是聚变原理,这是人类利用核聚变能的首次成功尝试。两个氢原子合为一个氦原子,叫核聚变,太阳就因此释放出巨大能量。核聚变产生的能量比核裂变还要多,而其辐射却要少得多,而且核聚变燃料可以说是取之不尽、用之不竭的。氢弹威力无比,却无法控制,一旦释放就无法挽回。是否可以控制聚变能,使之缓慢释放,造福人类呢?

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

EFD仿真材料热辐射系数表

Emissivity Coefficients of some common Materials The radiation heat transfer emissivity coefficient of some common materials as aluminum, brass, glass and many more Sponsored Links The emissivity coefficient - - indicates the radiation of heat from a 'grey body' according the Stefan-Boltzmann Law, compared with the radiation of heat from a ideal 'black body' with the emissivity coefficient = 1. The emissivity coefficient - - for some common materials can be found in the table below. Note that the emissivity coefficients for some products varies with the temperature. As a guideline the emmisivities below are based on temperature 300 K. Surface Material Emissivity Coefficient - - Alloy 24ST Polished 0.9 Alumina, Flame sprayed 0.8 Aluminum Commercial sheet 0.09 Aluminum Foil 0.04 Aluminum Commercial Sheet 0.09 Aluminum Heavily Oxidized 0.2 - 0.31 Aluminum Highly Polished 0.039 - 0.057 Aluminum Anodized 0.77 Aluminum Rough 0.07 Antimony, polished 0.28 - 0.31 Asbestos board and paper 0.94 Asphalt 0.93 Basalt 0.72 Beryllium 0.18 Beryllium, Anodized 0.9 Bismuth, bright 0.34 Black Body Matt 1.00 Black Parson Optical 0.95 Black Silicone Paint 0.93 Resources, Tools and Basic Information for Engineering and Design of Technical Applications! Web The Engineering ToolBox Search

国际核聚变研究开发的现状和发展趋势_希物

中国核工业 ZHONGGUOHEGONGYE中国核工业 ZHONGGUO HE GONGYE 2006年?第12期?总第76期 国际磁约束核聚变研究始于上世纪50年代。国际上将核聚变研究的发展分为六个阶段,即:原理性研究阶段、规模实验阶段、点火装置实验阶段(氘氚燃烧实验)、反应堆工程物理实验阶段、示范反应堆阶段、商用化反应堆阶段。总体上看,国际磁约束核聚变界正处在点火装置和氘氚燃烧实验阶段,并逐步向反应堆工程实验阶段过渡。 上世纪90年代,国际磁约束核聚变研究取得了突破性的进展,获得了聚变反应堆级的等离子体参数,初步进行的氘-氚反应实验,得到16兆瓦的聚变功率。可以说,磁约束核聚变的科学可行性已得到证 实,有可能考虑建造“聚变能实验堆”,创造研究大规模核聚变的条件已经成熟。国际聚变研究在完成科学可行性验证后已于1996年正式定位为核聚变能源开发,其显著标志是国际原子能机构(IAEA)等离子体物理和受控核聚变研究国际会议于1996年正式更名为国际聚变能源大会。 近十年来,各国在托卡马克装置上的核聚变研究不断取得令人鼓舞的进展。1991年11月9日,欧共体的JET托卡马克装置成功地实现了核聚变史上第一次氘-氚运行实验,在氘氚6比1的混合燃料(86%氘,14%氚)中,等离子体温度达到3 亿摄氏度,核聚变反应持续了2秒钟,产生了1×1018个聚变中子,获得的聚变输出功率为0.17万千瓦,能量增益因子Q值达0.11~0.12。虽然高峰聚变功率输出时间仅有2秒,但这是人类历史上第一次用可控方式获得的聚变能,意义十分重大。这一突破性的进展极大地促进了国际托卡马克实验堆计划的开展。 1993年12月9日和10日,美国在TFTR装置上使用氘、氚各 50%的混合燃料,使温度达到3亿~4亿摄氏度,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,大约为JET输出功率的2倍和4 国际核聚变研究开发的现状和发展趋势 本期专题———关注中国核聚变研究 ◎撰文?希物 特斯拉、等离子体存在时间2960毫秒。 我国聚变研究的中心目标是在可能的条件下促使核聚变能尽早在中国实现。因此,参加国际热核聚变实验堆(ITER)计划应该也只能是我国整体聚变能研发计划中的一个重要组成部分。国家将在参加ITER计划的同时支持与之配套或与之互补 的一系列重要研究工作,如托卡马克等离子体物理的基础研究、聚变堆第一壁等关键部件所需材料的开发、示范聚变堆的设计及必要技术或关键部件的研制等。参加ITER计划将是我国聚变能研究的一个重大机遇。 尽管就规模和水平来说,我国核聚变能的研究和美、欧、日 等发达国家还有不小的差距,但是我们有自己的特点,也在技术和人才等方面为参加ITER计划作了相当的准备。这使得我们有能力完成约定的ITER部件制造任务,为ITER计划作出相应的贡献,并有可能在合作过程中全面掌握聚变实验堆的技术,达到我国参加ITER计划总的目的。 15

高中物理之核聚变知识点

高中物理之核聚变知识点 核聚变 物理学中把重核分裂成质量较小的核,释放核能的反应叫做裂变。把轻核结合成质量较大的核,释放出核能的反应叫做聚变。 轻核的聚变(热核反应) 某些轻核能够结合在一起,生成一个较大的原子核,这种核反应叫做聚变。 轻核的聚变:

根据所给数据,计算下面核反应放出的能量: 发生聚变的条件: 使原子核间的距离达到10的负15次方m. 实现的方法有: 1、用加速器加速原子核; 2、把原子核加热到很高的温度;108~109K 聚变反应又叫热核反应

核聚变的利用——氢弹 可控热核反应——核聚变的利用 可控热核反应将为人类提供巨大的能源,和平利用聚变产生的核量是 非常吸引人的重大课题,我国的可控核聚变装置“中国环流器1号”已取得不少研究成果。 1.热核反应和裂变反应相比较,具有许多优越性。 ①轻核聚变产能效率高。 ②地球上聚变燃料的储量丰富。 ③轻聚变更为安全、清洁。 2.现在的技术还不能控制热核反应。 ①热核反应的的点火温度很高; ②如何约束聚变所需的燃料;

③反应装置中的气体密度要很低,相当于常温常压下气体密度的几万分之一; 3.实现核聚变的两种方案。 ①磁约束(环流器的结构) ②惯性约束(惯性约束) 习题演练 1. (2011年绍兴一中检测)我国最新一代核聚变装置“EAST”在安徽合肥首次放电、显示了EAST装置具有良好的整体性能,使等离子体约束时间达1000 s,温度超过1亿度,标志着我国磁约束核聚变研究进入国际先进水平.合肥也成为世界上第一个建成此类全超导非圆截面核聚变实验装置并能实际运行的地方.核聚变的主要原料是氘,在海水中含量极其丰富.已知氘核的质量为m1,中子的质量为m2,He的质量为m3,质子的质量为m4,则下列说法中正确的是()A.两个氘核聚变成一个He所产生的另一个粒子是质子B.两个氘核聚变成一个He所产生的另一个粒子是中子C.两个氘核聚变成一个He所释放的核能为(2m1-m3-m4)c2 D.与受控核聚变比较,现行的核反应堆产生的废物具有放射性 2. 重核裂变和轻核聚变是人们获得核能的两个途径,下列说

国际热核聚变实验计划

国际热核聚变实验反应堆计划(International Thermonuclear Experimental Reactor,简称ITER)与国际空间站、欧洲加速器、人类基因组计划一样,是目前全球规模最大、影响最深远的国际科研合作项目之一。其目的是借助氢同位素在高温下发生核聚变来 获取丰富的能源。 1985年,由美苏首脑提出了设计和建造国际热核聚变实验堆ITER的倡议;也被称为“人造太阳”计划。 ITER的投资和建设规模之庞大,交叉学科种类之多,实验设备之复杂,都决定了它必须由多国合力完成。该计划约需耗时35年,耗资100亿美元,涉及领域包括超导研究、高真空、生命科学、遥控密封、环境科学、等离子计量和控制、信息通信、纳 米材料等多种学科,它的最终选址一直是参与国竞争的焦点。 先后有西班牙、法国、日本和加拿大4个国家提出申请将实验堆建在本国,日本 和法国最终入围,加拿大则因没有入围而于2003年12月23日宣布因缺乏资金退出。美国因自认为在核聚变技术上领先其他国家,曾于1999年宣布退出,后又因国内热核聚变研究进展缓慢,担心被ITER甩下,于2003年2月18日重新加入。中国也在同 日正式入盟。 2005年6月28日,在计划提出20年,选址耗时18年后,ITER的建设地点终于花落法国的卡达拉舍,它将成为世界第一个产出能量大于输入能量的核聚变装置,为 制造真正的反应堆作准备。 合作承担ITER计划的7个成员是欧盟、中国、韩国、俄罗斯、日本、印度和美国,这七方包括了全世界主要的核国家和主要的亚洲国家,覆盖的人口接近全球一半。为建 设ITER,各参与方专门协商组建了一个独立的国际组织,各国政府首脑在过去几年中都采取不同方式对参加ITER计划作出过正式表态。这些都是国际科技合作史上前所未有的,充分显示了各国政府和科技界对该计划的高度重视。 ITER计划的实施结果将决定人类能否迅速地、大规模地使用聚变能,从而可能影响人类从根本上解决能源问题的进程。

为什么说核聚变是终极能源

为什么说核聚变是终极能源? 随着社会的进步,人类对能源的需求越来越大,传统的化石能源已经接近枯竭。可控核聚变是解决能源危机的最终手段。一升海水中的氘元素蕴含的能量相当于300升汽油。 01磁场约束核聚变——托克马克装置 托卡马克,是一种利用磁约束来实现受控核聚变的环性容器。它的名字Tokamak 来源于环形、真空室、磁、线圈。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。 相比其他方式的受控核聚变,托卡马克拥有不少优势。1968年8月在苏联新西伯利亚召开的第三届等离子体物理和受控核聚变研究国际会议上,阿齐莫维齐宣布在苏联的T-3托卡马克上实现了电子温度 1 keV,质子温度 0.5 keV,n τ=10的18次方m-3.s,这是受控核聚变研究的重大突破,在国际上掀起了一股托卡马克的热潮,各国相继建造或改建了一批大型托卡马克装置。其中比较著名的有:美国普林斯顿大学由仿星器-C改建成的 ST Tokamak,美国橡树岭国家实验室的奥尔马克,法国冯克奈-奥-罗兹研究所的 TFR Tokamak,英国卡拉姆实验室的克利奥(Cleo),西德马克斯-普朗克研究所的 Pulsator Tokamak。 2006年9月28日,中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的新一代热核聚变装置EAST首次成功完成放电实验,获得电流200千安、时间接近3秒的高温等离子体放电。EAST成为世界上第一个建成并真正运行的全超导非圆截面核聚变实验装置。 早在1933年,即发现核裂变现象五年前,人类就发现了核聚变。虽然核裂变比核聚变发现得晚,但是很快就实现了核裂变爆炸。随着受控核裂变发电获得成功,世界范围内大规模核电站建设迅速展开,并投入商业运行。 在核聚变实现后,同样,人们也试图能和平利用受控核聚变,如建立受控核聚变发电厂。与利用核裂变发电相比,利用受控核聚变的能量来发电具有许多优点:一是理论和实践都证明,核聚变比核裂变释放出的能量要大得多;二是资源

我国核聚变堆材料研究获重要进展

我国核聚变堆材料研究获重要进展 研制出基于功能梯度材料的六种第一壁候选材料,其中五种国际上未见报道 本报记者温新红 记者日前从北京科技大学获悉,与本世纪最受关注的科学项目——国际热核聚变实验反应堆(ITER)计划相关的热核聚变堆实验装置中面向高温等离子体的第一壁材料研究取得重要进展,该校材料学院教授、中科院院士葛昌纯领导课题组经10年努力研制出6个体系的基于功能梯度材料(Functionally Graded Materials, 简称 FGM)的第一壁候选材料,目前此项研究在国际上处于领先水平。 聚焦受控热核聚变第一壁材料 2006年11月21日,科技部部长徐冠华代表中国政府签署了ITER计划的联合实验协定及相关文件。一直主张中国加入ITER的葛昌纯认为,中国此次加入ITER,分担了一部分研究项目,但接下来的工作还有很多,国内相关领域的科学家应该提早研究,争取尽早建立起示范聚变堆和商用聚变堆。 葛昌纯是研究先进材料的专家,他说,从工程角度看,相关的核聚变材料已成为制约核聚变能走向实用的关键之一,非常重要的一类是面向等离子体应用的材料,尤其是处于高热负荷下的偏滤器部件。 据介绍,单一材料或涂层材料已不能满足前沿科研领域发展的需求,例如用于航天飞行器上、需要承受1000摄氏度以上高温度落差的材料。但通常的涂层材料,如金属表面的陶瓷涂层,由于陶瓷和金属的膨胀系数相差很大,反复多次就会开裂。 同样,核聚变装置也需要耐高温、耐腐蚀、耐冲刷的新材料。葛昌纯说,核聚变装置的真空室相当于一个装入高温等离子体的炉子,最受考验的是直接面向高温等离子体的内壁,即第一壁材料。氘氚聚变反应产生大量的高能中子和?琢粒子、电磁辐射,它们和等离子体离子、快原子和其他从等离子体逃逸出的粒子(氘、氚和杂质)以及高达1MW/m2的热负荷、脉冲运行状态和高交变热应力一起,强烈地作用于第一壁。人类到目前为止还没有遇到过工作环境这么复杂的材料。另一种材料是在等离子体出口处的偏滤器材料,这里的热流密度更高,达到6~10MW/m2,在不正常条件下甚至高达 20~100MW/m2。因此这两种材料是核聚变装置中服役条件最严酷的材料。 葛昌纯根据自己多年材料研究的经验,认为这是一个非常重要的研究方向。1996年,他向有关部门提交了耐高温等离子体冲刷的功能梯度材料的科研顶层设计项目建议书。在建议书中葛昌纯设想这种材料可以运用在三个方面,一是为受控核聚变提供耐高温等离子体冲刷的材料,二是可以用于激光核聚变的材料,三是可以在航空航天上用的材料。这项建议得到了国家有关部门的重视和核工业西南核物理研究院的合作,“863”新材料专家委员会听取了葛昌纯的论证报告,通过答辩后,于1997年7月批准了这个项目。 五种功能梯度第一壁材料国际上尚未见有报道 葛昌纯领导课题组经过十年努力,特别是近五年来通过指导周张健副教授负责的国家自然科学基金项目、沈卫平副教授负责的“863”计划项目,以及研究组与中科院等离子体物理研究所和核工业西南物理研究院的协作项目,较深入地研究了弹塑性有限元分析和优化设计、超高压力通电烧结、熔渗——焊接

热核聚变

热核聚变”,简单的说就是把氢弹的原理用来发电,具体科普已经很多了,楼主只强调三个特点: 1、环保,异常的环保! 2、廉价,异常的廉价! 3、难,异常的难! 但,假设做成了,会是什么情况?电力几乎免费,进一步说,能源在可预见的时间内几乎不需要成本。 进一步设想一下: 环保问题将彻底解决。中国所有的环保问题都是成本问题,只要加热到10000度,什么污染物都离子化了,哪来的污染?(这其实是个小问题) 生产成本急剧下降,生产力迅速提升。生产物料可以全部回收,打回到原子状态,重新提炼(这个过程是非常耗费能源的)。

与之相对应的技术必然井喷:电动汽车取代汽油车(汽油机做不过别人,电动车这块是有望实现弯道超车的)、用对撞机生产各式各样的元素。如此等等。 所有的产品,无论是武器、设备,还是其他商品,往上分析,其成本构成只有:人力和空间。 只要有了无限的电,将彻底颠覆人类目前的社会结构,其重要性楼主无法用语言来描述。 另外,在研发过程中对军事领域的推动也不容小觑。和氢弹是本家嘛! 当然这个是非常理想化的状态,总之前景还是很诱惑的,于是各国蠢蠢欲动。 说实话,在科学前瞻性方面,欧美人一直是走在前面的。这么个玩意儿,又和军事沾边,能自己搞,肯定自己搞了。不过实在太烧钱。

八九十年代,那会中国的科技实力还排不上号,美国人带着欧洲人就是不和中国玩,中国天天跟着屁股后面要一起玩。 结果他们自己人还是协商不好,98年美国索性不干了。 但不干了也不行啊,石油煤炭终究要用完的,这不是全人类的希望所在嘛! 折腾来折腾去,中国一拍大腿:得了,钱我多出点!2003年中国和美国同一天(是同一天,不知道达成了什么妥协)加入到这个计划。钱自然多多益善,因为钱就是话语权的保障啊,于是美 国又拉来印度当冤大头。你拉一个,我拉一个,最终主要国家都加入了这个计划。(其实欧洲的主导作用是很大的,为了剧情需要,委屈一下) 紧接着选址。对中国来说法国是最合适的,中法关系的猫腻不用扒了吧?(据说他们煮茶叶蛋的技术都是土共亲授的),法国又是西方国家,地址也不至于太敏感;对美国来说,日本最合适 ,等于就是自己家嘛!

国际热核聚变试验堆ITER计划专项-托卡马克物理试验室--托卡马克

1.中平面快速扫描探针 等离子体边界具有丰富的物理现象,包括边界物理参数、剪切层流、径向湍流等各种湍流结构,以及SOL流等,这些现象往往与等离子体输运紧密联系,同时波与等离子体相互作用、偏滤器物理等其他物理研究也需要探针提供基本物理参数的分布。装备不同类型朗缪尔探头的往复式探针能够扫描测量出边界等离子体参数的分布,也能定点获得等离子体边界密度、温度、悬浮电位以及相应的涨落量等物理量,是分析湍流行为的基本手段之一,两套可同步运行的探针系统除可以同时测量更多的物理量外,还能进行边界大尺度结构的研究。两套快动探针系统是EAST边界物理特别是刮削层研究的重要手段。 EAST中平面探针系统主要有J,K窗口的两套快速往复探针系统组成(图1)。它们环向相差17°,可以提供边界上游数据。它们最大的运动速度为两米每秒,可以在300ms之内做一次往复运动,从而获得边界等离子体参数的分布信息。两套探针系统稳定可靠,机动灵活。探针系统的最大安全行程为500mm。位移误差小于百分之一。探针在一次放电中可以完成多次动作,具体次数视放电长度而议。 EAST快动探针系统采用快慢两级驱动模式,慢动驱动部分使用步进电机通过丝杠来驱动探针沿着导轨前后运动,行程范围在1.5m左右,使得探针到达SOL区外侧的等待区域;快动驱动部分则由一个伺服电机和一个电缸组成,伺服电机的旋转运动通过电缸的循环齿轮带转成直线运动;同时在快动驱动的电缸旁平行安装了一个75cm长的线性位移传感器,用于将位置信号转化成电压信号送到探针采集系统。慢驱和快驱都有自锁功能,能够保护探针系统不因为内外压

力差等造成探针自行移动。图1显示了EAST上两套快速往复探针系统的照片。 图1.EAST上两套快动探针系统。 2.偏滤器探针诊断系统 偏滤器探针是典型的等离子体诊断静电探针,由于其具有比较高的时间分辨高、使用方便、可测量的物理量丰富等优点,一直被作为常规的等离子体诊断工具。偏滤器探针采用三探针阵列,可以测量偏滤器区域的电子密度、电子温度、压强、靶板表面入射粒子通量以及热通量的时空分布。 针对EAST装置的升级改造和实现高性能长脉冲等离子体放电的实验目标,偏滤器探针在2014年夏季EAST实验中也相应进行了升级。为了能够在高参数

常见非金属、金属表面不同波段的辐射率

精心整理 第1章非金属的发射率表(n.r.=不推荐) 以下值为近似值,根据材料的实际表面和条件不同可能会有所变化。 材料发射率 1.0μm 5.0μm7.9μm8-14μm 石棉0.9 0.9 0.95 0.95 沥青n.r. 0.9 0.95 0.95 黑陶瓷n.r. 0.7 0.7 0.7 碳 未氧化0.8-0.95 石墨0.8-0.9 碳化硅n.r. 0.9 陶瓷0.4 0.95 黏土n.r. 0.95 混凝土0.65 0.95 布料n.r. 0.95 玻璃 平板n.r. 0.85 玻璃坯n.r. 沙砾0.95 0.95 0.95 石膏0.4-0.97 0.8-0.95 0.8-0.95 冰0.98 0.98 0.4-0.98 0.98 0.98 0.9-0.95 0.9-0.95 纸张n.r. 0.95 0.95 0.95 n.r. 0.95 0.95 0.95 n.r. n.r. 0.9 0.95 0.95 沙子n.r. 0.9 0.9 0.9 雪n.r. 0.9 0.9 泥土n.r. 0.9-0.98 0.9-0.98 水n.r. 0.93 0.93 木头,(天然)n.r. 0.9-0.95 0.9-0.95 0.9-0.95 第2章金属的发射率表 以下值为近似值,根据材料的实际表面和条件不同可能会有所变化。 材料发射率 1.0μm 1.6μm8-14μm

铝 未氧化0.1-0.2 0.02-0.2 n.r. 氧化0.4 0.4 0.2-0.4 铝合金A3003 氧化n.r. 0.4 0.3 毛面0.2-0.8 0.2-0.6 0.1-0.3 光面0.1-0.2 0.02-0.1 n.r. 黄铜 光面0.8-0.95 0.01-0.05 n.r. 砑光面n.r. n.r. 0.3 氧化0.6 0.6 0.5 铬0.4 铜 光面n.r. 毛面n.r. 氧化0.2-0.8 电气接线端子n.r. 金0.3 Haynes 合金0.5-0.9 铬镍铁合金 氧化 喷砂0.3-0.6 0.3-0.6 电抛光面0.25 0.15 铁 0.5-0.9 0.5-0.9 0.1-0.3 n.r. n.r. 0.6-0.9 0.5-0.7 0.35 0.4-0.6 n.r. 0.7-0.9 0.7-0.9 0.6-0.95 未氧化0.35 0.3 0.2 熔融.035 0.3-0.4 0.2-0.3 铁,锻造 钝铁0.9 0.9 0.9 铅 光面0.35 0.05-0.2 n.r. 毛面0.65 0.6 0.4 氧化n.r. 0.3-0.7 0.2-0.6 镁0.3-0.8 0.05-0.3 n.r. 汞n.r. 0.05-0.15 n.r. 钼 氧化0.5-0.9 0.4-0.9 0.2-0.6

补充3-ANSYS热辐射分析

第六章 热辐射分析 6.1热辐射的定义 热辐射是一种通过电磁波传递热能的方式。电磁波以光的速度进行传递,而能量传递与辐射物体之间的介质无关。热辐射只在电磁波的频谱中占小部分的带宽。由于辐射产生的热流与物体表面的绝对温度的四次方成正比,因此热辐射有限元分析是高度非线性的。物体表面的辐射遵循Stefan-Boltzmann定律: 式中:—物体表面的绝对温度; —Stefan-Boltzmann常数,英制为0.119×10-10 BTU/hr-in-R,公制为 5.67×10-8 6.2基本概念 下面是对辐射分析中用到的一些术语的定义: 黑体 黑体被定义为在任意温度下,吸收并发射最大的辐射能的物体; 通常的物体为“灰体”,即ε< 1; 在某些情况下,辐射率(黑度)随温度变化; 辐射率(黑度) 物体表面的辐射率(黑度)定义为物体表面辐射的热量与黑体在同一表面辐射热量之比。 式中:-辐射率(黑度) -物体表面辐射热量 -黑体在同一表面辐射热量 形状系数 形状系数用于计算两个面之间的辐射热交换,在ANSYS中,可以用隐藏/非隐藏的方法计算2维和三维问题,或者用半立方的方法来计算3维问题。 表面I与表面J之间的形状系数为: 形状系数是关于表面面积、面的取向及面间距离的函数; 由于能量守恒,所以:

根据相互原理: 由辐射矩阵计算的形状系数为: 式中:-单元法向与单元I,J连线的角度 -单元I,J重心的距离 有限单元模型的表面被处理为单元面积dA I 及dA J ,然后进行数字积分。 辐射对 在辐射问题中,辐射对由一些相互之间存在辐射的面组成,可以是开放的或是闭合的。在ANSYS中,可以定义多个辐射对,它们相互之间也可以存在辐射ANSYS使用辐射对来计算一个辐射对中各面间的形状系数;每一个开放的辐射对都可以定义自己的环境温度,或是向周围环境辐射的空间节点。 Radiosity 求解器 当所有面上的温度已知时,Radiosity 求解器方法通过计算每一个面上的辐射热流来得到辐射体之间的热交换。而面上的热流为接下来的热传导分析提供了有限元模型的边界条件。重复上面的过程,就会由于新的时间步或者新的迭代循环会得到新的热流边界条件,从而计算出新的温度分布。在计算中使用的每个表面的温度必须是均匀的,这样才能满足辐射模型的条件。 6.3分析热辐射问题 针对不同的情况ANSYS为热辐射分析提供了四种方法。 热辐射线单元(LINK31),模拟两节点间(或多对节点)间辐射; 表面效应单元(SURF151及SURF152),模拟点对面(线)的辐射; 利用AUX12生成辐射矩阵,模拟更一般的面与面(或线与线)的辐射(只有ANSYS/Multiphysics ANSYS/Mechanical和ANSYS/Professional这些产品提供辐射矩阵生成器); Radiosity求解器方法,求解二维、三维面与面之间的热辐射,该方法对所有含温度自由度的 二维和三维单元都适用。(只有ANSYS/Multiphysics,ANSYS/Mechanical 和ANSYS/Professio- nal这些产品提供Radiosity求解器)

国际热核聚变材料辐射装置调研 - IFMIF

信息资源类型:调研报告 国际热核聚变材料辐射装置- IFMIF 李天鹞 中国科学院核能安全技术研究

1.介绍 The International Fusion Materials Irradiation Facility(国际热核聚变材料辐射装置),IFMIF,是一个用于测试聚变用材料的装置,其目的是测试核聚变反应堆所用材料的可行性。 IFMIF的建设准备工作按预期已经在2006年开始,尽管发挥其实际的测试功能至少被排在2017年之后。其中有两个平行的氘核加速器,产生的氘核粒子束撞击锂元素标靶,反应后产生大量高能中子来照射样本材料和被测试成分。该装置可以通过在适当的周期内(几年)产生大量且能量适中的中子来模拟未来商业聚变反应堆中材料受照射情况,从而可以测试在极端情况下材料的长期行为。 聚变发展至今,安全、经济可行性与尊重环境将是热核聚变能源进行大规模普及必不可少的条件,而其中材料的抗辐照性和低活化性问题则是一个关键。IFMIF这一装置将着力于发展相关聚变材料,当它们曝露在高能粒子环境当中时,能否有足够的抗辐照能力。材料的测试需要强大的高能粒子源流(中子)。但是,目前尚没有达到高于数兆电子伏特的强大中子源流。IFMIF将提供这样的高能中子流,以便能够在其整个使用寿命周期上测试用于热核聚变反应堆材料样品。 该项目由欧盟、日本、俄罗斯及美国等共同参与的能源领域的最大国际合作项目之一,同时也是聚变领域最重要的两个国际合作项目之一(另外一个是ITER)。 2.结构 图1——总体3维视图 如图1所示,IMFIF由几个部分组成:加速器、靶、测试室和电力系统等。其中加速器、锂循环系统和处理系统都位于地面之下,主要的电力系统和热室等设施在地面上。

聚变堆材料(部分示意,仅供参考)

1、核聚变反应堆所用的材料主要包括: A 热核材料; B 第一壁材料; C 高热流部件材料; D 氚增殖材料 2、核聚变堆设计和工况条件 A 第一壁环境条件,第一壁是聚变堆中离等离子体最近的部件,应具有抗中子辐照损伤能力,对氢脆和氦脆(指材料中掺入氢气、氦气,材料会变脆,相应性能降低)不敏感,与冷却介质和包层材料相容性好。 B 真空壁材料的设计限值,包括使用温度、热导率、热膨胀系数、强度、弹性模量等上限要求。 C 比起裂变反应堆,聚变反应堆具有特有的材料工艺问题:超导磁体及低温技术,强磁场下导电液体的泵送技术,14MeV中子的辐照损伤、氦离子轰击和溅射起泡现象等。 3、第一壁材料 (1)奥氏体(可以说是铁的同位素钢中性能最好的一种,应用范围最广,但也不绝对)不锈钢。 优点:该材料具有良好的加工、焊接性能,与氦冷却剂和陶瓷增殖材料相容性好; 缺点:但屈服强度较低,抗辐照肿胀性较差。 (2)铁素体和马氏体不锈钢 优点:与奥氏体不锈钢相比,抗辐照肿胀性好,具有更高的热应力因子和更好的液态金属腐蚀行为,与候选冷却剂及氚增殖剂的化学相容性好; 缺点:但对热机械处理十分敏感,退火(钢材料性能改善的手段之一,退火温度由相图决定。简单地讲,就是将钢的温度加热到某一温度,使晶格发生变化,以达到某种性能,再在这一新材料的基础上用某种手段降温至室温,降温速度不同,材料变形不同)温度和时间的变化对其性能影响较大,且焊接工艺要求较为苛刻。 (3)钒合金 优点:具有优良的高温力学性能、抗腐蚀肿胀性能和低中子活化特性,与高纯氦相容性好,一般需要在合金表面覆镀一层绝缘性膜; 缺点:不过存在氢脆现象,且钒合金的工业生产经验和性能数据较为贫乏,目前通常在惰性保护气体或真空环境中进行该合金的焊接工作。 (4)SiC/SiC复合材料 优点:具有优良的高温性能。在氦冷却介质系统中可工作到800摄氏度,可大大提高能源系统的热效率。它比金属类材料在安全、维护和放射性处理方面具有更大的优势。 缺点:影响SiC/SiC复合材料性能的关键环节是在结合基体材料之前沉积在纤维预型上的纤维和基体间的界面层,一般用碳。复合材料的首选工艺是化学气相渗入法(渗N2、C)(CVI)。 中子辐照对其热导率的影响与辐照温度密切相关,即辐照温度越低,则热导率下降越多。 4、高热流部件材料:指孔栏和偏滤器中承受高热负荷的部件。 (1)铜合金 优点:可消散等离子体破裂时产生的局部过热作用。铜合金具有良好的导热效率(仅次于银);缺点:但是易受因素影响而变弱: A 辐照缺陷组分在低温辐照达到饱和值,相当与热导率降低 B 沉淀或氧化物粒子由于高能离位级联冲击而溶解

相关文档
最新文档