高数下册期末试题

高数下册期末试题
高数下册期末试题

一、单选题(共15分,每小题3分)

1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )

A .(,)f x y 在P 连续

B .(,)f x y 在P 可微

C . 0

0lim (,)x x f x y →及 0

0lim (,)y y f x y →都存在 D .

00(,)(,)

lim (,)x y x y f x y →存在

2.若x y z ln =,则dz 等于( ).

ln ln ln ln .

x

x

y

y y

y A x

y

+

ln ln .

x

y

y B x

ln ln ln .ln x

x

y

y C y

ydx dy x

+

ln ln ln ln .

x

x

y

y y

x D dx dy x

y

+

3.设Ω是圆柱面22

2x y x +=及平面01,z z ==所围成的区域,则

(),,(=???

Ω

dxdydz z y x f ).

21

2

00

cos .(cos ,sin ,)A d dr f r r z dz

πθθθθ???

21

2

cos .(cos ,sin ,)B d rdr f r r z dz πθθ

θθ?

??

21

2

2

cos .(cos ,sin ,)C d rdr f r r z dz

π

θπθ

θθ-??

?

21

cos .(cos ,sin ,)x

D d rdr f r r z dz πθθθ??

?

4. 4.若1

(1)n n n a x ∞

=-∑在1x =-处收敛,则此级数在2x =处( ).

A . 条件收敛

B . 绝对收敛

C . 发散

D . 敛散性不能确定

5.曲线2

2

2x y z z x y

-+=??

=+?在点(1,1,2)处的一个切线方向向量为( ).

A. (-1,3,4)

B.(3,-1,4)

C. (-1,0,3)

D. (3,0,-1)

二、填空题(共15分,每小题3分)

1

.设2x y x y z

+-=,则'

(

1,1)x z = .

2.交 换ln 1

(,)e

x I dx f x y dy =

?

?

的积分次序后,I =_____________________.

3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .

4. 已知0

!

n

x

n x

e n ∞

==

,则

x

xe

-= .

5. 函数332233z x y x y =+--的极小值点是 .

三、解答题(共54分,每小题6--7分)

1.(本小题满分6分)设arctan y z y x

=, 求

z x

??,

z y

??.

2.(本小题满分6分)求椭球面2

2

2

239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程

3. (本小题满分7分)求函数2

2

z x y =+在点(1,2)

处沿向量122

l i j =+

方向的方向导

数。

4. (本小题满分7分)将x

x f 1)(=展开成3-x 的幂级数,并求收敛域。

5.(本小题满分7分)求由方程088222

2

2

=+-+++z yz z y x 所确定的隐函数

),(y x z z =的极值。

6.(本小题满分7分)计算二重积分1

,1,1,)(222=-=--=+??y y y x D d y x D

由曲线σ及2-=x 围成.

7.(本小题满分7分)利用格林公式计算?-L

x y x y xy d d 22,其中L 是圆周2

22a y x =+(按

逆时针方向).

8.(本小题满分7分)计算

???Ω

z

y x xy d d d ,其中Ω是由柱面12

2=+y x 及平面

0,0,1===y x z 所围成且在第一卦限内的区域.

.

四、综合题(共16分,每小题8分)

1.(本小题满分8分)设级数1

1

,n n n n u v ∞

==∑∑都收敛,证明级数21

()n n n u v ∞

=+∑收敛。

2.(本小题满分8分)设函数),(y x f 在2

R 内具有一阶连续偏导数,且

2f x x

?=?,

证明曲线积分 2(,)L

xydx f x y dy +?与路径无关.若对任意的t 恒有

(,1) (1,) (0,0)

(0,0)

2(,)2(,)t t xydx f x y dy xydx f x y dy +=

+?

?

,求),(y x f 的表达式.

参考答案及评分标准

一、单选题(共15分,每小题3分):1.C 2 D 3 C 4B 5 A 二、填空题(共15分,每小题3分) 1.-1 2. I =

10

(,)y

e e

dy f x y dx ?

?

3. →

→→-+-k j i 242 4

1

(1)!

n n n x

n +∞

=-∑

5. (2,2)

三、解答题(共54分,每小题6--7分) 1.解:

2

2

2

y x y

x

z +-

=??; (3分)

y

z ??=x

y arctan

+

2

2

y

x xy + ( 6分).

2. 解:记切点000(,,)x y z 则切平面的法向量为0002(2,3,)n x y z = 满足:00023232

x y z

==- ,

切点为:(1,1,2)-或(1,1,2)-- (3分),切平面:23299x y z or -+=- ( 4分), 法线方程分别为:

1122

3

2

x y z +-+==-或者

1122

3

2

x y z -+-=

=

- ( 6分)

3. 解:(1,2)(2,4)f ?= ( 3分),

(1,2)

1f l

?=+? ( 7分) 4. 解:)

3(31)(-+=

x x f =

)

3

3(

113

1-+?x , ( 2分)

因为 ∑∞

=+=

-0

11)1(n n

n x

x ,)1,1(-∈x ,所以

=-?-=

-+?0

)3

3(

3

1)

1()

3

3(

113

1n n

n

x x =

∑∞

=+--0

1)3()31()1(n n

n n x ,其中1331<-<-x ,即60<

当0=x 时,级数为∑

=0

3

1n 发散;当6=x 时,级数为∑∞

=?

-0

3

1)1(n n 发散,故

x

1=

∑∞

=+--0

1)3()31()1(n n

n n x ,)6,0(∈x , ( 7分) 5. 解:由401284(2)0128z

x x z y z y z y z y

??==??--?

??+?==??--?, 得到0=x 与02=+z y , ( 2分)

再代入088222

2

2=+-+++z yz z y x ,得到0872

=-+z z

即81,7

z =-

由此可知隐函数(,)z z x y =的驻点为(0,2)-与16(0,

)7

。 ( 4分)

由2

24128z x

z y

?=

?--,

2

0z x y

?=??,

2

2

4128z y

z y

?=

?--,可知在驻点(0,2)-与16(0,

)7

有0H >。( 5分)

在(0,2)-点,1z =,因此 22

4015

z x

?=

>?,所以(0,2)-为极小值点,极小值为1z =;( 6

分) 在16(0,

)7

点,

87

z =-,因此

2

2

4015

z x

?=-

所以16(0,)7

为极大值点,

极大值为87

z =-,

( 7分)

6. 解:记????

?≤≤-≤≤--?

??≤≤-≤≤-110

1:110

2:22

1y x y D y x D ,则21D D D -=.(2分) 故 σσσd y x

d y x

d y x

D D D

??????+-

+=

+2

1

)()()(2

2

2

2

2

2

( 4分)

-

=

-

+=

??

?

?--3

20)(2

32

1

3

1

1

22

2

π

π

θ

dr r d dx y x dy 4

π

(7分)

7. 解:L 所围区域D :2

22a y x ≤+,由格林公式,可得

?

-L

x y x y xy d d 2

2

=

y x y

y x x

xy D

d d ))()((

2

2

??

?-?-

??=??+D

y x y x d d )(2

2=4

π20

2

2

πd a r r r d a ?

?

=

.(7分)

8. 解:如图,选取柱面坐标系

?

????≤≤≤≤≤≤,10,2π

0,10:r z θ所以

???

?

??

?=

Ω

θθθ

r r z z y x xy sin cos d d d d d 0

10

1=?

?

r r d d 2sin 2

13

10

2

πθ

θ=8

4

)

4

2cos (1

4

2

π

?

-

r

θ四、综合题(共16分,每小题8分) 1.证明:因为lim 0,lim 0n n n n u v →∞

→∞

==,(2分)

故存在N ,当n N >时,2

2

2

()23n n n n n n n u v u v u v u +=++≤,因此21

()n n n u v ∞

=+∑收敛。(8

分) 2.证明:因为2f x x

?=?,且

22()xy x y

?=?,

故曲线积分 2(,)L

xydx f x y dy +?与路径无关.(4分)

因此设)(),(2

y g x y x f +=,从而

(,1) 1122

(0,0)

2(,)0[()]()t t xydx f x y dy dx t g y dy t g y dy +=

+

+=+?

?

?

?

(5分) (1,) 1

(0,0)

2(,)0[1()]()t t t xydx f x y dy dx g y dy t g y dy +=

+

+=+

?

?

?

?

(6分) 由此得 12

()t g y dy +

?

()t t g y dy =+

?

对任意t 成立,于是12)(-=t t g ,即

12)(),(2

2

-+=+=y x

y g x

y x f .

(8分)

x

高等数学下试题及参考答案

高等数学下试题及参考 答案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

华南农业大学期末考试试卷(A 卷 ) 2016~2017学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、填空题(本大题共5小题,每小题3分,共15分) 1.二元函数2ln(21)z y x =-+的定义域为 。 2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。 3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。 4.设yz u x =,则du = 。 5.级数11 (1)n p n n ∞ =-∑,当p 满足 条件时级数条件收敛。 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y +=的通解是 ( ) A .2x y Ce = B .22x y Ce = C .22y y e Cx = D .2y e Cxy =

2 .求极限(,)(0,0)lim x y →= ( ) A .14 B .12- C .14- D .12 3.直线:3 27 x y z L = =-和平面:32780x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上 C .直线L 垂直于平面π D .直线L 与平面π斜交 4.D 是闭区域2222{(,)|}x y a x y b ≤+≤ ,则D σ= ( ) A .33()2 b a π- B .332()3 b a π- C .334()3 b a π - D . 3 33()2 b a π- 5.下列级数收敛的是 ( ) A .11(1)(4)n n n ∞ =++∑ B .2111n n n ∞=++∑ C .1 1 21n n ∞ =-∑ D .n ∞ = 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特 解。 2. 计算二重积分22 D x y dxdy x y ++?? ,其中22 {(,):1,1}D x y x y x y =+≤+≥。

高等数学下册试题及答案解析word版本

高等数学(下册)试卷(一) 一、填空题(每小题3分,共计24分) 1、 z =)0()(log 2 2>+a y x a 的定义域为D= 。 2、二重积分 ?? ≤++1 ||||22)ln(y x dxdy y x 的符号为 。 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示 为 ,其值为 。 4、设曲线L 的参数方程表示为),() () (βαψ?≤≤?? ?==x t y t x 则弧长元素=ds 。 5、设曲面∑为92 2 =+y x 介于0=z 及3=z 间的部分的外侧,则 =++?? ∑ ds y x )122 ( 。 6、微分方程x y x y dx dy tan +=的通解为 。 7、方程04) 4(=-y y 的通解为 。 8、级数 ∑∞ =+1) 1(1 n n n 的和为 。 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续; (B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C ) y y x f x y x f z y x ?'-?'-?),(),(0000当0)()(2 2→?+?y x 时,是无穷小; (D )0) ()(),(),(lim 2 2 00000 =?+??'-?'-?→?→?y x y y x f x y x f z y x y x 。 2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。 3、设Ω:,0,12 2 2 ≥≤++z z y x 则三重积分???Ω = zdV I 等于( ) (A )4 ? ??20 20 1 3cos sin π π ???θdr r d d ;

高数 下 期末考试试卷及答案

2017学年春季学期 《高等数学Ⅰ(二)》期末考试试卷(A ) 注意: 1、本试卷共 3 页; 2、考试时间110分钟; 3、姓名、学号必须写在指定地方 1.已知a 与b 都是非零向量,且满足-=+a b a b ,则必有( ). (A)-=0a b (B)+=0a b (C)0?=a b (D)?=0a b 2.极限2 2 22 00 1 lim()sin x y x y x y →→+=+( ). (A) 0 (B) 1 (C) 2 (D)不存在 3.下列函数中,d f f =?的是( ). (A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数 (C )(,)f x y = (D )(,)e x y f x y += 4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ). (A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域2 2 :(1)(1)2D x y -+-≤,若1d 4D x y I σ+= ??,2D I σ=,3D I σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I << 6.设椭圆L : 13 42 2=+y x 的周长为l ,则22(34)d L x y s +=?( ). (A) l (B) l 3 (C) l 4 (D) l 12 7.设级数 ∑∞ =1 n n a 为交错级数,0()n a n →→+∞,则( ). (A)该级数收敛 (B)该级数发散 (C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是( ). (A )若级数 1n n a ∞ =∑发散,则级数 21n n a ∞ =∑也发散 (B )若级数 21 n n a ∞ =∑发散,则级数 1 n n a ∞=∑也发散 (C )若级数 21n n a ∞ =∑收敛,则级数 1 n n a ∞ =∑也收敛 (D )若级数 1 ||n n a ∞=∑收敛,则级数2 1 n n a ∞=∑也收敛 二、填空题(7个小题,每小题2分,共14分). 1.直线3426030x y z x y z a -+-=??+-+=? 与z 轴相交,则常数a 为 . 2.设(,)ln(),y f x y x x =+则(1,0)y f '=______ _____. 3.函数(,)f x y x y =+在(3,4)处沿增加最快的方向的方向导数为 . 三峡大学 试卷纸 教学班号 序号 学号 姓名 …………………….……答 题 不 要 超 过 密 封 线………….………………………………

高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分) 1.曲线???=+=0 12x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z . 2.直线35422:1z y x L =--=-+与直线?? ???+=+-==t z t y t x L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{. 4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0. 5.设周期函数在一个周期内的表达式为???≤<+≤<-=, 0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π +. 6.全微分方程0d d =+y x x y 的通解为 C xy =. 7.写出微分方程x e y y y =-'+''2的特解的形式x axe y =*. 二、解答题(共18分 每小题6分) 1.求过点)1,2,1(-且垂直于直线???=+-+=-+-0 2032z y x z y x 的平面方程. 解:设所求平面的法向量为n ,则{}3,2,11 11121=--=k j i n (4分) 所求平面方程为 032=++z y x (6分) 2.将积分???Ω v z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面 )(222y x z +-=及22y x z +=所围成的区域. 解: πθ20 ,10 ,2 :2 ≤≤≤≤-≤≤Ωr r z r (3分)

???Ωv z y x f d ),,(???-=221020d ),sin ,cos (d d r r z z r r f r r θθθπ (6分) 3.计算二重积分??+-=D y x y x e I d d )(22,其中闭区域.4:22≤+y x D 解 ??-=2020d d 2r r e I r πθ??-- =-20220)(d d 212r e r πθ?-?-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分) 1.设v ue z =,而22y x u +=,xy v =,求z d . 解:)2(232y y x x e y ue x e x v v z x u u z x z xy v v ++=?+?=?????+?????=?? (3分) )2(223xy x y e x ue y e y v v z y u u z y z xy v v ++=?+?=?????+?????=?? (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分) 2.函数),(y x z z =由方程0=-xyz e z 所确定,求y z x z ????,. 解:令xyz e z y x F z -=),,(, (2分) 则 ,yz F x -= ,xz F y -= ,xy e F z z -= (5分) xy e yz F F x z z z x -=-=??, xy e xz F F y z z z y -=-=??. (7分) 3.计算曲线积分 ?+-L y x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有 向弧段. 解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林 公式 ????+--=+-OA D L y x x y y x y x x y d d d d 2d d (5分) ππ=-? =022 (7分) 4.设曲线积分?++L x y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,

大一高数期末考试,下学期高数(下)3,高数期末试题,总结归纳[1]河南理工大学

河北科技大学 高等数学(下)考试试题3 一、 填空题(每题4分,共16分) 1.(4分) 级数1n n u ∞ =∑收敛的必要条件是 . 2. (4分) 交换二次积分的次序100(,)y dy f x y dx ??= . 3. (4分) 微分方程2442x y y y xe '''-+=的一个特解形式可以设为 . 4. (4分) 在极坐标系下的面积元素d σ= . 二、 选择题(每题4分,共16分) 1. (4分) 已知曲面22 4z x y =--上点P 处的切平面平行于平面 2210x y z ++-=,则点P 的坐标是 ( ). A. (1,-1,2); B. (-1,1,2); C. (1,1,2); D. (-1,-1,2). 2. (4分) 级数1 312 1(1) n n n ∞ -=-∑为( ). A.绝对收敛; B. 条件收敛; C.发散; D. 收敛性不确定. 3. (4分) 若∑是锥面222 x y z +=被平面0z =与1z =所截下的部分,则曲面积分2 2 ()x y dS ∑ +=??( ). A. 1200d r rdr πθ???; B. 21 2 00d r rdr πθ???; C. 1200 d r rdr π θ??; D. 21200 d r rdr π θ??. 4. (4分) 幂级数1(1)n n n n ∞ -=-∑的收敛半径为( ). A. 2;R = B.1;2R = C.3;R = D.1 .3 R = 三、 解答题(每题7分,共63分)

1.(7分) 设sin(),xy z x y e =++求dz . 2. (7分) 计算三重积分,I xdxdydz Ω =???其中Ω为三个坐标面及平面 21x y z ++=所围成的闭区域. 3. (7分) 求(1)I y z dS ∑ =++??,其中∑是平面5y z +=被圆柱面 2225x y +=截出的有限部分. 4. (7分) 求幂级数1 (1)(1)n n n x n ∞ =--∑的收敛域. 5. (7分) 将2 1 ()2f x x x = --展开为麦克劳林级数. 6. (7分) 求曲线积分(sin )(cos 1)x x L I e y y dx e y dy =-+-?,其中L 为 22x y ax +=上从(,0)A a 到(0,0)O 的上半圆周. 7. (7分) 求微分方程24y xy x '+=在初始条件03x y ==下的特解. 8. (7分) 求曲面积分(1)(22)(33)I x dydz y dzdx z dxdy ∑ =+++++?? , 其中∑为曲面222 4x y z ++=的内侧. 9.(7分) 计算曲线积分()L I x y ds =+?,其中L 是以(0,0)O ,(1,0),(0,1) A B 为顶点的三角形折线. 四、(5分) 试确定参数t 的值,使得在不含直线0y =上点的区域上,曲线积分 222222 ()()t t C x x y x x y I dx dy y y ++=-?与路径无关,其中C 是该区域上一条光滑曲线,并求出当C 从(1,1)A 到(0,2)B 时I 的值.

同济版高等数学下册练习题附答案

第 八 章 测 验 题 一、选择题: 1、若a →,b →为共线的单位向量,则它们的数量积 a b →→ ?= ( ). (A) 1; (B)-1; (C) 0; (D)cos(,)a b →→ . 向量a b →→?与二向量a → 及b → 的位置关系是( ). 共面; (B)共线; (C) 垂直; (D)斜交 . 3、设向量Q → 与三轴正向夹角依次为,,αβγ,当 cos 0β=时,有( ) 5、2 () αβ→ → ±=( ) (A)2 2 αβ→→±; (B)2 2 2ααββ →→→ →±+; (C)2 2 αα ββ →→→ →±+; (D)2 2 2αα ββ →→→ →±+. 6、设平面方程为0Bx Cz D ++=,且,,0B C D ≠, 则 平面( ). (A) 平行于轴; x ;(B) y 平行于轴; (C) y 经过轴;(D) 经过轴y . 7、设直线方程为111122 00A x B y C z D B y D +++=??+=?且 111122,,,,,0A B C D B D ≠,则直线( ). (A) 过原点; (B)x 平行于轴; (C)y 平行于 轴; (D)x 平行于轴. 8、曲面2 50z xy yz x +--=与直线 5 13 x y -=- 10 7 z -= 的交点是( ). (A)(1,2,3),(2,1,4)--;(B)(1,2,3); (C)(2,3,4); (D)(2,1,4).-- 9、已知球面经过(0,3,1)-且与xoy 面交成圆周 22160 x y z ?+=?=?,则此球面的方程是( ). (A)222 6160x y z z ++++=; (B)2 2 2 160x y z z ++-=; (C)2 2 2 6160x y z z ++-+=; (D)2 2 2 6160x y z z +++-=. 10、下列方程中所示曲面是双叶旋转双曲面的是( ). (A)2221x y z ++=; (B)22 4x y z +=; (C)22 2 14y x z -+=; (D)2221916 x y z +-=-. 二、已知向量,a b r r 的夹角等于3 π ,且2,5a b →→==,求 (2)(3)a b a b →→→→ -?+ . 三、求向量{4,3,4}a → =-在向量{2,2,1}b → =上的投影 . 四、设平行四边形二边为向量 {1,3,1};{2,1,3}a b → → =-=-{}2,1,3b =-,求其面积 . 五、已知,,a b →→ 为两非零不共线向量,求证: ()()a b a b →→→→-?+2()a b →→ =?. 六、一动点与点(1,0,0)M 的距离是它到平面4x =的距 的一半,试求该动点轨迹曲面与 yoz 面的交线方程 .

高等数学下册期末考试题及答案

高等数学(下册)考试试卷(一) 一、填空题(每小题3分,共计24分) 1、 z =)0()(log 2 2>+a y x a 的定义域为D= 。 2、二重积分 ?? ≤++1 ||||22)ln(y x dxdy y x 的符号为 。 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。 4、设曲线L 的参数方程表示为),() () (βαψ?≤≤?? ?==x t y t x 则弧长元素=ds 。 5、设曲面∑为92 2 =+y x 介于0=z 及3=z 间的部分的外侧,则=++?? ∑ ds y x )12 2( 。 6、微分方程x y x y dx dy tan +=的通解为 。 7、方程04) 4(=-y y 的通解为 。 8、级数 ∑∞ =+1 )1(1 n n n 的和为 。 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续; (B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C ) y y x f x y x f z y x ?'-?'-?),(),(0000当0)()(2 2→?+?y x 时,是无穷小; (D )0) ()(),(),(lim 2 2 00000 =?+??'-?'-?→?→?y x y y x f x y x f z y x y x 。 2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。 3、设Ω:,0,12 2 2 ≥≤++z z y x 则三重积分???Ω = zdV I 等于( ) (A )4 ? ??2 201 3 cos sin π π ???θdr r d d ;(B )???20 1 2 sin π π??θdr r d d ;

大学高等数学(微积分)下期末考试卷(含答案)

大学高等数学(微积分)<下>期末考试卷 学院: 专业: 行政班: 姓名: 学号: 座位号: ----------------------------密封-------------------------- 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末 的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞ =,则级数 1 n n a ∞ =∑( ); A.一定收敛,其和为零 B. 一定收敛,但和不一定为零 C. 一定发散 D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( ); A. 623(, , )777 B. 623(, , )777- C. 623( ,, )777-- D. 623(, , )777-- 3、设3 2 ()x x y f t dt = ? ,则dy dx =( ); A. ()f x B. 32()()f x f x + C. 32()()f x f x - D.2323()2()x f x xf x - 4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在 C. 必为初等函数 D. 不一定存在

二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1 1 n n n ∞ =+∑ 必定____________(填收敛或者发散)。 2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。 3、定积分1 21sin x xdx -=?__________ _。 4、若当x a →时,()f x 和()g x 是等价无穷小,则2() lim () x a f x g x →=__________。 三、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 ) 求不定积分sin x xdx ? 2、( 本小题7分 ) 若()0)f x x x =+>,求2'()f x dx ?。

最新高等数学下考试题库(附答案)

《高等数学》试卷1(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b B.a ⊥b C.3,π=b a D.4 ,π=b a 3.函数11 22222-++--=y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.(){}21,22<+p D.1≥p 8.幂级数∑∞ =1n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞=?? ? ??02在收敛域内的和函数是( ).

A.x -11 B.x -22 C.x -12 D.x -21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 23+--=xy xy y x z ,则=???y x z 2_____________________________. 4. x +21的麦克劳林级数是___________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求.,y z x z ???? 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ???? 3.计算σd y x D ??+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 四.应用题(10分?2) 1.要用铁板做一个体积为23 m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? . 试卷1参考答案 一.选择题 CBCAD ACCBD 二.填空题 1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.1962 2--y y x . 4. ()n n n n x ∑∞=+-01 21.

2019最新高等数学(下册)期末考试试题(含答案)ABI

2019最新高等数学(下册)期末考试试题(含答 案) 一、解答题 1.建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为R == 设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程. 2.求下列线性微分方程满足所给初始条件的特解: πd 11(1)sin ,1d x y y x y x x x =+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -??????==+=-+?????? ?? 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x =--. 2311(2)(23)1,0x y x y y x ='+-== . 解:2 2323d 3ln x x x x c x --=--+? 2 2 223323d 23 +3ln d 3ln e e e d e d x x x x x x x x x x y x c x c -------??????∴==++???????? 2223311e .e e 22x x x x x c c ----????=?=++ ? ????? 以x =1,y =0代入上式,得12e c =-. 故所求特解为 2311e 22e x y x -??=- ??? . 3.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =??=?,t :0→π2

高数下试题及答案

第二学期期末考试试卷 一、 填空题(每空 3 分,共 15 分) 1. 已知向量()1,1,4r a =-,()3,4,0r b =,则以r a ,r b 为边的平行四边形的面积等于. 2. 曲面sin cos z x y =在点1,,442ππ?? ??? 处 的切平面方程是. 3. 交换积分次序()22 0,x dx f x y dy = ??. 4. 对于级数11 n n a ∞ =∑(a >0),当a 满足条件 时收敛. 5. 函数1 2y x =-展开成x 的幂级数为 . 二、 单项选择题 (每小题3分,共15分) 1. 平面20x z -=的位置是 ( ) (A )通过y 轴 (B )通过x 轴 (C )垂直于y 轴 (D )平行于xoz 平面 2. 函数(),z f x y =在点()00,x y 处具有偏导数 ()00,x f x y ',()00,y f x y ',是函数在该点可微分的 ( ) (A )充要条件 (B )充分但非必要条件 (C )必要但非充分条件 (D )既非充分又非必要条件 3. 设()cos sin x z e y x y =+,则10 x y dz ===( ) (A )e (B )()e dx dy +

(C )1()e dx dy -+ (D )()x e dx dy + 4. 若级数()11n n n a x ∞ =-∑在1x =-处收敛, 则此级数在2x =处( ) (A )敛散性不确定 (B )发散 (C )条件收敛 (D )绝对收敛 5. 微分方程y xy x '-=的通解是( ) (A )212 1x y e =- (B )212 1x y e -=- (C )212 x y Ce -= (D )212 1x y Ce =- 三、(本题满分8分) 设平面通过点()3,1,2-,而且通过直线43521 x y z -+==, 求该平面方程. 四、(本题满分8分) 设(),z f xy x y =+,其中(),f u v 具有二阶连续偏导数, 试求z x ??和2z x y ???. 五、(本题满分8分) 计算三重积分y zdxdydz Ω =???, 其中 (){},,01,11,12x y z x y z ≤≤-≤≤≤≤. 六、(本题满分8分) 计算对弧长的曲线积分L ?,

高等数学下册试题及答案解析

高等数学(下册)试卷(一) 一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D= 。 2、二重积分 ?? ≤++1||||22)ln(y x dxdy y x 的符号为 。 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示 为 ,其值为 。 4、设曲线L 的参数方程表示为),()()(βαψ?≤≤?? ?==x t y t x 则弧长元素=ds 。 5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则 =++??∑ds y x )122( 。 6、微分方程x y x y dx dy tan +=的通解为 。 7、方程04) 4(=-y y 的通解为 。 8、级数∑∞ =+1)1(1n n n 的与为 。 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件就是( ) (A)),(y x f 在),(00y x 处连续; (B)),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C) y y x f x y x f z y x ?'-?'-?),(),(0000当0)()(22→?+?y x 时,就是无穷小; (D)0)()(),(),(lim 2200000 0=?+??'-?'-?→?→?y x y y x f x y x f z y x y x 。 2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A)y x +; (B)x ; (C)y ; (D)0 。 3、设Ω:,0,1222≥≤++z z y x 则三重积分???Ω= zdV I 等于( ) (A)4 ???20201 03cos sin ππ ???θdr r d d ;

高数下册试题库

高等数学下册试题库 一、填空题 1. 平面01=+++kz y x 与直线 1 1 2 z y x = -= 平行的直线方程是___________ 2. 过点)0,1,4(-M 且与向量)1,2,1(=a 平行的直线方程是________________ 3. 设k i b k j i a λ+=-+=2,4,且b a ⊥,则=λ__________ 4. 设1)(,2||,3||-===a b b a ,则=∧ ),(b a ____________ 5. 设平面0=+++D z By Ax 通过原点,且与平面0526=+-z x 平行,则 __________________,_______,===D B A 6. 设直线 )1(2 21-=+= -z y m x λ与平面025363=+++-z y x 垂直,则 ___________________,==λm 7. 直线???==0 1 y x ,绕z 轴旋转一周所形成的旋转曲面的方程是_______________ 8. 过点)1,0,2(-M 且平行于向量)1,1,2(-=a 及)4,0,3(b 的平面方程是 __________ 9. 曲面2 22 y x z +=与平面5=z 的交线在xoy 面上的投影方程为__________ 10. 幂级数1 2 n n n n x ∞ =∑ 的收敛半径是____________ 11. 过直线 1 322 2 x z y --=+= -且平行于直线 1 1 3 0 2 3 x y z +-+= =的平面方程是 _________________ 12. 设),2ln(),(x y x y x f + =则__________ )0,1(' =y f 13. 设),arctan(xy z =则____________,__________ =??=??y z x z 14. 设,),(2 2 y x y x xy f +=+则=),(' y x f x ____________________

大学高等数学下考试题库(及答案)

一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a ρρρ ρρ??+=++-=2,2,则有( ). A.a ρ∥b ρ B.a ρ⊥b ρ C.3,π=b a ρρ D.4 ,π=b a ρρ 3.函数1 122 2 22-++ --= y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.( ){} 21,22<+p D.1≥p 8.幂级数∑∞ =1 n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞ =?? ? ??02在收敛域内的和函数是( ). A. x -11 B.x -22 C.x -12 D.x -21

10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 2 3 +--=xy xy y x z ,则 =???y x z 2_____________________________. 4. x +21 的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求 .,y z x z ???? 2.已知隐函数()y x z z ,=由方程052422 2 2 =-+-+-z x z y x 确定,求 .,y z x z ???? 3.计算 σd y x D ?? +2 2sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 5.求微分方程x e y y 23=-'在00 ==x y 条件下的特解. 四.应用题(10分?2)

高等数学下册期末考试试题附标准答案75561

高等数学(下册)期末考试试题 考试日期:2012年 院(系)别 班级 学号姓名 成绩 一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上) 1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ?=-4. 2、设ln()z x xy =,则32 z x y ?=??-(1/y2). 3、曲面2 2 9x y z ++=在点(1,2,4)处的切平面方程为 2 (x-1)+4(y-2)+z-4=0. 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于,在x π=处收敛于. 5、设L 为连接(1,0) 与(0,1)两点的直线段,则 ()L x y ds +=?√2. ※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分) 1、求曲线222 222 239 3x y z z x y ?++=??=+??在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及22 6z x y =--所围成的立体体积. 故所求的体积为V dv Ω =???22 2620 20 2(63)6d d dz d πρρθρπρρπ-==-=?? (7) 3、判定级数 1 1 (1) ln n n n n ∞ =+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z z x x y ?????.

大一下高数练习题

一、单项选择题(6×3分) 1、设直线,平面,那么与之间的夹角为 () A.0 B. C. D. 2、二元函数在点处的两个偏导数都存在是在点处可微的() A.充分条件 B.充分必要条件 C.必要条件 D.既非充分又非必要条件 3、设函数,则等于() A. B. C. D. 4、二次积分交换次序后为() A. B. C. D. 5、若幂级数在处收敛,则该级数在处() A.绝对收敛 B.条件收敛 C.发散 C.不能确定其敛散性

6、设是方程的一个解,若,则在处() A.某邻域内单调减少 B.取极小值 C.某邻域内单调增加 D.取极大值 二、填空题(7×3分) 1、设=(4,-3,4),=(2,2,1),则向量在上的投影 = 2、设,,那么 3、D为,时, 4、设是球面,则= 5、函数展开为的幂级数为 6、= 7、为通解的二阶线性常系数齐次微分方程为 三、计算题(4×7分) 1、设,其中具有二阶导数,且其一阶导数不为1,求。

2、求过曲线上一点(1,2,0)的切平面方程。 3、计算二重积分,其中 4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。 5、求级数的和。 四、综合题(10分) 曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。 五、证明题(6分) 设收敛,证明级数绝对收敛。 一、单项选择题(6×3分) 1、A 2、C 3、C 4、B 5、A 6、D 二、填空题(7×3分) 1、2 2、 3、 4 、

5、6、0 7、 三、计算题(5×9分) 1、解:令则,故 2、解:令 则 所以切平面的法向量为: 切平面方程为: 3、解:=== 4、解:令,则

高等数学下册试题及答案解析

高等数学下册试题及答案解析 一、填空题(每小题3分,共计24分) 1、 z = ) 0()(log 22>+a y x a 的定义域为D= . 2、二重积分?? ≤++1 ||||22)ln(y x dxdy y x 的符号为 . 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值 为 . 4、设曲线L 的参数方程表示为), ()()(βαψ?≤≤? ? ?==x t y t x 则弧长元素=ds . 5、设曲面∑为92 2 =+y x 介于0=z 及3=z 间的部分的外侧,则 = ++?? ∑ ds y x )122 ( . 6、微分方程x y x y dx dy tan +=的通解为 . 7、方程04) 4(=-y y 的通解为 . 8、级数∑ ∞ =+1)1(1n n n 的和为 . 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在) ,(00y x 处可微的充分条件是( ) (A )),(y x f 在) ,(00y x 处连续; (B ) ) ,(y x f x ', ) ,(y x f y '在 ) ,(00y x 的某邻域内存在; (C ) y y x f x y x f z y x ?'-?'-?),(),(0000当 0)()(2 2→?+?y x 时,是无穷小; (D )0)()(),(),(lim 2 200000 0=?+??'-?'-?→?→?y x y y x f x y x f z y x y x . 2、设 ), ()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A )y x +; (B )x ; (C)y ; (D)0 . 3、设Ω:,0,12 2 2 ≥≤++z z y x 则三重积分 ???Ω =zdV I 等于( ) (A )4 ???20 20 1 3cos sin π π ???θdr r d d ; (B ) ? ??20 1 2sin π π??θdr r d d ;

(完整版)《高等数学(下册)》第八章练习题及答案

《高等数学(下册)》第八章练习题 一、填空题 1.________________ )sin(==dz xy z 则, 设 2.设),cos(2y x z =,则 =??)2 ,1(π x z 3.函数22)(6y x y x z ---=的极值点为 4.设xy e z =,则=dz 5.设 y z ln z x =,则 =?zx z 二、选择题 ) 2 0( D. )0 2( C. )0 0( B. )2 2( A.) (33) ( 12233,,,,的极小值点为,函数、y x y x y x f --+= 2、),(y x f 在点),(00y x 处偏导数),(),(0000y x f y x f y x ''、存在是),(y x f 在该点连续的( ). (a)充分条件, (b)必要条件, (c)充要条件, (d)既非充分条件又非必要条件。 3、设)2ln(),(x y x y x f + =,则=())1,1(-' x f . (A ),31 (B ),31- (C ),65 (D ).65- 三、计算题 方程。处的切线方程与法平面,,在点求曲线、)1 2 1( 2 13 2 ???==x z x y 2、设),(y x z z =是由方程0),(=--z y z x F 确定的隐函数,F 具有一阶连续偏导数,且,0≠'+'v u F F 其中,,z y v z x u -=-=求 .,y z x z ???? 3、求曲面3222-=+-z xz y x 在点)1,2,1(处的切平面及法线方程。 4、设,2 22 z y x e u ++=而y x z sin 2=,求 x u ??. 5、求曲线t z e y e x t t ===-,,,对应于0=t 点处的切线和法平面方程。 6、求函数)4(2y x y x z --=在闭域4,0,0≤+≥≥y x y x 上的最大值及最小值。

相关文档
最新文档