数据结构实验三后缀表达式的计算

数据结构实验三后缀表达式的计算
数据结构实验三后缀表达式的计算

实验三后缀表达式的计算

实验目的:

熟练掌握栈和队列的存储结构设计及基本操作的实现;学会分析实际问题中具有栈特点的数据结构;了解表达式的前缀、中缀、后缀等计算机内表示形式。

实验内容与要求:

按常规形式输入算术表达式(例如:输入2*(6-4)+8/4),要求能够:

(1)生成表达式的后缀表示,并输出;

(2)生成表达式的前缀表示,并输出;

(3)基于表达式的后缀表示,对该表达式求值;

(4)编写一个主程序对表达式求值函数进行测试。

算法设计:

#include

#include

#include

#define ERROR 0

#define OK 1

#define N 50

#define STACK_INT_SIZE 10 //存储空间初始分配量

#define Queue_Size 20

typedef int ElemType; //定义元素的类型typedef struct

{

char Qdata[Queue_Size];

int front,rear;

}SeqQueue;

typedef struct

{

ElemType *base;

ElemType *top;

int stacksize; //当前已分配的存储空间

}SqStack;

SqStack OPTR, OPND;

SeqQueue SeQ;

char PreTab[7][7]={

{'>','>','<','<','<','>','>'},

{'>','>','<','<','<','>','>'},

{'>','>','>','>','<','>','>'},

{'>','>','>','>','<','>','>'},

{'<','<','<','<','<','=','x'},

{'>','>','>','>','x','>','>'},

{'<','<','<','<','<','x','='}

}; //该矩阵中,X字符表示不存在优先关系,在分析过程查找到这个值,表示表达式有错。

char *OpretorS="+-*/()#"; //运算符集char *Express="2*(6-4)+8/4"; //初始化的表达式

int InitStack(SqStack *S); //构造空栈

int push(SqStack *S,ElemType *e); //入

int Pop(SqStack *S); //出栈

void initQueue(SeqQueue *Q) //队列初

始化

{

Q->front=0;

Q->rear=0;

}

int EnterQueue(SeqQueue *Q,char c) //入队

{

if (Q->rear==Queue_Size)

{

printf("\n队列满,无法入队!\n");

return ERROR;

}

Q->Qdata[Q->rear]=c;

Q->rear++;

return OK;

}

int OutQueue(SeqQueue *Q,char *e) //出队

{

if(Q->front==Q->rear)

{

printf("\n队列空,无法出队!\n");

return ERROR;

}

*e=Q->Qdata[Q->front++];

return OK;

}

int InitStack(SqStack *S)

{

S->base=(ElemType

*)malloc(STACK_INT_SIZE

*sizeof(ElemType));

if(!S->base) return ERROR;

S->top=S->base;

S->stacksize=STACK_INT_SIZE;

return OK;

}

int Push(SqStack *S,ElemType e)

{

if ((S->top-S->base)>STACK_INT_SIZE) return 0;

*S->top=e;

S->top++;

return OK;

}

int Pop(SqStack *S)

{

int e;

if (S->top==S->base) return 0;

S->top--;

e=*S->top;

return *S->top;

} //判定c是否运算符,若是运算符则返回改运算符在运算符集中的位置

int IsOps(char c)

{

int i=0;

char *p;

p=OpretorS;

while(i<7)

{

if (*p++==c) break;

i++;

}

return i;

} char Precede(char c1,char c2) //返回c1与c2运算符的优先关系

{

int i,j;

i=IsOps(c1);

j=IsOps(c2);

if ( PreTab[i][j]=='x') return 0;

return PreTab[i][j];

}

int Operate(int a,char TheOp,int b) //进行TheOp计算

{

switch(TheOp)

{

case'+':return a+b;

case'-':return a-b;

case'*':return a*b;

case'/':return a/b;

}

return 0;

}

int f(char c) //判断运算符级别函数

{

int f=-1;

switch(c)

{

case'+':

case'-':f=1;break;

case'*':

case'/':f=2;break;

default:f=0;break;

}

return f;

}

int Operator(char c) //判断字符是否为操作符

{

if(c=='+'||c=='-'||c=='*'||c=='/') return 1;

else return 0;

}

void convert(char s[N]) //将中缀表达式转化为前缀表达式

{

char p[N],stack[N];

int top=0,j=0, len=0;

if(s[0]==')')

{

printf("算术表达式错误!");

printf("\n");

}

else

{

while(s[len]!='\0')

{

len++;

}

for(int i=len-1;i>=0;)

{

if(s[i]>=48&&s[i]<=57)

{

p[j]=s[i];

j++;

}

if(s[i]==')') //假如是回括号,将它压栈。

{

top++;

stack[top]=s[i];

}

while(Operator(s[i]))

{

if(top==0||stack[top]==')'||f(s[i])>=f(stack[top] ))

{

top++;

stack[top]=s[i];break;

}

else

{

p[j]=stack[top];

top--;j++;

}

}

if(s[i]=='(') //假如是开括号,栈中运算符逐个出栈并输出,直到遇到闭括号。闭括号出栈并丢弃。

{

while(stack[top]!=')')

{

p[j]=stack[top];

top--;j++;

}

top--;

}

i--;

}

while(top!=0) //假如输入完毕,栈中剩余的所有操作符出栈并加到输入中

{

p[j]=stack[top];

j++;

top--;

}

p[j]='\0';

printf("\n前缀表达式为: ");

for(;j>=0;j--)

printf("%c",p[j]);

printf("\n");

}

}

int main()

{

char *ScanChar;

char c1,c;

char TheOp;

int b,a,digit;

InitStack(&OPTR);

Push(&OPTR,'#');

InitStack(&OPND);

initQueue(&SeQ);

ScanChar=Express;

c=*ScanChar;

while(c!='#'||*OPTR.top!='#')

{

if (c==0) c='#';

if (IsOps(c)>=7) //判定是否是运算符,若IsOps的值>=7,则c是操作数{

digit=c-'0'; //将字符转换

成相应的数值

Push(&OPND,digit); //操

作数入栈

EnterQueue(&SeQ,c); //操作数入队

c=*++ScanChar;

}

else

{

c1=*(OPTR.top-1);

switch(Precede(c1,c)) //调用哪个函数

{

case'<':Push(&OPTR,c);

c=*++ScanChar;break;

case'=':TheOp=Pop(&OPTR);

if(c!=0&&c!='#')

c=*++ScanChar;break; //脱括号

case'>':TheOp=Pop

(&OPTR ); //参与计算的运算符出栈

EnterQueue(&SeQ,TheOp); //参与运算的运算符入队

b=Pop(&OPND);a=Pop(&OPND);

Push(&OPND,Operate(a,TheOp,b));break;

default:printf("\n算术表达式错误!\n");

return ERROR;

}

}

}

printf("算术表达式为:%s \n后缀表达式为:",Express);

while(SeQ.rear-SeQ.front!=0) //将队列输出即为表达式的后缀形式

{

OutQueue(&SeQ,&c);

printf("%c",c);

}

convert(Express);

printf("其结果为:%d\n",Pop(&OPND)); //输出表达式的值

return 0;

}

实验结果:

数据结构课程实验指导书

数据结构实验指导书 一、实验目的 《数据结构》是计算机学科一门重要的专业基础课程,也是计算机学科的一门核心课程。本课程较为系统地论述了软件设计中常用的数据结构以及相应的存储结构与实现算法,并做了相应的性能分析和比较,课程内容丰富,理论系统。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: 1)理论艰深,方法灵活,给学习带来困难; 2)内容丰富,涉及的知识较多,学习有一定的难度; 3)侧重于知识的实际应用,要求学生有较好的思维以及较强的分析和解决问题的能力,因而加大了学习的难度; 根据《数据结构》课程本身的特性,通过实验实践内容的训练,突出构造性思维训练的特征,目的是提高学生分析问题,组织数据及设计大型软件的能力。 课程上机实验的目的,不仅仅是验证教材和讲课的内容,检查自己所编的程序是否正确,课程安排的上机实验的目的可以概括为如下几个方面: (1)加深对课堂讲授内容的理解 实验是对学生的一种全面综合训练。是与课堂听讲、自学和练习相辅相成的必不可少的一个教学环节。通常,实验题中的问题比平时的习题复杂得多,也更接近实际。实验着眼于原理与应用的结合点,使学生学会如何把书上学到的知识用于解决实际问题,培养软件工作所需要的动手能力;另一方面,能使书上的知识变" 活" ,起到深化理解和灵活掌握教学内容的目的。 不少学生在解答习题尤其是算法设计时,觉得无从下手。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出

现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 (2) 培养学生软件设计的综合能力 平时的练习较偏重于如何编写功能单一的" 小" 算法,而实验题是软件设计的综合训练,包括问题分析、总体结构设计、用户界面设计、程序设计基本技能和技巧,多人合作,以至一整套软件工作规范的训练和科学作风的培养。 通过实验使学生不仅能够深化理解教学内容,进一步提高灵活运用数据结构、算法和程序设计技术的能力,而且可以在需求分析、总体结构设计、算法设计、程序设计、上机操作及程序调试等基本技能方面受到综合训练。实验着眼于原理与应用的结合点,使学生学会如何把书本上和课堂上学到的知识用于解决实际问题,从而培养计算机软件工作所需要的动手能力。 (3) 熟悉程序开发环境,学习上机调试程序一个程序从编辑,编译,连接到运行,都要在一定的外部操作环境下才能进行。所谓" 环境" 就是所用的计算机系统硬件,软件条件,只有学会使用这些环境,才能进行 程序开发工作。通过上机实验,熟练地掌握程序的开发环境,为以后真正编写计算机程序解决实际问题打下基础。同时,在今后遇到其它开发环境时就会触类旁通,很快掌握新系统的使用。 完成程序的编写,决不意味着万事大吉。你认为万无一失的程序,实际上机运行时可能不断出现麻烦。如编译程序检测出一大堆语法错误。有时程序本身不存在语法错误,也能够顺利运行,但是运行结果显然是错误的。开发环境所提供的编译系统无法发现这种程序逻辑错误,只能靠自己的上机经验分析判断错误所在。程序的调试是一个技巧性很强的工作,尽快掌握程序调试方法是非常重要的。分析问题,选择算法,编好程序,只能说完成一半工作,另一半工作就是调试程序,运行程序并得到正确结果。 二、实验要求 常用的软件开发方法,是将软件开发过程划分为分析、设计、实现和维护四个阶段。虽然数据结构课程中的实验题目的远不如从实际问题中的复杂程度度高,但为了培养一个软件工作者所应具备的科学工作的方法和作风,也应遵循以下五个步骤来完成实验题目: 1) 问题分析和任务定义 在进行设计之前,首先应该充分地分析和理解问题,明确问题要求做什么?限制条件是什么。本步骤强调的是做什么?而不是怎么做。对问题的描述应避开算法和所涉及的数据类型,而是对所需完成的任务作出明确的回答。例如:输入数据的类型、值的范围以及输入的

后缀表达式求值

一、设计思想 首先,将中缀表达式转换为后缀表达式。转换算法思路:设中缀表达式已存入数组E[n];由于后缀表达式中操作数的次序与中缀表达式一致,故扫描到中缀表达式操作数时直接输出到B[n]即可;对于运算符,视其优先级别,优先级高的运算符先输出;设一存放运算符的栈s,先将s置空;依次扫描E[n]中各分量E[i]送x: 若x=“”(结束符),依次输出栈s中运算符,转换结束; 若x=操作数,直接输出x到B[n]中; 若x=‘)’,反复退栈输出栈s中子表达式运算符,直到栈顶符=‘(’,并退掉栈顶的‘(’; 若x=操作符,反复退栈输出栈s中运算符,直到栈顶符

三、源代码 下面给出的是用后缀表达式求值算法实现的程序的源代码: #include #include #define MaxSize 50 struct { char data[MaxSize]; int top; } op;//定义栈; struct { float data[MaxSize]; int top; } st; //中缀转换为后缀 void trans(char*exp,char*postexp) { int i=0; op.top=-1; while(*exp!='\0') { switch(*exp) { case'(': op.top++;op.data[op.top]=*exp; exp++;break; case')': while(op.data[op.top]!='(') { postexp[i++]=op.data[op.top]; op.top--; } op.top--;exp++;break; case'+': case'-': while(op.top!=-1&&op.data[op.top]!='(') { postexp[i++]=op.data[op.top]; op.top--; }

数据结构习题(456章)

第四章串 一.选择题 1.若串S='software',其子串的数目是() A.8 B.37 C.36 D.9 2.设有两个串p和q,求q在p中首次出现的位置的运算称作() A.连接B.模式匹配C.求串长D.求子串 3.设字符串S1=“ABCDEFG”,S2=“PQRST”,则运算: S=CONCAT(SUBSTR(S1,2,LEN(S2));SUBSTR(S1,LEN(S2),2));后的串值为() A.A BCDEF B.BCDEFG C.BCDPQRST D. BCDEFEF 4.下面的说法中,只有()是正确的 A.串是一种特殊的线性表B.串的长度必须大于零 C.串中元素只能是字母D.空串就是空白串 5.两个字符串相等的条件是() A.两串的长度相等 B.两串包含的字符相同 C.两串的长度相等,并且两串包含的字符相同 D.两串的长度相等,并且对应位置上的字符相同 二.填空题 1.串“ababcbaababd”的next函数值为,nextval函数值为。2.子串的长度为。 第五章数组和广义表 一.选择题 1.设有数组A[i,j],数组的每个元素长度为3字节,i的值为1 到8 ,j的值为1 到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为( ) A. BA+141 B. BA+180 C. BA+222 D. BA+225 2.假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=() A. 808 B. 818 C. 1010 D. 1020 3.对稀疏矩阵进行压缩存储目的是() A.便于进行矩阵运算B.便于输入和输出C.节省存储空间D.降低运算的时间复杂度 4.假设以三元组表表示稀疏矩阵,则与如图所示三元组表对应的4×5的稀疏矩阵是(注:矩阵的行列下标均从1开始)()

数据结构实验报告代码

线性表 代码一 #include "stdio.h" #include "malloc.h" #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define LIST_INIT_SIZE 100 #define LISTINCREMENT 10 typedef struct { int * elem; int length; int listsize; }SqList; int InitList_Sq(SqList *L) { L->elem = (int*)malloc(LIST_INIT_SIZE*sizeof(int)); if (!L->elem) return ERROR; L->length = 0; L->listsize = LIST_INIT_SIZE; return OK; } int ListInsert_Sq(SqList *L, int i,int e) { int *p,*newbase,*q; if (i < 1 || i > L->length+1) return ERROR; if (L->length >= L->listsize) { newbase = (int *)realloc(L->elem,(L->listsize+LISTINCREMENT)*sizeof (int)); if (!newbase) return ERROR; L->elem = newbase; L->listsize += LISTINCREMENT; } q = &(L->elem[i-1]); //插入后元素后移for(p=&(L->elem[L->length-1]);p>=q;p--) *(p+1)=*p; *q=e; L->length++; return OK; } int ListDelete_Sq(SqList *L, int i, int *e) {

(完整版)数学表达式计算(c语言实现)

一、设计思想 计算算术表达式可以用两种方法实现: 1.中缀转后缀算法 此算法分两步实现:先将算术表达式转换为后缀表达式,然后对后缀表达式进行计算。具体实现方法如下: (1)中缀转后缀 需要建一个操作符栈op和一个字符数组exp,op栈存放操作符,字符数组用来存放转换以后的后缀表达式。首先,得到用户输入的中缀表达式,将其存入str数组中。 对str数组逐个扫描,如果是数字或小数点,则直接存入exp数组中,当扫描完数值后,在后面加一个#作为分隔符。 如果是操作符,并且栈为空直接入栈,如果栈不为空,与栈顶操作符比较优先等级,若比栈顶优先级高,入栈;如果比栈顶优先级低或相等,出栈将其操作符存到exp数组中,直到栈顶元素优先等级低于扫描的操作符,则此操作符入栈;如果是左括号,直接入栈,如果是右括号,出栈存入exp数组,直到遇到左括号,左括号丢掉。然后继续扫描下一个字符,直到遇到str中的结束符号\0,扫描结束。结束后看op栈是否为空,若不为空,继续出栈存入exp数组中,直到栈为空。到此在exp数组最后加结束字符\0。 我们就得到了后缀表达式。 (2)后缀表达式计算 此时需要一个数值栈od来存放数值。对exp数组进行逐个扫描,当遇到数字或小数点时,截取数值子串将其转换成double类型的小数,存入od栈中。当遇到操作符,从栈中取出两个数,进行计算后再放入栈中。继续扫描,知道扫描结束,此时值栈中的数值就是计算的结果,取出返回计算结果。 2.两个栈实现算法 此算法需要两个栈,一个值栈od,一个操作符栈op。将用户输入的数学表达式存入str数组中,对其数组进行逐个扫描。 当遇到数字或小数点,截取数值子串,将其转换成double类型的数值存入od栈中; 当遇到左括号,直接入op栈;遇到右括号,op栈出栈,再从值栈od中取出两个数值,计算将其结果存入值栈中,一直进行此操作,直到操作符栈栈顶为左括号,将左括号丢掉。 如果遇到操作符,若op栈为空,直接入栈;若栈不为空,与栈顶元素比较优先等级,若比栈顶操作符优先等级高,直接入op栈,如果低于或等于栈顶优先等级,op栈出栈,再从值栈中取出两个数值,计算将其结果存入值栈中,一直进行此操作,直到栈顶优先等级低于扫描的操作符等级,将此操作符入op栈。继续扫描直到遇到str中的结束字符\0,扫描结束。此时看操作符栈是否为空,若不为空,出栈,再从值栈中取出两个数值进行计算,将其结果存入值栈,一直进行此操作,直到操作符栈为空。此时把值栈中的数值取出,即为所得的最终计算结果。 二、算法流程图 第一种算法:中缀转后缀算法

数据结构实验8实验报告

暨南大学本科实验报告专用纸 课程名称数据结构实验成绩评定 实验项目名称习题6.37 6.38 6.39 指导教师孙世良 实验项目编号实验8 实验项目类型实验地点实验楼三楼机房学生姓名林炜哲学号2013053005 学院电气信息学院系专业软件工程 实验时间年月日午~月日午温度℃湿度(一)实验目的 熟悉和理解二叉树的结构特性; 熟悉二叉树的各种存储结构的特点及适用范围; 掌握遍历二叉树的各种操作及其实现方式。 理解二叉树线索化的实质是建立结点与其在相应序列中的前去或后继之间的直接联系,熟练掌握二叉树的线索化的过程以及在中序线索化树上找给定结点的前驱和后继的方法。 (二)实验内容和要求 6.37试利用栈的基本操作写出先序遍历的非递归形式的算法。 6.38同题6.37条件,写出后序遍历的非递归算法(提示:为分辨后序遍 历时两次进栈的不同返回点需在指针进栈时同时将一个标志进栈)。 6.39假设在二叉链表的结点中增设两个域:双亲域以指示其双亲结点; 标志域以区分在遍历过程中到达该结点时应继续向左或向右或访问该节点。试以此存储结构编写不用栈进行后序遍历的递推形式的算法。(三)主要仪器设备 实验环境:Microsoft Visual Studio 2012 (四)源程序

6.37: #include #include #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 #define TRUE 1 #define FALSE 0 typedef struct bitnode{ char data; struct bitnode *lchild,*rchild; }bitnode,*bitree; void create(bitree &T){ char t; t=getchar(); if(t==' ') T=NULL; else{ if( !( T=(bitnode*)malloc(sizeof(bitnode)) ) ) exit(0); T->data=t; create(T->lchild); create(T->rchild); } } typedef struct{ bitree *base; bitree *top; int stacksize; }sqstack; void initstack(sqstack &S){ S.base=(bitree*)malloc(STACK_INIT_SIZE *sizeof(bitree)); if(!S.base) exit(0); S.top=S.base; S.stacksize=STACK_INIT_SIZE; } void Push(sqstack &s,bitree e){ if(s.top - s.base >= s.stacksize){ s.base =

数据结构实验一的源代码

#include #include typedef struct Node { int key;//密码 int num;//编号 struct Node *next;//指向下一个节点 } Node, *Link; void InitList(Link &L) //创建一个空的链表{ L = (Node *)malloc(sizeof(Node)); if (!L) exit(1); L->key = 0; L->num = 0; L->next = L; } void Creatlinklist(int n, Link &L) //初始化链表{ Link p, q; q = L; for (int i = 1; i <= n; i++) { p = (Node *)malloc(sizeof(Node)); if (!p) exit(1); scanf("%d", &p->key); p->num = i; L->next = p; L = p; } L->next = q->next; free(q); } Link Locate_m(Link &p, int m)//找到第m个 { Link q; for (int j = 1; jnext; q = p->next; m = q->key;

return q; } void Delete_m(Link &L, Link p, Link q)//删除第m个{ p->next = q->next; free(q); } void main() { Link L, p, q; int n, m; L = NULL; InitList(L);//构造出一个只有头结点的空链表 printf("请输入初始密码人数每个人的密码:\n"); scanf("%d", &m);//初始密码为m scanf("%d", &n);// Creatlinklist(n, L);//构建 p = L; for (int i = 1; i <= n; i++) { q = Locate_m(p, m);//找到第m个 printf("%d", q->num); Delete_m(L, p, q);//删除第m个 } system("pause"); }

C语言 后缀表达式计算

一、设计思想 计算算数表达式并求值,采取的共有两种方法: 1.先将算数表达式转化为后缀表达式,然后对后缀表达式进行计算。 2.对算数表达式进行直接的计算。 第一种算法 这种解决方案又分为两步: 1.将表达式先转化为后缀表达式的字符串数组 2.利用后缀表达式进行计算 在转化过程中,第一,建立一个存符号的栈,和一个字符串数组,用来存放转化以后的表达式 然后,对于得到的用户输入的字符串进行逐个的扫描,如果是数组或者小数点,则直接存放到数组中,并且在后面加入一个分隔符,如果是操作符,则和栈中的已存的进行比较,如果比栈中的操作符的优先级高,则直接入栈,如果优先级低或相等,则栈中元素出栈,存到字符串中,然后再次检查栈顶,直到栈中元素的优先级低于扫描操作符,则此操作符入栈,然后扫描下一个字符,直到遇到字符串的结束符号\0,扫描结束。数组中存的就是后缀表达式。得到后缀表达式后,进行计算,要用到数值栈。首先要将字符表示的数字转化为浮点小数,然后进行扫描,遇到数值,放入栈中,遇到操作符,就从栈中取出两个数,进行计算后再放入栈中,扫描下一个,最后的计算结果就存到了栈中,直接取出栈内元素,就是计算的最后结果。 第二种算发 首先要建立两个栈,一个用来存放操作符,一个用来存放数值。开始对用户输入的字符串进行扫描,如果是数字字符或者小数点,则将字符转化为浮点数存到数栈里,如果是操作符,则观察符号栈,如果栈顶元素的优先级低于观察的操作符,则操作符入栈,如果栈顶元素的优先级高于或者等于观察的操作符,则从数值栈中取出两个浮点数,从符号栈中取出栈顶的操作符,然后进行相应的数值计算,所得的结果再存到数值栈中,重复这样的操作,直到符号栈中栈顶元素的优先级低于观察的操作符,则此操作符入栈,然后对下一个字符进行扫描。如果是左括号,则不进行优先级的比较,直接入栈,入栈后优先级为-1。如果是右括号,则从数值栈中取两个操作数,符号栈中取出一个符号,然后进行计算后得数放入数栈中,不断进行此类操作,直到从栈中取出的是左括号为止,左括号去掉,扫描下一个。扫描结束后,计算也结束了,计算的结果就存放在数值栈中,最后把数值栈中的数取出,就是所得的计算结果。 容错的算法简要: 括号匹配:当扫描到左括号是,左括号直接入栈,扫描到右括号时,则左括号出栈,如果栈为空,则右括号多,如果最后栈中还有括号,则左括号多。给出错误提示。 除数不为0:当扫描到'/'时,就判断其后面的数字是否为0,如果为0报错。 取余运算:取余运算时,操作数判断是否为整数,不为整数报错。 二、算法流程图 第一种算法:先将表达式转化为后缀表达式,然后计算 其主函数流程图为:

数据结构实验报告(四)

《数据结构》实验报告 班级: 学号: 姓名:

实验四二叉树的基本操作实验环境:Visual C++ 实验目的: 1、掌握二叉树的二叉链式存储结构; 2、掌握二叉树的建立,遍历等操作。 实验内容: 通过完全前序序列创建一棵二叉树,完成如下功能: 1)输出二叉树的前序遍历序列; 2)输出二叉树的中序遍历序列; 3)输出二叉树的后序遍历序列; 4)统计二叉树的结点总数; 5)统计二叉树中叶子结点的个数; 实验提示: //二叉树的二叉链式存储表示 typedef char TElemType; typedef struct BiTNode{ TElemType data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree;

一、程序源代码 #include #include #define MAXSIZE 30 typedef char ElemType; typedef struct TNode *BiTree; struct TNode { char data; BiTree lchild; BiTree rchild; }; int IsEmpty_BiTree(BiTree *T) { if(*T == NULL) return 1; else return 0;

} void Create_BiTree(BiTree *T){ char ch; ch = getchar(); //当输入的是"#"时,认为该子树为空 if(ch == '#') *T = NULL; //创建树结点 else{ *T = (BiTree)malloc(sizeof(struct TNode)); (*T)->data = ch; //生成树结点 //生成左子树 Create_BiTree(&(*T)->lchild); //生成右子树 Create_BiTree(&(*T)->rchild); } } void TraverseBiTree(BiTree T) { //先序遍历 if(T == NULL) return;

数据结构实验程序

顺序表的基本操作 #include using namespace std; typedef int datatype; #define maxsize 1024 #define NULL -1 typedef struct { datatype *data; int last; }sequenlist; void SETNULL(sequenlist &L) { L.data=new datatype[maxsize]; for(int i=0;i>https://www.360docs.net/doc/9e9710241.html,st; cout<<"请输入"<>L.data[i]; } int LENGTH(sequenlist &L) { int i=0; while(L.data[i]!=NULL) i++; return i; } datatype GET(sequenlist &L,int i) { if(i<1||i>https://www.360docs.net/doc/9e9710241.html,st) { cout<<"error1"<

int j=0; while(L.data[j]!=x) j++; if(j==https://www.360docs.net/doc/9e9710241.html,st) { cout<<"所查找值不存在!"<=maxsize-1) { cout<<"overflow"; return NULL; } else if(i<1||(i>https://www.360docs.net/doc/9e9710241.html,st)) { cout<<"error2"<=i-1;j--) L.data[j+1]=L.data[j]; L.data[i-1]=x; https://www.360docs.net/doc/9e9710241.html,st++; } return 1; } int DELETE(sequenlist &L,int i) { int j; if((i<1)||(i>https://www.360docs.net/doc/9e9710241.html,st+1)) { cout<<"error3"<

后缀表达式求值的算法及代码

#include #include struct node // 栈结构声明 { int data; // 数据域 struct node *next; // 指针域 }; typedef struct node stacklist; // 链表类型 typedef stacklist *link; // 链表指针类型 link operand=NULL; // 操作数栈指针 link push(link stack,int value) // 进栈 { link newnode; // 新结点指针 newnode=new stacklist; // 分配新结点 if (!newnode) { printf("分配失败!"); return NULL; } newnode->data=value; // 创建结点的内容 newnode->next=stack; stack=newnode; // 新结点成为栈的开始return stack; } link pop(link stack,int *value) // 出栈 { link top; // 指向栈顶 if (stack !=NULL) { top=stack; // 指向栈顶 stack=stack->next; // 移动栈顶指针 *value=top->data; // 取数据 delete top; // 吸收结点 return stack; // 返回栈顶指针} else *value=-1; } int empty(link stack) // 判栈空 { if (stack!=NULL)

数据结构实验二叉树

实验六:二叉树及其应用 一、实验目的 树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。 二、问题描述 首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。 如算术表达式:a+b*(c-d)-e/f 三、实验要求 如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。求二叉树的深度。十进制的四则运算的计算器可以接收用户来自键盘的输入。由输入的表达式字符串动态生成算术表达式所对应的二叉树。自动完成求值运算和输出结果。四、实验环境 PC微机 DOS操作系统或 Windows 操作系统 Turbo C 程序集成环境或 Visual C++ 程序集成环境 五、实验步骤 1、根据二叉树的各种存储结构建立二叉树; 2、设计求叶子结点个数算法和树的深度算法; 3、根据表达式建立相应的二叉树,生成表达式树的模块; 4、根据表达式树,求出表达式值,生成求值模块; 5、程序运行效果,测试数据分析算法。 六、测试数据 1、输入数据:*(+)3 正确结果: 2、输入数据:(1+2)*3+(5+6*7);

正确输出:56 七、表达式求值 由于表达式求值算法较为复杂,所以单独列出来加以分析: 1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。 例如有如下的中缀表达式: a+b-c 转换成后缀表达式为: ab+c- 然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。当然将原始的中缀表达式转换为后缀表达式比较关键,要同时考虑操作符的优先级以及对有括号的情况下的处理,相关内容会在算法具体实现中详细讨论。 2、求值过程 一、将原始的中缀表达式中的操作数、操作符以及括号按顺序分解出来,并以字符串的 形式保存。 二、将分解的中缀表达式转换为后缀表达式的形式,即调整各项字符串的顺序,并将括 号处理掉。 三、计算后缀表达式的值。 3、中缀表达式分解 DivideExpressionToItem()函数。分解出原始中缀表达式中的操作数、操作符以及括号,保存在队列中,以本实验中的数据为例,分解完成后队列中的保存顺序如下图所示:

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include >验目的 掌握顺序栈的基本操作:初始化栈、判栈空否、入栈、出栈、取栈顶数据元素等运算以及程序实现方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)分析问题的要求,编写和调试完成程序。 (3)保存和打印出程序的运行结果,并分析程序的运行结果。 3.实验内容 利用栈的基本操作实现一个判断算术表达式中包含圆括号、方括号是否正确配对的程序。具体完成如下:

(1)定义栈的顺序存取结构。 (2)分别定义顺序栈的基本操作(初始化栈、判栈空否、入栈、出栈等)。 (3)定义一个函数用来判断算术表达式中包含圆括号、方括号是否正确配对。其中,括号配对共有四种情况:左右括号配对次序不正确;右括号多于左括号;左括号多于右括号;左右括号匹配正确。 (4)设计一个测试主函数进行测试。 (5)对程序的运行结果进行分析。 实验代码: #include < > #define MaxSize 100 typedef struct { ??? int data[MaxSize]; ??? int top; }SqStack; void InitStack(SqStack *st) 验目的 (1)进一步掌握指针变量的用途和程序设计方法。 (2)掌握二叉树的结构特征,以及链式存储结构的特点及程序设计方法。 (3)掌握构造二叉树的基本方法。 (4)掌握二叉树遍历算法的设计方法。 3.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)掌握一个实际二叉树的创建方法。 (3)掌握二叉链存储结构下二叉树操作的设计方法和遍历操作设计方法。 4.实验内容 (1)定义二叉链存储结构。

后缀表达式转化为前缀表达式并求值

#include #include #include #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 #define OK 1 #define OVERFLOW -2 #define ERROR 0 #define TRUE 1 #define FALSE 0 typedef int Selemtype; typedef int Status; #define MAX 50 char string1[MAX]; //定义两个字符串分别存放中缀表达式和后缀表达式char string2[MAX]; int result; typedef struct { Selemtype *base; //在构造之前和销毁之后,base的值为NULL Selemtype *top; //栈顶指针 int stacksize; //当前分配的存储空间,以元素为单位 }SqStack; Status InitStack(SqStack *S); Status Push(SqStack *S,Selemtype e); Status Pop(SqStack *S,Selemtype e); Status InitStack(SqStack *S) { //构造一个空栈S S->base=(Selemtype*)malloc(STACK_INIT_SIZE*sizeof(Selemtype)); if(!S->base) return OVERFLOW; //存储分配失败 S->top=S->base; S->stacksize=STACK_INIT_SIZE; return OK; } Status Push(SqStack *S,Selemtype e) { //插入元素e为新的栈顶元素 if(S->top-S->base>=S->stacksize)

数据结构上机实验线性表单链表源代码

#include template class LinearList { public: virtual bool IsEmpty()const=0; virtual int Length()const=0; virtual bool Find(int i,T& x)const=0; virtual int Search(T x)const=0; virtual bool Insert(int i,T x)=0; virtual bool Update(int i,T x)=0; virtual bool Delete(int i)=0; virtual void Output(ostream& out)const=0; protected: int n; }; #include "linearlist" template class SeqList:public LinearLisr { public: SeqList(int mSize); ~SeqList(){delete [] elements;} bool IsEmpty()const; bool Find(int i,T& x)const; int Length()const; int Search(T x)const; bool Insert(int i,T x); bool Update(int i,T x); bool Delete(int i); void Output(ostream& out)const; private: int maxLength; T *elements; }; template SeqList::SeqList(int mSize) { maxLength=mSize;

数据结构计算器(包括中缀转换后缀)课程设计报告

课程设计报告 题目:计算表达式的值 1.问题描述 对于给定的一个表达式,表达式中可以包括常数、算术运行符(“+”、“-”、“*”、“/”)和括号,编写程序计算表达式的值。 基本要求:从键盘输入一个正确的中缀表达式,将中缀表达式转换为对应的后缀表达式,并计算后缀表达式的值。对于表达式中的简单错误,能够给出提示,并给出错误信息;表达式中可以包括单个字母表示的变量。 测试数据:任意选取一个符合题目要求的表达式。 提高要求:(1)能够处理多种操作符。 (2)实现包含简单运算的计算器。 (3)实现一个包含简单运算和函数运算的计算器。 2.需求分析 (1)软件的基本功能 本软件实在win32工程下实现的带有界面和图标的功能较为齐全的计算器。 此计算器分三个方面进行计算,分别为数值表达式的计算,字母表达式的计算和函数计算。可由键盘或用鼠标点击按键输入带有数字或字母的中缀表达式,程序可以将输入的带有数字或字母的中缀表达式转换成对应的后缀表达式,并计算只含有数字的后缀表达式的值。本软件支持含小数、多位数等多种操作数的处理,可以计算含加、减、乘、除、百分号、求余、求幂,求阶乘,求三角函数的值等多种运算符和函数的表达式 (2)输入/输出形式 用户可通过打开图标弹出来的计算器界面任意点击操作。对于在输入时发生的简单错误,软件通过弹出对话框给出提示并且在提示错误的同时自动将用户的出错输入略去转化成正确的表达式进行计算,用户也可选择清楚操作然后重新输入a.对于数值和函数表达式软件会输出其表达式的后缀表达式和计算结果并保留六位小数; b.对于字母表达式因字母无法进行数值运算,软件仅输出其后缀表达式的值;清楚按钮可以清楚有已经输入或输出的数据从头计算; 软件窗口可实现最小化。并且输入编辑框可进行修改,复制,粘贴等操作,但后缀表达式和求值结果的编辑框中的内容不可修改,只能执行复制操作。

后缀表达式的计算

#include #include #include #include using namespace std; int priority(char op) //运算符的优先级 { switch(op) { case '(': return 0; break; case '+': case '-': return 1; break; case '*': case '/': return 2; break; default: return -1; break; } } bool IsOperator(char op) //是否为运算符 { if (op == '+' || op == '-' || op == '*' || op == '/') { return true; } return false; } void inTOpost(char s[],vector &v) //转为后缀表达式{ stack stk; int i = 0,len = strlen(s); while(i < len) { if(s[i] >= '0' && s[i] <= '9') {

v.push_back(s[i]); v.push_back(' '); } else if (s[i] == '(') { stk.push(s[i]); } else if (s[i] == ')') { while(stk.top() != '(') { v.push_back(stk.top()); v.push_back(' '); stk.pop(); } stk.pop(); } else if (IsOperator(s[i])) { if (!stk.empty()) { while(!stk.empty() && priority(s[i]) <= priority(stk.top())) { v.push_back(stk.top()); v.push_back(' '); stk.pop(); } } stk.push(s[i]); } i++; } while(!stk.empty()) { v.push_back(stk.top()); v.push_back(' '); stk.pop(); } } bool compute(vector s,int &res) //计算后缀表达式的值 { int i = 0,num; int len = s.size();

数据结构实验三实验报告

三题目:哈夫曼编/译码器 班级:姓名:学号:完成日期:15.11.14 一、题目要求 描述:写一个哈夫曼码的编/译码系统,要求能对要传输的报文进行编码和解码。构造哈夫曼树时,权值小的放左子树,权值大的放右子树,编码时右子树编码为1,左子树编码为0. 输入:输入表示字符集大小为n(n <= 100)的正整数,以及n个字符和n个权值(正整数,值越大表示该字符出现的概率越大); 输入串长小于或等于100的目标报文。 输出:经过编码后的二进制码,占一行; 以及对应解码后的报文,占一行; 最后输出一个回车符。 输入样例: 5 a b c d e 12 40 15 8 25 bbbaddeccbbb 输出样例: 00011111110111010110110000 bbbaddeccbbb 提示:利用编码前缀性质。 二、概要设计 1.设计需要的数据结构:树型结构 2.需要的抽象数据类型: ADT Tree{ 数据对象D:D是具有相同特性的数据元素的集合。 数据关系R:若D为空集,则称为空树; 若D仅含有一个数据元素,则R为空集,否则R={H},H是如下二元关系: (1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱; (2) 若D-{root}≠NULL,则存在D-{root}的一个划分D1,D2,D3,…,Dm(m>0),对于任意j≠k(≤j,k≤m)有Dj∩Dk=NULL,且对任意的i(1≤i≤m),唯一存在数据元素xi?Di有?H; (3) 对应于D-{root}的划分,H-{,…,}有唯一的一个划分H1,H2,…,Hm(m>0),对任意j≠k(1≤j,k≤m)有Hj∩Hk=NULL,且对任意i(1≤i≤m),Hi是Di上的二元关系,(Di,{Hi}) 是一棵符合本定义的树,称为根root的子树。 基本操作: InitTree(&T); 操作结果:构造空树T。

相关文档
最新文档