高中数学选修2-2 同步练习 定积分的概念+微积分基本定理+定积分的简单应用(解析版)

高中数学选修2-2 同步练习 定积分的概念+微积分基本定理+定积分的简单应用(解析版)
高中数学选修2-2 同步练习 定积分的概念+微积分基本定理+定积分的简单应用(解析版)

第一章 导数及其应用

1.5 定积分的概念 1.6 微积分基本定理 1.7 定积分的简单应用

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.当n 的值很大时,函数2()f x x =在区间,[

]1i i

n n

-上的值可以用下列函数值近似代替的是 A .()1f n B .()2

f n

C .()f i n

D .()0f

【答案】C

【解析】用区间,[]1i i

n n

-内的任意一个函数值都可近似代替这个区间对应的函数值.故选C . 2.

π20

(sin )d x x x -=?

A .2

π14-

B .2π18-

C .2π8

D .2

π18

+

【答案】B 【解析】

ππ2

222

00

1π(sin )(cos )|128

d x x x x x +=-=-?

.故选B .

3.若2

2

11

d s x x =

?

,1

22

d 1

s x

x =?

,132d e x s x =?,则123s s s ,,的大小关系为

A .123s s s <<

B .213s s s <<

C .231s s s <<

D .321s s s <<

【答案】B

4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲

和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是

A .在t 1时刻,甲车在乙车前面

B .t 1时刻后,甲车在乙车后面

C .在t 0时刻,两车的位置相同

D .t 0时刻后,乙车在甲车前面

【答案】A

5.物体A 以231(m /s)v t =+的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5m 处,同时以10(m /s)v t =的速度与A 同向运动,出发后物体A 追上物体B 所用时间(s)t 为 A .3s B .4s C .5s

D .6s

【答案】C

【解析】物体A 经过s t 行驶的路程为2

(31)d t

t t +?,物体B 经过s t 行驶的路程为0

10d t

t t ?,

则有

2323200

(3110)(d 5)|55t

t t t t t t t t t t +-=++-=-=?

,解得5t =.故选C .

6.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25

()731v t t +t

=-+(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是 A .1+25ln 5 B .8+25ln

113

C .4+25ln 5

D .4+50ln 2

【答案】C

【解析】令v(t)=0得,3t2?4t?32=0,解得t=4(

8

3

t=-舍去

) .

汽车的刹车距离是

424

253

(73)d[725ln(1)]|425ln5

12

t+t t t t

t

-=-++=+

+

?.故选C.

7.已知函数()sin()1(0)

2

f x

x??

π

=--<<,且

2

3

[()1]d0

f x

x

π

+=

?,则函数()

f x的一个零点为

A.

5

6

π

B.

3

π

C.

6

π

D.

7

12

π

【答案】A

二、填空题:请将答案填在题中横线上.

8.已知函数()

f x为偶函数,且6

()d8

f x x=

?,则66()d

f x x

-

=

?________________.【答案】16

【解析】因为函数()

f x为偶函数,所以66

60

()d2()d16

f x x f x x

-

==

??.

9.若

π

2

(sin cos 2

)d x

x a x

-=

?,则实数a=________________.

【答案】1

-

【解析】取()cos sin

F x x a x

=--,则()sin cos

F x x a x

'=-,

所以

π

2

π

2

(sin cos )(cos sin)|

d12

x a x

x x a x a

=

---=-+=

?,解得1

a=-.

10.已知函数

2

2

1

3,[3,0]

3

()

9,(0,3]

x x

f x

x x

?

-+∈-

?

=?

?-∈

?

,则

3

3

()d

f x x

-

=

?________________.【答案】

6

4

+

【解析】

303

22

330

1

()d(3)d9d

3

f x x x x x x

--

=-++-

???,

其中023 3

11

(3)d(

39

x x x

-

-+=-+

?03

3)6

x

-

=,

32

9d

x x

-

?由定积分的几何意义可知,其表示半径为3的圆的面积的

4

1

,即

4

,故

3

3

()d6

4

f x x

-

=+

?.

11.如图,在边长为1的正方形OABC内,阴影部分由曲线2(

,01)

y x y x x

==≤≤围成,在正方形内随机取一点,且此点取自阴影部分的概率是a,则函数

3

1

(

log,

()

),

3

x

x x a

f x

x a

?

?

=?

<

??

的值域为________________.【答案】[)

1,

-+∞

12.由曲线1

xy=以及直线y x

=,3

y=所围成的封闭图形的面积为________________.【答案】4ln3

-

【解析】画出草图(图略),

方法1:所求面积

11

1

1

3

3

11

(3)d22(3ln)|24ln3

2

S x x x

x

=-+??=-+=-

?.

方法2:所求面积

323

1

1

11

()d(ln)|4ln3

2

S y y y y

y

=-=-=-

?.

13.已知

12

()d1

x m x

+=

?,则函数2

()log(2)

m

f x

x x

=-的单调递减区间是________________.【答案】(0,1]

【解析】∵

12

()d1

x m x

+=

?,∴310

1

()1

3

x mx

+=,解得

2

3

m=,故2

2

3

()log(2)

x

f x x

=-,

令2

()2(2)g x x x x x =-=-,令()0g x >,解得02x <<,

而()g x 的图象的对称轴为1x =,故()g x 在(0,1]上单调递增,在(1,2)上单调递减, 又2

013

m <=

<,故函数()f x 的单调递减区间是(0,1]. 14.若函数)(x f ,)(x g 满足

1

1

()()d 0f x g x x -=?

,则称)(x f ,)(x g 为区间]1,1[-上的一组正交函数.现

给出三组函数: ①x x g x x f 2

1

cos )(,21sin

)(==; ②1)(,1)(-=+=x x g x x f ; ③2)(,)(x x g x x f ==.

其中为区间]1,1[-的正交函数的组数是________________. 【答案】2

三、解答题:解答应写出文字说明、证明过程或演算步骤. 15.计算下列定积分:

(1)

2

1

1

(e )d x

x

x +?

(2)

π6π6

(sin 2)d x x x -+?

【答案】(1)2e ln 2e +-;(2)0.

【解析】(1)因为1(e ln )e x

x x x '+=+,所以22

1211(e )e ln )|e ln 2(e d x x x x x

++=+=-?.

(2)因为2

cos sin 2()x x x x '-+=+,所以

2

ππ6

6ππ6

6

d ((sin 2)cos )|0x x x x x --+-+==?

16.如图,求曲线1

,2,3

y x y x y x =

=-=-所围成图形的面积.

【答案】

136

17.设()f x ax b =+,

1

21

[()]d 1f x x -=?

,求()f a 的取值范围.

【答案】219

[,]212

-

. 【解析】由题可得2

2

2

2

2

()2[()]f ax b a x b b x a x =+=++,

取23

221()3F x a x abx b x =

++,则22()x F a x '=+22abx b +, 所以12111232222

[()]d (13|12)23

a x abx

b x a f x b x --++==+=?,

即22263a b +=,且22

22

b -

≤≤

所以2

2

23119

()36)1(322

f a a b b b b =+=-++

=--+. 由2222b -

≤≤知219()212f a -≤≤,故()f a 的取值范围为219

[,]212

-.

高中数学高考总复习定积分与微积分基本定理习题及详解

一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:?b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分?b a dx x f )(的几何意义是:y=f (x )与x=a ,x= b 及x 轴围成的曲边梯形面积,在一般情形下.?b a dx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x= b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=?,在图(2)中:0s dx )x (f b a <=?,在图(3)中:dx )x (f b a ?表示 函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于?b a dx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于?b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)??=b a b a dx x f k dx x kf )()(,(k 为常数) (3)???+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a , b ]上,?≥≥b a dx x f x f 0)(,0)(则 推论:(1)若在区间[a ,b ]上,??≤≤b a b a dx x g dx x f x g x f )()(),()(则 (2)??≤b a b a dx x f dx x f |)(||)(| (3)若f (x )是偶函数,则??=-a a a dx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=?-a a dx x f 4. 微积分基本定理: 一般地,若)()()(],[)(),()('a F b F dx x f b a x f x f x F b a -==?上可积,则在且 注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据

定积分的概念(教学内容)

授课题目定积分的概念 课时数1课时 教学目标理解定积分的基本思想和概念的形成过程,掌握解决积分学问题的“四步曲”。 重点与难点重点:定积分的基本思想方法,定积分的概念形成过程。难点:定积分概念的理解。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完导数和不定积分这两个概念后的学习,定积分概念的建立为微积分基本定理的引出做了铺 垫,起到了承上启下的作用。而且定积分概念的引入体 现着微积分“无限分割、无穷累加”“以直代曲、以不变 代变”的基本思想。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。

教学手段 传统教学与多媒体资源相结合。 课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、定积分问题举例 1、曲边梯形的面积 设)(x f y =在区间],[b a 上非负连续。由)(,0,,x f y y b x a x ====所围成的图形称为曲边梯形(见下图),求其面积A ,具体计算步骤如下: (1)分割:在区间],[b a 中任意插入1-n 个分点 b x x x x x a n n =<<<<<=-1210Λ 把],[b a 分成n 个小区间 ],[,],,[],,[12110n n x x x x x x -Λ 它们的长度依次为:n x x x ???,,,21Λ (2)近似代替:区间],[1i i x x -对应的第i 个小曲边梯形面积,)(i i i x f A ?≈?ξ ]).,[(1i i i x x -∈?ξ (3)求和:曲边梯形面积∑∑==?≈?=n i i i n i i x f A A 1 1 )(ξ (4)取极限:曲边梯形面积,)(lim 10∑=→?=n i i i x f A ξλ其中 }.,,m ax {1n x x ??=Λλ 2、变速直线运动路程 设物体做直线运动,已知速度)(t v v =是时间间隔],[21T T 上的非负连续函数,计算这段时间内物体经过的路程s ,具体计算步骤与上相似 x a b y o 1x i x 1-i x i ξ

定积分与微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

高中数学~定积分和微积分基本原理

高中数学~~定积分和微积分基本原理 1、求曲线、直线、坐标轴围成的图形面积 ? [ 高三数学] ? 题型:单选题 由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A. 310 B. 4 C. 3 16 D. 6 问题症结:大概知道解题方向了,但没有解出来,请老师分析 考查知识点: ? 定积分在几何中的应用 ? 用微积分基本定理求定积分值 难度:难 解析过程: 联立方程组,2 ???-==x y x y 得到两曲线的交点坐标为(4,2), 因此曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为: 3 16)]2([4 = --? dx x x . 答案:C 规律方法: 首先求出曲线y=和直线y=x-2的交点,确定出积分区间和被积函数,然后利用导数和积分的关 系求解. 利用定积分知识求解该区域面积是解题的关键. 高二数学问题 ? [ 高一数学] ? 题型:简答题 曲线y=sinx (0≤x ≤π)与直线y=?围成的封闭图形面积是? 问题症结:找不到突破口,请老师帮我理一下思路 考查知识点: ? 用定义求定积分值 难度:中 解析过程:

规律方法: 利用定积分的知识求解。 知识点:定积分和微积分基本原理 概述 所属知识点: [导数及其应用] 包含次级知识点: 定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用 知识点总结 本节主要包括定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用等知识点。对于定积分和微积分基本原理的理解和掌握一定要通过数形结合理解,不能死记硬背。只有理解了定积分的概念,才能理解定积分的几何意义。

高中数学之定积分与微积分基本定理含答案

专题06 定积分与微积分基本定理 1.由曲线,直线轴所围成的图形的面积为() A.B.4C.D.6 【答案】A 【解析】 联立方程得到两曲线的交点(4,2), 因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为: S. 故选:A. 2.设f(x)=|x﹣1|,则=() A.5 B.6 C.7 D.8 【答案】A 【解析】 画出函数的图像如下图所示,根据定积分的几何意义可知,定积分等于阴影部分的面积,故定积分为 ,故选A.

3.曲线与直线围成的封闭图形的面积是() A.B.C.D. 【答案】D 【解析】 令,则,所以曲线围成的封闭图形面积为 ,故选D 4.为函数图象上一点,当直线与函数的图象围成区域的面积等于时,的值为 A.B.C.1D. 【答案】C 【解析】 直线与函数的图象围成区域的面积S dx =

∴ 故选:C 5.由直线与曲线所围成的封闭图形的面积为( ) A.B.1C.D. 【答案】B 【解析】 题目所求封闭图形的面积为定积分,故选B. 6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( ) A.B.C.D. 【答案】A 【解析】 依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A. 7.() A.B.-1C.D. 【答案】C 【解析】 解:

. 故选:C. 8.,则T的值为 A.B.C.D.1 【答案】A 【解析】 由题意得表示单位圆面积的四分之一,且圆的面积为π, ∴, ∴. 故选A. 9.下列计算错误 ..的是() A.B. C.D. 【答案】C 【解析】 在A中,, 在B中,根据定积分的几何意义,, 在C中,, 根据定积分的运算法则与几何意义,易知,故选C.

2020年全国高考数学·第15讲 定积分和微积分基本定理

2020年全国高考数学 第15讲 定积分和微积分基本定理 考纲解读 1.了解定积分的实际背景、基本思想及概念. 2.了解微积分基本定理的含义. 命题趋势探究 定积分的考查以计算为主,其应用主要是求一个曲边梯形的面积,题型主要为选择题和填空题. 知识点精讲 基本概念 1.定积分的极念 一般地,设函效()f x 在区间[a ,b]上连续.用分点0121i i a x x x x x -=<<<<

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

高中数学高考总复习定积分与微积分基本定理习题及详解教学内容

定积分与微积分基本定理习题 一、选择题 1. a =??02x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是( ) A .a

定积分的基本概念

定积分的基本概念 摘要:定积分的概念,原理,思想方法。 关键词:分割,求和,取极限。 通过了一个学期的学习,我们的专业课数学分分析从开始接触时的一窍不通到现在的马马虎虎。使我迷茫的学习慢慢的清晰起来,其中给我学以致用的就是定积分了。可以用来做很多方面的问题。下面来和大家分享一下我学习定积分的感悟。 定积分的概念 1)定积分概念的引入 2)“分割、近似求和、取极限”数学思想的建立 3)定积分的数学定义 重点:定积分的数学定义 难点:“分割、近似求和、取极限”变量数学思想的建立 定积分概念的引入 在熟悉定积分的概念的同时我们应该明确定积分的基础思想。 在灵活运动定积分可以求曲边梯形的面积和变力所做的功,下面来分别的求它们的面积。我们可以从中比较一下,以给我们带来启发。 1曲边梯形的面积 中学里我们已经学会了正方形,三角形,梯形等面积的计算,这些图形有一个共同的特征:每条边都是直线段。但我们生活与工程实际中经常接触的大都是曲边图形,他们的面积怎么计算呢?我们通常用一些小矩形面积的和来近似它。

近似看成多边形面积来计算。现在我们来计算一下溢流坝上部断面面积。 我们分别取n=10, 50, 100用计算机把它的图像画出来,并计算出面积的近似值: 1.当n=10时,用10个小矩形的面积之和作为曲边梯形的面积时,则S10 0.7510。(见下图)

2.当n=50时,用50个小矩形的面积之和作为曲边梯形的面积时,则S50≈0.6766。 3.当n=100时,用100个小矩形的面积之和作为曲边梯形的面积时,则S100≈0.6717。 由此可知,分割越细,越接近面积准确值,而这个和求极限也是同出一则。把它这样简化来理解也就不再那么的难了。 再看一个变力做功的问题。 设质点m受力F(x)的作用,沿直线由A点运动到B点,求力 F(x)的做的功。 F虽然是变力,但在很短一段时间内△x,F的变化不大,可近似看着是常

定积分和微积分基本定理

第三节定积分和微积分基本定理 考纲解读 1?了解定积分的实际背景、基本思想及概念 ? 2?了解微积分基本定理的含义 . 命题趋势探究 定积分的考查以计算为主, 其应用主要是求一个曲边梯形的面积, 题型主要为选择题和填空 题? 知识点精讲 一、基本概念 1.定积分的极念 一般地,设函效 f (x )在区间[a , b ]上连续.用分点a = x 0 < x 2< L < x — < x b - a < L < X n 二b 将区间[a,b ]等分成n 个小区间,每个小区间长度为 D x ( D x = ), n n 在每个小区间[X i -^X i ]上任取一点\ i =1,2J||,n ,作和式:S^v f(i)C x =: i 二 n b _a f ( i ),当D x 无限接近于0 (亦即n —; ? ?)时,上述和式S n 无限趋近于常数 S , i i n b 那么称该常数S 为函数f (x)在区间[a,b ]上的定积分?记为: S 二 f (x)dx , f (x)为 * a 被积函数,X 为积分变量, 需要注意以下几点: [a, b ]为积分区间,b 为积分上限,a 为积分下限. b (1) 定积分 f(x)dx 是一个常数,即S n 无限趋近的常数S (n 时),称为 a b f (x)dx ,而不是 S n . a (2) 用定义求定积分的一般方法 . b n ? b -^a a f(x)dx 二[imj f i -" a - i n b t 2 b (3)曲边图形面积:S = f x dx ;变速运动路程s 二 v(t)dt ;变力做功S = F(x) dx 2 ?定积分的几何意义 b 从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f(x)_0,那么定积分a f x dx 表 示由直线 X =a,x =b(a =b), y =0和曲线y = f (x )所围成的曲边梯形(如图3-13中的阴影 ①分割:n 等分区间[a ,b ];②近似代替:取点 n b — a i ?〔x 」,X i 丨;③求和:、? 口 f(i ); ◎ n ④取极限:

专题13 定积分与微积分基本定理知识点

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

()d b a f x x ? =1 lim ()n i n i b a f n ξ→∞ =-∑ . (2)在 ()d b a f x x ? 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被 积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d b b a a kf x x k f x x =??(k 为常数); (2)[()()]d ()d ()d b b b a a a f x g x x f x x g x x ±=±? ??; (3) ()d =()d +()d b c b a a c f x x f x x f x x ? ??(其中a

定积分的基本概念

教 学 内 容 方法与手段 定积分的概念 大家好,这节课我们开始学习定积分的概念,主要分 为三个内容: 定积分概念引入 定积分的定义 定积分的几何性质 首先我们来看第一部分 一、定积分概念引入 说起定积分的思想,其萌芽是特别早的,可以追溯至古代,最具有代表人物就是阿基米德(公元前287年—公元前212年),我们比较熟悉的就是他的浮力原理,其实阿基米德还和高斯、牛顿并列为世界三大数学家,是个非常牛的牛人,有兴趣的可以找找这个人的一些资料,当时他就开始思考定积分问题。那么到底定积分问题是什么样子的呢我们先看一个例子。 1曲边梯形的面积问题: 我们知道矩形面积:S ah = 梯形的面积:() 2 a b S h += 曲边梯形的面积:设()y f x =在区间[a,b]上非负连续,由直线x=a,x=b,y=0及曲线()y f x =所围成的面积。 导入 幻灯 幻灯 幻灯 幻灯 详讲 详讲 详讲 幻灯

那么这样的问题怎么求呢 首先,我们考虑用一个矩形去近似计算其面积。a,b 的区间长度代表其宽,b点的函数值代表其高。我们可以得到一个近似的面积值。 好,现在我们将[a,b] 区间分为两个,同样我们用这两个区间的长度代表其宽,两个区间的右端点代表其高,然后计算这两个矩形的面积求和,作为曲边梯形的面积,可以发现,通过切分,其面积更接近曲边梯形的面积。我们就有这样的思考,是不是切分的越多,其面积越近似我们再将其分为四份,我们发现好像面积越来越接近真实面积。下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。 事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。 好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。 解决步骤: 大化小:在区间中任意插入个分点 ,用直线将一个曲边梯形分成个小的曲边梯形;详讲总结

定积分与微积分含答案

定积分与微积分基本定理 基础热身 1.已知f (x )为偶函数,且 ??0 6f(x)d x =8,则? ?6-6f(x)d x =( ) A .0 B .4 C .8 D .16 2. 设f(x)=??? x 2,x ∈[0,1], 1 x ,x ∈1,e ] (其中e 为自然对数的底数),则??0 e f(x)d x 的值为( ) B .2 C .1 3.若a =??0 2x 2d x ,b =??0 2x 3d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关 系是( ) A .a

A .0 B .1 C .0或1 D .以上均不对 9.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为( ) A . J B . J C . J D . J 10.设函数y =f(x)的定义域为R +,若对于给定的正数K ,定义函 数f K (x )=????? K ,fx ≤K ,fx ,fx >K , 则当函数f (x )=1x ,K =1时,定积分??214f K (x)d x 的值为________. (x -x 2)d x =________. 12. ∫π 20(sin x +a cos x)d x =2,则实数a =________. 13.由抛物线y 2 =2x 与直线x =12及x 轴所围成的图形绕x 轴旋转一周所得旋转体的体积为________. 14.(10分)已知函数f(x)=x 3+ax 2+bx +c 的图象如图K 15-2所示,直线y =0在原点处与函数图象相切,且此切线与函数图象所围 成的区域(阴影)面积为27 4,求f(x)的解析式. 图K 15-2 15.(13分)如图K 15-3所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax(a>1)交于点O 、A ,直线x =t (00),

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

(完整版)高中数学高考总复习定积分与微积分基本定理习题及详解()

高中数学高考总复习定积分与微积分基本定理习题及详解 一、选择题 1.(2010·山东日照模考)a =??0 2x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是 ( ) A .a 2,c =? ?0 2sin x d x =-cos x |02=1 -cos2∈(1,2), ∴c

微积分定积分练习题(有答案)

1利用定积分的几何意义计算」''1 - x2dx. 2. 计算定积分"2(x+ 1)dx. J i 3. 定积分"bf(x)dx的大小() ?a A .与f(x)和积分区间[a, b]有关,与E的取法无关 B.与f(x)有关,与区间[a,b]以及&的取法无关 C .与f(x)以及8的取法有关,与区间[a, b]无关 D .与f(x)、区间[a,b]和8的取法都有关 4. 在求由x= a,x= b(a

8. 10 利用定积分的几何意义求 —9 — x — 3 2dx. (1)| 2(x 2+ 2x + 1)dx ; 广n (2) 1 (sinx — cosx)dx ; (3)| J* 2 / 、 1 x — X 2 +_ 1 丿。 1 < X 丿 (4) 0-?cosx + e x )dx. ⑹p (2x + 1)dx ; ⑺ 丿0 1 2x + 一 dx x 广1 ⑺f; x (8) 1x 3dx ; ■ 0 (9) 1e x dx. 11 求 y = — x 2与 y = x — 2围成图形的面积S. 15 A.— 4 17 B.— 4 1 C.—|n 2 2 D . 2ln2 已知"2 f(x)dx = 3,贝U 2 [f(x) + 6]d 1 1 12 .由直线x =2,x =2,曲线y =严x 轴所围图形的面积为 13.已知 f 1— 1(x 3 + ax + 3a — b)dx= 2a + 6 且 f(t) = f (x 3 + ax + 3a — b)dx 为偶函数, 求下列定积分: dx ; 2 1 x 2dx

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

相关文档
最新文档