开关电源输出过压保护电路的作用原理

开关电源输出过压保护电路的作用原理

开关电源输出过压保护电路的作用原理

摘要: 输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。应...

输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。应用最为普遍的过压保护电路有如下几种:

1、可控硅触发保护电路:

如上图,当Uo1 输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。Uo2 电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。当输出过压现象排除,可控硅的控制端触发电压通过R 对地泄放,可控硅恢复断开状态。

2、光电耦合保护电路:

如上图,当Uo 有过压现象时,稳压管击穿导通,经光耦(OT2)R6 到地

开关电源保护电路实例详细分析

开关电源保护电路实例详细分析 输入欠压保护电路 1、输入欠压保护电路一 概述(电路类别、实现主要功能描述): 该电路属于输入欠压电路,当输入电压低于保护电压时拉低控制芯片的供电Vcc,从而关闭输出。 电路组成(原理图): 工作原理分析(主要功能、性能指标及实现原理): 当电源输入电压高于欠压保护设定点时,A点电压高于U4的Vref,U4导通,B点电压为低电平,Q4导通,Vcc供电正常;当输入电压低于保护电压时,A点电压低于U4的Vref,U4截止,B点电压为高电平,Q4截止,从而Vcc没有电压,此时Vref也为低电平,当输入电压逐渐升高时,A点电压也逐渐升高,当高于U4的Vref,模块又正常工作。R4可以设定欠压保护点的回差。 电路的优缺点 该电路的优点:电路简单,保护点精确 缺点:成本较高。 应用的注意事项: 使用时注意R1,R2的取值,有时候需要两个电阻并联才能得到需要的保护点。还需要注意R1,R2的温度系数,否则高低温时,欠压保护点相差较大。 2、输入欠压保护电路二 概述(电路类别、实现主要功能描述): 输入欠压保护电路。当输入电压低于设定欠压值时,关闭输出;当输入电压升高到设定恢复值时,输出自动恢复正常。

电路组成(原理图): 工作原理分析(主要功能、性能指标及实现原理): 输入电压在正常工作范围内时, Va大于VD4的稳压值,VT4导通,Vb为0电位,VT5截止,此时保护电路不起作用;当输入电压低于设定欠压值时,Va小于VD4的稳压值,VT4截止,Vb为高电位,VT5导通,将COMP(芯片的1脚)拉到0电位,芯片关闭输出,从而实现了欠压保护功能。 R21、VT6、R23组成欠压关断、恢复时的回差电路。当欠压关断时,VT6导通,将R21与R2并联, ;恢复时,VT6截止,, 回差电压即为(Vin’-Vin)。 电路的优缺点 优点:电路形式简单,成本较低。 缺点:因稳压管VD4批次间稳压值的差异,导致欠压保护点上下浮动,大批量生产时需经常调试相关参数。 应用的注意事项: VD4应该选温度系数较好的稳压管,需调试的元件如R2应考虑多个并联以方便调试 输出过压保护电路 1、输出过压保护电路一 概述(电路类别、实现主要功能描述): 输出过压保护电路。当有高于正常输出电压范围的外加电压加到输出端或电路本身故障(开环或其他)导致输出电压高于稳压值时,此电路会将输出电压钳位在设定值。 电路组成(原理图):

过电压保护电路汇总

新疆大学 课程设计报告 所属院系:科学技术学院 专业:电气工程及其自动化 课程名称:电子技术基础上 设计题目:过电压保护电路设计 班级:电气14-1 学生姓名:庞浩 学生学号:20142450007 指导老师: 常翠宁 完成日期:2016. 6. 30

1.双向二极管限幅电路

图2 经典过电压保护电路 经典过电压保护电路虽然有许多优点,但是由于Multisim 12.0中无法找到元件 MAX6495,无法进行仿真,所以不选用该方案。 3.智能家电过电压保护电路 电路原理:该装置工作原理见图,电容器C1将220V 交流市电降压限流后,由二极管1D V 、 2D V 整流,电容器2C 担任滤波,得到12V 左右的直流电压。当电网电压正常时, 稳压二极管VDW 不能被击穿导通,此时三极管VT 处于截止状态,双向可控硅VS 受到电压触发面导通,插在插座XS 中的家电通电工作。(图3) 图3 智能家电过压保护电路 如果电网电压突然升高,超过250V ,此时在RP 中点的电压就导致VDW 击穿导通,VDW 导通后,又使得三极管VT 导通,VT 导通后,其集电极—发射极的压降很小,不足以触发VS ,又导致VS 截止,因此插座XS 中的家电断电停止工作,因而起到了保护的目的。一旦电网电压下降,VT 又截止,VT 的集电极电位升高,又触发VS 导通,家电得电继续工作。 R 电阻5.1K1,RP 电位器15K 选用多圈精密电位器1,C1金属化纸介电容0.47uF 耐压≥400V1,C2电解电容100uF/25V1,1D V 、 2D V 整流二极管IN40072,VDW 稳压二极管 12V 的2CW121,VT 晶体三极管3DA87C 、3DG12等1,VS 双向可控硅6—10A 耐压≥600V1,CZ 电源插座10A 250V1 该装置的调试十分简单,当电网电压为220V 时,调整RP ,使VDW 不击穿,当电压升高至250V ,VT 饱和导通即可,调试时用一调压变压器来模拟市电的变化更方便。 优点:能够保护家用电器避免高电压的冲击带来的伤害,、 缺点:需要购买二极管,NPN 型BJT 以及双向可控硅VS ,不太经济。

几种实用的直流开关电源保护电路

几种实用的直流开关电源保护电路 1 引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流

开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多

开关电源保护电路

开关电源保护电路 为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。 关键词:开关电源;保护电路;可靠性 1 引言 评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。 2 开关电源常用的几种保护电路 2.1 防浪涌软启动电路 开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。 图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。 图1 采用晶闸管和限流电阻组成的软启动电路

图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源V cc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。 图2 采用继电器K1和限流电阻构成的软启动电路 图3 替代RC的延迟电路 2.2 过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。 温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

直流电源过电压过流保护电路

直流电源过电压、欠电压及过流保护电路 该保护电路在直流电源输入电压大于30V或小于18V或负载电 流超过35A时,晶闸管都将被触发导 通,致使断路器QF跳闸。图中,YR 为断路器QF的脱扣线圈;KI为过电 流继电器。 带过流保护的电动自行车无级调速电路

图中,RC为补偿网络,以改善电动机的力矩特性。具体数值由实验决定。 电路如图16-91所示。它适用于电动自行车或电动三轮车。调节电位器RP,可改变由555 时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。Rs是过电流取样电 阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分 流了部分负载,从而保护了功率管VTi。 过流保护用电子保险的制作电路图 本电路适用于直流供电过流保护,如各种电池供电的场合。 如果负载电流超过预设值,该电子保险将断开直流负载。重置电路时,只需把电源关掉,然后再接通。该电路有两个联接点(A、B标记),可以连接在负载的任意一边。 负载电流流过三极管T4、电阻R10和R11。A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。当电源刚刚接通时,全部电源电压加在保险上。三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。保险导电,负载有电流流过。当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。

保险上的电压(VAB)通常小于2V,具体值取决于负载电流。当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。 C1的作用是给出一段短时延迟,以便保险可以控制短时过载,如象白炽灯的开关电流,或直流电机的启动电流。因此,改变C1的值可以改变延迟时间的长短。该电路的电压范围是10~36V的直流电,延迟时间大约0.1秒。对于电路中给出的元件值,负载电流限制为1A。通过改变元件值,负载电流可以达到10mA~40A。选择合适额定值的元件,电路的工作电压可以达到6~500V。通过利用一个整流电桥(如下面的电源电路),该保险也可以用于交流电路。电容器C2提供保险端的瞬时电压保护。二极管D2避免当保险上的电压很低时,C1经过负载放电。 过压过流保护器电路图 当电源供给电压或负载吸取的电流太大时,下图电路可断开负载给出故障指示。 正常工作时,Tr1和Tr2均截止,555复位,555中的放电晶体管导通,它从Tr3基极吸取电流,使Tr3处开饱和,电源5~12V便直接送主负载。当负载吸取电流超过规定值时,Rsc上压降增加,使Tr1导通,555被触发,于是内部放电晶体管截止,跟着Tr3也截止,将电源与负载隔离,这时555处于单稳状态,单稳时间一到,只要负载过流现象不排除,555又重新触发,Tr3继续将负载隔离。

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

(整理)常用彩电开关电源原理

彩电开关电源原理 A3电源: A3机芯电源最早出现在采用三洋公司的LA7680机芯上,故而得名,因其电路简洁、效率高、易扩展、易维修,现在已被各厂家广泛使用。 R520、R521、R522为起动电阻,R519、C514、R524、V513、T501的(1)、(2)绕组组成正反馈回路,C514为振荡电容。 V553 及周边元件、VD515、V511、V512组成稳压控制电路。R552为取样电阻,VD561为V553的发射极提供基准电压,当电源输出电压过高时, V553、VD515、V511、V512均导通程度增加,使开关管V513的基极被分流,输出电压随之下降;反之,若电源输出电压降低时,V553、 VD515、V511、V512均导通程度减少,使开关管V513的基极分流减少,输出电压随之上升。 VD518、VD519、R523组成过压保护电路。另外VD563也为过压保护。 C515的作用: 我们来看如果没有C515会怎样?当某一时刻开关变压器的(1)脚相对(2)脚为正时,一方面(1)脚的电压经R519、C514加到V513的基极,欲使V513饱和,但同时,该电压也经R526加到V512的基极,这样一来,V512饱和导通,而V512饱和导通将迫使V513截止,这就有矛盾了。 再来看加入C515的情况:同样当某一时刻开关变压器的(1)脚相对(2)脚为正,欲使V513饱和,这时该电压也经R526加到V512的基极,但由于有C515的存在,C515两端的电压不能突变,需经一定时间的延迟,或者说C515有一个充电过程,才会使V512饱和,这样就不会干扰V513的饱和了。显然,C515容量的大小决定了延迟的时间,这样也会影响V513基极脉冲的占空比,同样也会影响输出电压的大小,根据这一点,有人误认为C515 是振荡电容,这显然是不对的。 IX0689电源: IX0689电源被广泛运用于国内各种品牌的TA两片机中,是国产机用得最多的电源之一。 振荡电路 300V直流电压经R707、R724分压后,再由C735、L701加到N701的(12)脚,IX0689的(12)脚是内部开关管的B极,于是开关管开始导通,电流从(15)脚C极流入,从(13)脚E极流出,经R714、R710到热地。 T701的(3)、(5)脚为正反馈绕组,在开关管导通时,正反馈电压的极性是(5)正(3)负,(5)脚电压经V735、R713、L701加到N701的(12)脚,使开关管的电流进一步增大,如此循环使开关管很快饱和。 开关管饱和期间,电能转为T701中的磁能。随着N701(13)脚流出的电流不断增大,R710两端的压降也不断增大,当R710上的压降达到1V左右时,开关管开始退出饱和状态。 开关管一旦退出饱和,T701各绕组的感应电压极性全部翻转,正反馈绕组(3)、(5)脚的极性为(3)正(5)负,(5)脚的负电压经C713、R713、L701加到IX0689的(12)脚,使内部开关管的电流进一步减小,如此循环,使开关管迅速截止。 开关管截止期间,开关变压器次级各绕组的整流二极管全部导通,将储存在开关变压器中的磁场能转变为电能,供整机各路负载,同时,T701的(1)、(6)绕组与C717、C718、R710和C706构成振荡回路,当振荡半个周期后,重新使T701的(6)脚为正(1)脚为负,

避免DC-DC电源输出端带大电容满载启动时发生过流保护的方法

避免DC-DC电源输出端带大电容满载启动时发生过流保护的方法 引言 随着大规模集成电路的核心电压越来越低,所需供电电流却越来越大,用于大规模集成电路供电的DC-DC 开关电源也必须满足在极低输出电压下可提供高达数十安培电流的要求,这给电源设计带来了极大的挑战。实际应用中,DC-DC开关电源往往需要外接一组很大的电容以降低电源在负载变化时在输出端产生的电压跳变,在这种情况下,如果电流检测电路设计不当,在输出端外接很大电容且加满载启动时,就很容易在启动过程中引发过流保护,从而导致DC-DC电源无法正常启动。 电源输出端带大电容满载启动时可能遇到的问题 DC-DC电源在给大规模集成电路供电时,输出电压一般很低,而输出电流却很大。以输出电压为3.3V 的八分之一砖模块为例,现在主流的输出电流规格一般为30A。为了防止输出电压在负载变化时跳变过大,在应用3.3V/30A的八分之一砖模块时,其输出端一般需要外接约10000μF的电解电容。 输出电流以25%的比例变化时,输出电压变化量的计算过程如下。 输出电流的变化为30A×25%=7.5A。 输出端外接10000μF电容时,如果电源的动态恢复时间为100μS,那么在负载发生25%变化时电源输出电压的跳变约为: 对于输出电压为3.3V的开关电源,150mV大约相当于输出电压的4.55%,小于一般集成电路供电要求的±5%,可以满足系统中集成电路的需求。 然而,对于开关电源来说,当输出端的外部接10000μF电容时,在开关电源启动的过程中,输出端不得不持续为这组大电容充电,由于电容的等效阻抗很低,电源相当于被这个10000μF的电容短路,这样就造成开关电源在带大电容启动时一直处于被短路的状态。如果启动电路和过流检测电路设计不当,在这种情况下,很容易造成在带大电容启动时开关电源一直处于过流保护状态(OCP)而无法正常启动和输出额定电压,这一过程如图1所示。

开关电源始终无电压输出的解决办法

开关电源始终无输出的故障检修技巧 1、开关电源始终无电压输出的原因 这种情况是由于开关电源未产生振荡所致,进一步证明的方法是;测开关电源整流滤波电容关机后的电压,若为300V之后缓慢下降,则说明开关电源确未产生振荡。开关电源未产生振荡的原因有: 1).开关管集电极未得到足够的工作电压。 2).开关管基极未得到启动电压。 3).开关管正反馈电路元件失效。: 2、检修方法与步骤 1).测开关管集电极电压为0或低于市电1.4倍,检查交流220V输入电路及整流滤波电路,若集电极电压正常,则检查开关管b极电压 2).测开关管b极电压或者在关机瞬间,用指针万用表R x 1欧挡,黑笔接b极,红笔接整流滤波电容负极(热地),听电源有启动声音,说明电源振荡电路正常,仅缺乏启动电压,是启动电阻开路或铜皮断。若无启动声,在测be结后,迅速将表转到电压档,测c极电压是否快速泄放。若是,说明开关管及其放电回路均正常,正反馈电路存在故障,包括反馈电阻、电容、续流二极管、正反馈绕组及其开关管故障。若c极电压仍不泄放,说明开关管及其回路有开路故障或b极有短路接地故障 二、开关电源瞬间有电压输出的故障检修技巧 1、瞬间有电压输出故障原因 开关电源在加电的初始产生了振荡,但后来由于过压过流保护引起停振,或开关机接口电路加电初为开机状态,但随着CPU清零的结束而转入待机状态。 其原因有: 1).开关电源因故造成输出电压过高而引起保护停振。 2).负载过流而引起过流保护动作。 3).保护电路本身误动作。 4).遥控系统因故障而执行待机指令。 其中2、3、4项适用于带有副电源的机器。 2.故障判断的方法与检修步骤 1).假负载法: 脱开行负载,在B+输出端接上假负载,监测B+电压(应先将电压表接到位,开机后即关机)。如果高于正常值十几伏以上,可判断故障是由开关电源输出过压,并击穿行输出管所致,或电源本身的保护电路动作关断电源。应对控制开关电源输出电压的脉宽调制电路和振荡定时电容进行检查(后面将专门讲述)。 若开关电源B+正常,则变换负载或改变市电压观察B+是否稳定输出,对于直接取样电源可空载,以便更好地判断开关电源的稳定性能,若确认其良好,则故障系负载过流或保护电路动作所引起。

过流保护电路设计

过流保护电路如上图所示。此电路是过流保护电路,其中100kΩ电阻用来限流,通过比较器LM311 对电流互感器采样转化的电压进行比较,LM311的3脚接一10kΩ电位器来调比较基准电压,输出后接一100Ω的电阻限流它与后面的220μF的电容形成保护时间控制。当电流过流时比较器输出是高电平产生保护,使SPWM不输出,控制场效应管关闭,等故障消除,比较器输出低电平,逆变器又自动恢复工作。 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电 路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平... 4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护 信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多. 1 采用电流传感器进行电流检测过流检测传感器的工作原理如图1所示。通过变流器所获得的变流器次级电流经I/V转换成电压,该电压直流化后,由电压比较器与设定值相比较,若直流电压大于设定值,则发出辨别信号。但是这种检测传感器一般多用于监视感应电源的负载电流,为此需采取如下措施。由于感应电源启动时,启动电流为额定值的数倍,与启动结束时的电流相比大得多,所以在单纯监视电流电瓶的情况下,感应电源启动时应得到必要的输出信号,必须用定时器设定禁止时间,使感应电源启动结束前不输出不必要的信号,定时结束后,转入预定的监视状态。 2 启动浪涌电流限制电路开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 3 采用基极驱动电路的限流电路在一般情况下,利用基极驱动电路将电源的控制电路和开关晶体管隔离开。控制电路与输出电路共地,限流电路可以直接与输出电路连接,工作原理如图3所示,当输出过载或者短路时,V1导通,R3两端电压增大,并与比较器反相端的基准电压比较。控制PWM信号通断。 4 通过检测IGBT的Vce 当电源输出过载或者短路时,IGBT的Vce值则变大,根据此原理可以对电路采取保护措施。对此通常使用专用的驱动器EXB841,其内部电路能够很好地完成降栅以及软关断,并具有内部延迟功能,可以消除干扰产生的误动作。其工作原理如图4所示,含有IGBT过流信息的Vce不直接发送到EXB841 的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接到EXB841的脚6,从而消除正向压降随电流不同而异的情况,采用阈值比较器,提高电流检测的准确性。假如发生了过流,驱动器:EXB841的低速切断电路会缓慢关断IGBT,从而避免集电极电流尖峰脉冲损坏IGBT器件。 为避免在使用中因非正常原因造成输出短路或过载,致使调整管流过很大的电流,使之损坏。故需有快速保护措施。过流保护电路有限流型和截流型两种。 限流型:当调整管的电流超过额定值时,对调整管的基极电流进行分流,使发射极电流不至于过大。图4-2为其简要电路图。图中R为一小电阻,用于检测负载电流。当IL不超过额定值时,T1、截止;当IL 超过额定值时,T'1导通,其集电极从T1的基极分流。从而实现对T1管的保护

2005(许生礼)简单实用的过流过压保护电路

智 能建筑 Z H I N E N G J I A N Z H U 简单实用的过流过压保护电路 2005年第19卷第2期《工程建设与档案》157  收稿日期:2005-03-04 作者简介:许生礼(1947-),男,江苏江阴人,安徽省房地产公司六安市公司工程师. 简单实用的过流过压保护电路 许生礼 (安徽省房地产公司六安市公司,安徽六安 237012) 摘 要:为了保护生活环境,目前住宅小区均要求自建污水处理系统。由于污水处理设备所用的电机都长期在地下室工作,为了延长电机的使用寿命,采用晶闸管及其控制模式实现过流过压保护。关键词:环保;晶闸管;大电流;保护 中图分类号:T M307.2 文献标识码:A 文章编号:1671-4857(2005)02-0157-02 0 引 言 根据环保要求,各住宅小区按要求均建立了自处理污水系统,由于现有设备均采用的是老式的电机保护系统(如热继电器等),导致经常发生烧毁污水泵电机及风机电机,影响了设备的正常使用,增加了运行成本。为了保护电机,现使用简单的电子过流过压保护电路。 晶闸管以其额定电流大、额定电压高、效率高、反应快以及体积小等优点,作为中频静止逆变电源中主要元件而被选用,但其缺点是过载能力低。因此,在晶闸管中频静止逆变电源中,为了使晶闸管免受大电流、高电压的冲击,均设置了过流过压保护电路。当晶闸管中频静止电源用于金属熔炼时,由于负载为时变性元件,变化大,情况比较复杂,若保护不可靠,速度慢,故障一旦出现, 晶闸管立即被损坏的现象常有发生。影响了整个设备的性能和使用,因而保护电路显得尤为重要。 1 过流过压的保护过程 如图1所示,可控硅中频静止电源主回路采用的 是AC 2DC 2AC 变换电路。从三相全控桥式整流器到单相桥式逆变器,均选用了晶闸管。保护电路是把从电流、电压采样回路中所采取的电流和电压信号,经判断后,控制或封锁整流桥触发脉冲,使得三相全控整流桥输出电压为零,切断了逆变桥电源的供给,从 而起到了保护整机的作用[1,2] 。可是,不同的保护电路控制点却往往不同,致使保护电路性能的好坏有较 大的差异。 图1 过流过压保护框图 2 过流过压保护电路 针对上述情况,结合目前国内大多数可控硅中频静止电源和整流脉冲形成的电路,大多数采用了KJ 004和KJ 041组成的触发脉冲电路,设计出了可靠性 高、线路简单的过流过压保护电路[3] ,其保护原理如 图2所示。2.1 过流保护电路 该电路由W 1、I C 1(运算放大器)组成比较电路,I C 3(D 触发器)组成双稳态记忆电路I C 5、I C 6(或门) 组成的逻辑电路及T 1、XD 1组成的显示电路4个单元构成。 当中频静止逆变电源处于正常工作时,输入比较器同相端的电流信号形成的输入电压小于反相端定值电压(即所要求的保护定值电压)I C 1输出低电平,D 触发器处于复位状态,Q 端为“0”,逻辑门输出则为 低电平,T 1反偏而截止,XD 1不亮。同理I C 6输出为“0”,KJ 041的控制端(P 7)为“0”,有整流触发脉冲输出。当电流信号形成的输入电压W 1确定的定值电

开关电源各种保护电路实例详细解剖

输入欠压保护电路 输入欠压保护电路一 1、概述(电路类别、实现主要功能描述): 该电路属于输入欠压电路,当输入电压低于保护电压时拉低控制芯片的供电Vcc,从而关闭输出。 2、电路组成(原理图): 3、工作原理分析(主要功能、性能指标及实现原理): 当电源输入电压高于欠压保护设定点时,A点电压高于U4的Vref,U4导通,B点电压为低电平,Q4导通,Vcc供电正常;当输入电压低于保护电压时,A 点电压低于U4的Vref,U4截止,B点电压为高电平,Q4截止,从而Vcc没 有电压,此时Vref也为低电平,当输入电压逐渐升高时,A点电压也逐渐升高,当高于U4的Vref,模块又正常工作。R4可以设定欠压保护点的回差。4、电路的优缺点 该电路的优点:电路简单,保护点精确 缺点:成本较高。 5、应用的注意事项: 使用时注意R1,R2的取值,有时候需要两个电阻并联才能得到需要的保护点。还需要注意R1,R2的温度系数,否则高低温时,欠压保护点相差较大。输入欠压保护电路二 1、概述(电路类别、实现主要功能描述): 输入欠压保护电路。当输入电压低于设定欠压值时,关闭输出;当输入电压 升高到设定恢复值时,输出自动恢复正常。 2、电路组成(原理图):

3、工作原理分析(主要功能、性能指标及实现原理): 输入电压在正常工作范围内时, Va大于VD4的稳压值,VT4导通,Vb为0电位,VT5截止,此时保护电路不起作用;当输入电压低于设定欠压值时,Va小于VD4的稳压值,VT4截止,Vb为高电位,VT5导通,将COMP(芯片的1脚)拉到0电位,芯片关闭输出,从而实现了欠压保护功 能。 R21、VT6、R23组成欠压关断、恢复时的回差电路。当欠压关断时,VT6导通,将R21与R2并联,;恢复时,VT6截止, ,回差电压即为(Vin’-Vin)。 4、电路的优缺点 优点:电路形式简单,成本较低。 缺点:因稳压管VD4批次间稳压值的差异,导致欠压保护点上下浮动,大批量生产时需经常调试相关参数。 5、应用的注意事项: VD4应该选温度系数较好的稳压管,需调试的元件如R2应考虑多个并联以方便调试。 输出过压保护电路 输出过压保护电路一 1、概述(电路类别、实现主要功能描述):

最新ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解整理

用TL494制作的ATX开关电源控制电路图 过流,过压,欠压保护详解 本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)?494是双排16脚集成电路,工作电压7~40V?它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路 ATX电源的控制电路见图1?控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)?494是双排16脚集成电路,工作电压7~40V?它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定?{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号?本例为此种工作方式,故将{13}脚与{14}脚相连接?比较器是一种运算放大器,符号用三角 形表示,它有一个同相输入端“+” ;一个反相输入端“-”和一个输出端? 比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平?494内的比较放大器有四个,为叙述方便,在图1中用小写字母a?b?c?d来表示?其中a是死区时间比较器?因两个作逆变工作的三极管串联 后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路?两个三极管同时导通可能发 生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候?因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路?为防止这样的事情发生,494设置了死区时间比较器a?从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚?A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路?死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了?494内部还有3个二输入端与门(用1?2?3表示)?两个二输入端与非门?反相器?T触发器等电路?与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平?反相器的作用是把 输入信号隔离放大后反相输出?与非门则相当于一个与门和一个反相器的组合?T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次?如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平?比较器?与门?反相器?T触发器以及锯齿波振荡器及{8}脚?{11}脚输出的波形见图2?339是四比较器

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

常用直流开关电源的保护电路设计

常用直流开关电源的保护电路设计 概述 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3]。同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。 3.1过电流保护电路

开关电源保护电路实例

开关电源保护电路实例 摘要:为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。 1 引言 评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。 2 开关电源常用的几种保护电路 2.1 防浪涌软启动电路 开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。 图1 采用晶闸管V和限流电阻R1组成的防浪涌电流电路 图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图2 采用继电器K1和限流电阻R1构成的防浪涌电流电路 图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。为了提高延迟时间的准确性及防止继电器动作抖动。 2.2 过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

相关文档
最新文档