07442311泵和压缩机教学大纲.

07442311泵和压缩机教学大纲.
07442311泵和压缩机教学大纲.

泵和压缩机

(Pump and Compressor

教学大纲

归属单位交通工程学院课程编号07442311

开课学期第五学期总学时数48

学分 2.5 适用专业油气储运工程

首选教材《泵和压缩机》钱锡俊,陈弘编,石油大学出版社,1989年

本课程与其它课程的联系:

先修课程为工程热力学、工程流体力学,后续课程为输油管道设计与管理。

输气管道设计与管理等。

一、课程性质

泵和压缩机课程是油气储运工程专业的专业基础课。

二、课程的地位、作用和任务

本课程是油气储运工程专业的一门专业基础课,总学时数48。通过本课程的学习,使学生掌握石油及天然气输送中常用的泵和压缩机的结构、工作原理及应用。要求学生能够根据所需要的工艺条件正确选型,具有一定的机器运行维护、故障判断的能力。为后续的专业课程学习打下良好的基础。

三、课程教学的基本要求

学生应掌握:离心泵的有关流量、扬程、功率、效率、汽蚀余量、吸上真空度、比转数等概念,离心泵的基本方程、实际性能曲线、相似定律、比例定律、切割定律,离心泵的装置特性与工况调节方法,正确确定离心泵的台数和几何安装高度;离心压缩机的主要构件、欧拉方程、焓值方程、伯努利方

程及气动热力学涉及到的各种能头、效率、功率的概念和计算;往复活塞式压缩机的工作循环、排气量、功率及效率的概念和计算。

学生应理解:离心泵内的各种损失,离心泵提高抗汽蚀性能的措施;离心压缩机级中的各种能量损失及设备性能曲线的形成;往复活塞式压缩机的排气温度及排气压力的概念及限制条件,多级压缩的原因及优点。

学生应了解:离心泵过流部件形式及作用;离心压缩机级数对性能曲线的影响,离心压缩机的工况调节方法;往复活塞式压缩机的实际压缩气体的压缩特点及排气量的调节方法;其它类型泵的基本原理、特点和应用场合。

四、课程教学内容

(一)、讲授部分

1、绪论

1.1 泵和压缩机的概念(重点);

1.2 分类方法及应用。

2、离心泵

2.1 离心泵的工作原理和分类;

2.2 离心泵的基本方程式(重点)

2.3 液体所获能头分析

2.4 有限叶片数对理论扬程的影响

2.5 离心泵的性能曲线(重点)

2.6 离心泵的相似原理及应用(重点)

2.7 离心泵的汽蚀与吸入特性(重点)

2.8 离心泵的装置特性与工况调节(重点、难点)

2.9 离心泵的系列及选用

3、离心压缩机

3.1离心式压缩机的主要构件及基本工作原理(重点)

3.2气体在级中流动的概念及基本方程(重点)

3.3级中能量损失(难点)

3.4级的性能曲线(重点)

3.5离心压缩机和管路的联合工作,工况调节(重点)

4、往复活塞式压缩机

4.1基本结构及工作原理(重点)

4.2工作循环(重点)

4.3.排气量(难点、重点)

4.4功率和效率

4.5排气温度和排气压力(重点)

4.6多级压缩

4.7实际气体的压缩

4.8压缩机的变工况工作及排气量调节

5、其它形式的泵

5.1自吸式离心泵简介

5.2旋涡泵简介

5.3射流泵简介

5.4往复泵简介

5.5螺杆泵简介

5.6齿轮泵简介

5.7滑片泵简介

5.8液环泵简介

重点:各种泵的工作原理和应用场合。

(二)、自学部分

1、离心泵

(1)离心泵的主要零部件

(2)输送粘液时离心泵性能曲线的换算

(3)离心泵节能

2、离心压缩机

(1)相似理论在离心压缩机中的应用

(2)离心压缩机的主要零部件

3、往复活塞式压缩机

(1)活塞压缩机的主要部件

(2)实际气体基础知识

(3)活塞压缩机的总体结构

五、课内实验教学要求

1、实验内容:离心泵特性曲线(不包括汽蚀曲线)的测试。

实验学时:4

要求学生了解测定仪器,掌握测定方法,实测出H—Q 、N—Q、η—Q曲线,并会对实验结果进行分析。

2、上机内容:利用计算机求解改变泵转速后的特性曲线及由工作条件(扬程和流量)确定泵的转速。

上机学时:2

在已知正常转速下泵的流量和扬程函数关系的前提下,要求学生编写根据比例定律确定改变转速后的流量和扬程函数关系式的待定系数和按工艺要求的流量和扬程确定泵的转速。

3、第二、三、四部分每部分一至两道作业。

六、教学进程表

序号

课程内容课时数

教学方式

手段

备注

1绪论2传统板书、多

媒体

2离心泵14传统板书、多

媒体

3离心式压缩机14传统板书、多

媒体

4往复活塞式压缩

机10传统板书、多

媒体

5其它形式的泵2传统板书、多

媒体

合计42另有实验4、

上机2学时

七、考核办法

本课程为考试课。平时成绩15%,实验和上机成绩计入平时成绩;期末考试成绩85%,期末考试为闭卷笔试。

八、教材及教学参考书

1. 教材

钱锡俊,陈弘编,泵和压缩机,石油大学出版社,1989年

2. 教学参考书

姜培正主编,过程流体机械,化学工业出版社,1995年

执笔人:陈世一审定人:

泵与压缩机复习题目

《泵与压缩机》课堂练习 一、填空题: 1.离心泵启动前应首先关闭(出口)阀,目的是降低(电流;电力矩),防止电机损坏。 2.离心泵的流量增加,则泵的允许吸上真空度(降低);允许吸上真空高度小的泵,其吸入性能(差)。 3.离心泵叶轮上导叶的作用是(能量转换)。 4.泵的特性曲线与管路特性曲线的交点是泵的(实际工作点)。 5.比转数相同的两台离心泵,输送同一介质时,叶轮直径小,则泵的扬程(小);离心泵的转速越低,则离心泵的扬程越(小)。 6.离心泵在运转过程中,如采用机械密封,要求其渗漏情况为每分钟不大于(10)滴;填料密封为不大于(20)滴。 7. 离心泵的原理是利用叶轮的转动,使流体因(离心)力作用而获得动能。继而因渦形室的作用使流体速度減慢将动能转变成(压力)能。 8.由于涡流运动的影响,造成(相对)速度偏移,使得(绝对)速度减小。 二、单项选择题: 1.型号为100YⅡ- 60A的离心泵,型号中的数字60表示(B)。 A、排出口直径 B、扬程 C、流量 D、比转速 2.两台型号相同的离心泵串联使用后,其扬程(B )它们独立工作时的流量之和。 A、高于 B、低于 C、等于 D、因油品性质而定 3.有关往复泵流量的调节方法中,正确的是( C )。 A、改变泵出口阀开度 B、改变泵入口阀开度 C、改变泵的转速 D、切割泵叶轮外径 4.宜采用管道泵输送的介质是(B)。 A、渣油 B、燃料油 C、汽油 D、液体沥青 5.离心泵内液体不发生冲击损失的条件是实际流量必须( C )。 A、大于设计流量 B、小于设计流量 C、等于设计流量 D、流量不变 6.切割定律是指同一台泵( A )改变后性能参数间的相互关系。 A、叶轮外直径 B、转速 C、叶轮内直径 D、扬程 7.离心泵的设计点(最佳工况点)是(C)。 A、H-Q曲线最高点 B、N-Q曲线最高点 C、η-Q曲线最高点 D、最大Q值 8.储罐(槽)液面压力越大,离心泵的抗气蚀性能(A)。 A、越好 B、越差 C、不能确定 D、无关系 9.比转数小的泵则( C )。 A、流量大 B、扬程小 C、叶轮直径大 D、叶轮宽度大 10.离心泵铭牌上标明的流量数值是用( D )做试验取得的。 A、煤油 B、汽油 C、柴油 D、清水 三、判断题:

离心泵特性实验报告

离心泵特性测定实验报告 一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ; ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

《泵与压缩机》综合复习资料

《泵与压缩机》综合复习资料 一、简述题 1.简述离心泵的抗汽蚀措施,说明较为有效实用的抗汽蚀措施。 2.简述离心压缩机的单级压缩和多级压缩的性能特点。 3.简述往复活塞式压缩机的工作循环,指出工作循环中的热力过程。 4.简述离心泵的性能曲线,说明性能曲线的主要用途。 5.简述离心压缩机的喘振工况和堵塞工况,说明对离心压缩机性能影响较大的特殊工况。 6.简述往复活塞式压缩机的排气量调节方法,说明较为实用有效的调节方法。 7.简述离心泵的主要零部件,说明离心泵的工作原理。 8.简述往复活塞式压缩机的动力平衡性能,说明动力平衡的基本方法。 9.简述离心泵的速度三角形和基本方程式。 10.简述离心压缩机的工况调节方法,说明较为节能实用的工况调节方法。 11.简述往复活塞式压缩机多级压缩的性能特点。 二、计算题 1.一台离心水泵,实测离心泵出口压力表读数为0.451 MPa,入口真空表读数为256 mmHg,出口压力表和入口真空表之间的垂直距离Z SD=0.5 m,离心泵入口管径与出口管径相同,水密度ρ=1000 kg/m3。求离心泵的实际扬程H(m)。 2.一台单级双吸式离心水泵,流量Q=450 m3/h,扬程H=92.85 m,转速n=2950 r/min。 求离心泵的比转数n s。 3.一台单级离心式空气压缩机,压缩机叶轮圆周速度u2=255.235 m/s,流量系数φ2r=0.28,叶片出口安装角β2A=50o,叶片数z=20。求离心压缩机的理论能头H T(J/kg)。 4.一台离心泵流量Q1=100.0 m3/h,扬程H1=80.0 m,功率N1=32.0 kW,转速n1=2900 r/min。求离心泵转速调节至n2=1450 r/min时的流量Q2(m3/h)、扬程H2(m)和功率N2(kW)。 5.一台离心水泵,离心泵样本允许汽蚀余量[H s]=5.0 m,使用当地大气压p a′=0.07 MPa,

泵与压缩机总结

一、单项选择题 1.根据泵与风机的工作原理,离心式泵属于那种类型的泵。(C) A.容积式 B.往复式 C.叶片式 D.其它类型的泵 2.下面的哪一条曲线是泵的特性曲线?(A) A.泵所提供的流量与扬程之间的关系曲线 B.流量与沿程损失系数之间的关系曲线 C.管路的流量与扬程之间的关系曲线 D.管路的性能曲线 3.离心式叶轮有三种不同的形式,其叶轮形式取决于(B) A.叶片入口安装角 B.叶片出口安装角 C.叶轮外径和宽度 D.叶轮内径和宽度 4.对径向式叶轮,其反作用度τ值的大小为(D) A.0<τ<1 2 B.1 2 <τ<1 C.τ=1 D.τ=1 2 5.管路系统能头和流量的关系曲线是(C) A.斜率为φ的直线,φ为综合阻力系数 B.水平直线 C.二次抛物线 D.任意曲线 6.在离心式风机叶轮前的入口附近,设置一组可调节转角的静导叶,通过改变静导叶的角度以实现风机流量调节的方式称为(B). A.节流调节 B.导流器调节 C.动叶调节 D.静叶调节 7.泵与风机的有效功率Pe,轴功率P和原动机输入功率P g ’之间的关系为(B)。 A. P e

离心泵性能实验

实验名称:离心泵性能试验 一、实验目的及任务: 1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.测定管路的特性曲线。 4.熟悉个孔板流量计的构造、性能和安装方法。 5.测定孔板流量计的孔流系数。 二、实验原理: 1. 离心泵特性曲线的测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系可以通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可不免的会产生阻力损失,如摩擦损失、环流损失等,实际压头小于理论压头,且难以计算。因此,通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q、η-Q三条曲线称为离心泵的特性曲线。根据曲线可以找到最佳操作范围,作为选择泵的依据。 (1)泵的扬程 由伯努利方程,泵的实际压头He如下: 其中,动能项相比于压头项数量级很小,可以忽略;损失项由于管路较短,损失较小,可以忽略,因此得到:

式中——泵出口处的压力,mH2O ——泵入口处的压力,mH2O ——出口压力表和入口压力表的垂直距离,m (2)泵的有效功率和效率 泵在运转过程中存在能量损失,因此泵的实际和流量较理论低,而输入功率又比理论值高,有泵的总效率: 轴 轴电电转 式中——泵的有效功率,kW ——流量,m3/s ——扬程,m ——流体密度,kg/ m3 N轴——泵轴输入离心泵的功率,kW N电——电机的输入功率,Kw η电——电机效率,取0.9 η转——传动装置的效率,取1.0 2. 孔板流量计孔流系书的测定 孔板流量计的结构如图1所示。

图1 孔板流量计构造原理 在水平管路上装有一块孔板,其两侧接测压管,分别与压力传感器的两端连接。孔板流量计是根据流通通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压差作为测量依据。若管路的直径为d 1,锐孔的直径为d 0,流体流经孔板后所形成缩脉的直径为d 2,流体的密度为ρ,孔板前测压导管截面处与缩脉截面处的速度和压强分别为u 1、u 2和p 1、p 2,根据伯努利方程,不考虑能量损失可得: 或 由于缩脉的位置随流速的变化而变化,缩脉处的截面积S 2难以知道,而孔口的面积已知,且测压口的位置不变,因此可以用孔口处的u 0代替u 2,考虑流体因局部阻力造成的能量损失,用校正系数C 校正后,有: 对不可压缩流体,根据连续性方程有: 整理得: 令 ,则可简化为: u d d

泵和压缩机第四章 活塞压缩机课后思考题答案

1比较活塞式压缩机理论工作循环和实际工作循环的区别,定性画出相应的工作循环图。(1)由于存在余隙容积,实际工作循环由膨胀、吸气、压缩和排气四个过程组成,而理论循环则无膨胀过程,这就使实际吸气量比理论值少。 (2)实际吸气和排气过程存在阻力损失,使实际气缸内吸气压力低于吸气管内压力Ps,实际气缸内排气压力高于排气管内压力Pd,而且压力有波动,温度有变化。 (3)压缩机工作中,活塞环、填料和气阀等不可避免会有泄漏。 (4)在膨胀和压缩过程中,气体与缸壁间的热交换使膨胀过程指数m’和压缩过程指数m 不断变化。 图书上P199 图4.3 书上P203 图4.4 2用简图说明压缩机吸气阀和排气阀的工作原理 压缩机气阀主要靠缸内外气体压力差控制启闭,只有当缸内气体膨胀到压力低于吸气管内压力P1并足以客服流动阻力时,才能顶开吸气阀,开始吸气。在吸气过程中缸内压力有波动,活塞到内止点A时吸气终了,吸气阀关闭。活塞自内止点回行时,缸内容积减小,气体进行压缩过程。当缸内压力P高于排气管内压力P2并足以克服阻力而顶开排气阀时才开始排气过程。图如书上P203 图4.4 3何为压缩机的标准排气量与实际排气量 实际排气量是经压缩机压缩并在标准排气位置排出气体的容积容量,换算到第一级进口标准吸气位置的全温度、全压力及全组分的状态的气体容积值。 标准排气量是将压缩压缩在标准排气位置的实际容积容量,换算到标准工况(760mmHg,0℃)的气体容积值称为标准排气量。 4了解活塞压缩机功率和效率的定义方法 (1)指示功率 压缩机中直接消耗于压缩气体的功即由示功器记录的压力—容积图所对应的功称为指示功。(2)轴功率 轴功率是压缩机驱动轴所需要的功率。 (3)驱动功率 驱动功率是原动机输出轴的功率。 效率 (1)等温理论效率 压缩机理论循环所需的等温理论功率是理想的最小功率,与相同吸气压力、相同吸气量下的实际指示功率的比值。 (2)等温总效率 等温总效率是等温理论功率与相应条件下的轴功率之比。 (3)绝热理论效率 压缩机的绝热理论功率与相同吸气压力、相同吸气量下的实际指示功率之比。 (4)绝热总效率 绝热总效率是绝热理论功率与相同条件下的轴功率的比值。 5分析多级压缩的特点 (1)节省压缩气体的指示功 (2)提高气缸容积利用率

离心泵实验

一、 实验题目 离心泵性能实验 二、 实验摘要 本实验使用转速为2900 r/min ,WB70/055型号的离心泵实验装置,以水为工作流体,通过调节阀门改变流量,测得不同流量下离心泵的性能参数,并画出特性曲线同时标定孔板流量计的孔流系数C 0,测定管路的特性曲线。实验中直接测量量有q v 、P 出、P 入、电机输入功率N 电、孔板压差ΔP 、水温T 、频率f ,根据上述测量量来计算泵的扬程He 、泵的有效功率Ne 、轴功率N 轴及效率η,从而绘制泵的特性曲线图;又由P 、q v 求出孔流系数C 0、Re ,从而绘制C 0-Re 曲线图,求出孔板孔流系数C 0;最后绘制管路特性曲线图。 关键词: 特性曲线图、孔流系数、He 、N 轴、η、q v 三、 实验目的及内容 1、解离心泵的构造,掌握其操作和调节方法。 2、定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安装方法。 4、测定孔板流量计的孔流系数。 5、测定管路特性曲线。 四、实验原理 1、离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如下图的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He 式中: ——泵出口处的压力,mH 2O ; ——泵出口处的压力, mH 2O ; ——出口压力表与入口压力表的垂直距离, =0.2m 。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为 轴 N Ne = η 102 e ρ QHe N = 式中 Ne ——泵的有效效率,kW ;

泵与压缩机考点

一.离心泵 1.离心泵的工作原理?种类?用途?P12 P8 (1)工作原理:动力机通过泵轴带动叶轮旋转,充满叶片间流道中的液体随叶轮旋转;液体在离心力的作用下,以较大的速度和较高的压力,沿着叶片间的流道从中心向外缘运动;泵壳收集从叶轮中高速流出的液体并导向至扩散管,经排出管排出。液体不断被排出,在叶轮中心形成真空,吸入池中的液体在压差的作用下,源源不断地被吸入进叶轮中心;泵形成连续的吸入和排出过程,不断地排出高压力的液体。 多级离心泵每一级的工作原理同单级离心泵原理。但级与级之间的液体靠导叶导向,即前一级叶轮出口的液体经导叶引导到后一级叶轮的入口处。 (2)种类:按泵轴的布置方式:卧式泵(泵轴水平布置)、立式泵(泵轴竖直布置)、斜式泵 按吸入方式:单吸式泵(叶轮从一个方向吸入液体)、双吸式泵(叶轮从两个方向吸入液体) 按叶轮级数分:单级泵(泵轴上只安装一个叶轮)、多级泵(泵轴上安装两个或两个以上叶轮) 按用途分:清水泵、污水泵、油泵、酸泵、碱泵、砂泵、杂质泵、耐腐蚀泵等 按泵体形式分:涡壳式泵、透平式泵 按壳体剖分方式分:中开式泵、分段式泵 按比转数分:低比转数泵、中比转数泵、高比转数泵 (3)用途:离心泵是最典型的将机械能转变为液体的压力能的叶片式水力机械。 离心泵在海洋石油生产中主要用于原油输送、井底注水、油井抽油、污水处理、生活供水。 开排泵:将开式排放罐收集的液体打到闭式排放罐中。 闭排泵:将存于闭式排放罐内的含油液体打进工艺流程。 热介质循环泵:将贮存罐内的可重复使用的热介质油,泵入到膨胀罐内,不能使用的打入甲板上的排放罐。 淡水泵:将贮存在淡水罐内的淡水输至各个用户。 海水提升泵:将海水提升至平台,为公用系统供应杂用水。 原油外输泵:将含水原油增压后通过海底管线输往陆上终端。 油污泵:将生产污水增压后送入核桃壳过滤器。 反冲洗泵:将净水缓冲罐中的水送入反冲洗水缓冲罐中。 反冲洗水返回泵:将反冲洗水缓冲罐中的水打回生产污水处理系统。 注水泵:向井底注水。 2.离心泵的三种叶轮结构及用途、三种形式的叶片出口角。P53-54 P17 (1)闭式叶轮:由前盖板、后盖板、叶片及轮毂组成。 闭式叶轮一般用于清水泵,适用于高扬程,输送洁净的液体。 半开式叶轮:由后盖板、叶片及轮毂组成; 半开式叶轮一般用于输送含有固相颗粒的液体。 开式叶轮:由叶片及轮毂组成; 开式叶轮一般用于含有输送固相颗粒较多如浆状或糊状的液体。

油气储运专业《泵与压缩机》课程教学改革与探索-2019年教育文档

油气储运专业《泵与压缩机》课程教学改革与探索 一、引言 《泵与压缩机》在油气储运专业教学中既是具有重要应用背景的专业课程,又是该专业后续专业课程《油库设计与管理》、《管输工艺》、《燃气输配》及《加油加气站设计与管理》等课程的基础。所以,《泵与压缩机》课程的教学效果将直接影响到专业其他主干课程的学习。本课程是一门理论性、综合性都很强的课程,加之泵、压缩机的组成和结构看不见、摸不着,学生普遍感到难学,教师也感到难教。笔者从本专业“应用型人才”的培养方式出发,在教学内容和方法上对课程进行了改革和探索。 二、准确定位教学目标通过《泵与压缩机》课程的学习,培养学生对泵和压缩机合理选型、使用维护、调节控制和技术改造的工程应用能力。针对本专业的人才培养目标,学生毕业后主要是在油气储运及与之相关的企事业单位从事油气储运项目施工和运行管理工作,所以课程的教学目的应是围绕泵和压缩机在选型、使用和维护管理等方面的工作,而不是泵和压缩机本身的设计。在教学中应突出油气储运工程用泵和压缩机的特殊性,注重专业技术课承前启后的作用[1] 。在课程教学中将综合运用学生所学到的《工程流体力学》、《工程热力学》及《工程力学》等课程方面的知识,讲授时应让学生逐步了解技术类课程的特点;让学生了解该课程在专业课中的作用,注意与专业课程的衔接,为专业课的学习打好基础。本课程直接面向

工程实际,应促使学生树立工程意识,着重提高学生分析和解决工程实际问题的能力。 三、优化整合教学内容 1. 精简课堂内容《泵与压缩机》课程内容主要由泵和压缩机两部分组成。泵和压缩机是连接管道与储罐的输送动力设备,是长输油气管线的输送机械,是动力仪表控制循环的动力机械,教学内容较多。然而,随着应用型人才教学改革的进行,课时变少,任务加重。为了让学生在有限的课时内融会贯通地掌握相关知识,教师必须对讲课内容有所选择和删减,理论以够用为度,着重讲解课程的基本概念、基本理论和基本方法,抓住重点、突出难点,增加与工程技术前沿知识相融合的新内容,对教授内容进行适当调整,涉及先修课程的内容讲述时应简而言之[2] 。 例如,把教学内容整合为“结构”、“原理”、“性能”和“应用”四个模块。泵和压缩机在结构上都是流体机械的结构形式,基于工程流体力学和热力学的工作原理,遵循能量守恒和质量守恒的工作性能,都要从调节控制和选型操作两方面掌握及应用。在泵这一章的学习中,基于四个模块,教师可进行精讲,让学生了解课程的学习思路。对于压缩机的内容,引导学生以四个模块的思路进行学习,会达到事半功倍的教学效果。 2.注重实践环节[3 —5] 对于培养应用型人才,在专业课教学的各个环节,既要强调提高学生的理论素养,又要注重学生工程意识和工程素质的培养,使二者相辅相成,从而较好地实现学生工程实践能力的提高。所以在《泵

离心泵性能实验报告(带数据处理)

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

泵与压缩机习题

《泵与压缩机》综合复习资料 第一章 离心泵 一、问答题 1.离心泵的扬程是什么意义?其单位是什么?样本上常用单位是什么?两者的关系是什么? 2.离心泵的主要过流部件是哪些? 对它们的要求是什么? 3.离心泵开泵前为什么要灌泵? 4.H T ∞与哪些因素有关?为什么说它与介质性质无关? 5.H uu w w c c T ∞ =-+-+-221212222212222 中哪些是静扬程? 由什么作用产生的?哪些是动扬程? 6.什么叫反作用度?反作用度大好还是小好?离心泵的反作用度与什么参数有关?前弯、径向及后弯叶片的反作用度如何? 7.离心泵中主要是哪种叶片?为什么?βA2大致范围是多少? 8.汽蚀的机理如何?有何危害? 9.如何判别是否发生了汽蚀? 10.如何确定离心泵的几何安装高度? 11.常减压装置中减压塔的基础为什么比常压塔基础高? 12.如何从装置方面防止汽蚀发生?生产操作中要注意哪些问题? 13.用ρ ρv s s a p c p h -+=?22和() p p c Z h s A s g f A S ρρ=----2 2两式说明如何防止汽蚀发生? 14.离心泵有几条特性曲线?各特性曲线有何特点、有何用途? 15.离心泵开泵前要关闭出口阀,为什么? 16.离心泵中主要有哪些损失?各影响哪些工作参数? 17.介质密度对离心泵的H 、Q 、N 、η四个参数中的哪些有影响?在生产中如何注意该种影响? 18.离心泵中流量损失产生在哪些部位?流量损失与扬程有无关系?用曲线图表示。 19.离心泵中机械损失由哪几部分组成? 20.写出离心泵效率η的表达式。它与ηv 、ηh 、ηm 有何关系? 21.输送粘度较大的液体时离心泵的H 、Q 、N 、η、Δh r 如何变化? 22.写出离心泵相似定律的表达式。 23.什么叫离心泵的比例定律?写出比例定律的表达式。 24.切割定律是在什么近似条件下得来的?切割定律的表达式。 25.切割抛物线与相似抛物线有何区别? 26.离心泵叶轮外径切割有无限制,一台泵叶轮切割量的大小受什么参数限制? 27.离心泵的比转数n s 是一个什么参数,表达式如何?

化工原理实验报告-离心泵试验

化工原理实验报告-离心泵试验

化工原理 实 验 报 告 班级: XXXXXX 指导老师: XXX 小组: XXX

组员:XXX XXX XXX XXX 实验时间: X年X月X日 目录 一、摘要 (2) 二、实验目的及任务 (3) 三、基本原理 (3) 1.泵的扬程He (4) 2.泵的有效功率和效率 (4) 四、实验装置和流程 (5) 五、操作要点 (6) 六、实验数据记录与处理 (7) 1.泵的扬程与流量关系曲线的测定(H e~Q) (7) 2.泵的轴功率与流量关系曲线的测定(N轴~Q) (8) 3.泵的总效率与流量关系曲线的测定(η~Q) (10)

4.计算示例 (13) (1)泵的扬程与流量关系曲线的测定(H e~Q) (13) (2)泵的轴功率与流量关系曲线的测定(N 轴~Q) (13) (3)泵的总效率与流量关系曲线的测定(η~Q) (13) 七、实验结果及分析 (14) 八、误差分析 (15) 九、思考题 (16) 实验二离心泵性能试验 一、摘要 本实验以水为工作流体,使用WB70/055型离心泵实验装置。通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过涡轮流量计测量。实验中直接测量量有P真空表、P压力表、电机功率N电、水流量Q、水温℃。根据上述测量量来计算泵的扬程He、泵的有效功率Ne、泵的总效率η。从而绘制He-Q、N e-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作

范围。 关键词:离心泵特性曲线 二、实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵的扬程与流量关系曲线。 ③测定离心泵的轴功率与流量关系曲线。 ④测定离心泵的总效率与流量关系曲线。 ⑤综合测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 三、基本原理 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。

【精品】泵与压缩机练习题

1—1解:1)基本计算 吸入管过流断面面积:32210854.71.044-?=?==π π D A 吸入管内平均流速:s m A Q /203.110 854.73600343=??==-υ, 吸入管的沿程损失:m g d L h 266.08 .92203.11.01802.022 2=???=??=υλ 2)求泵入口处的压强 设吸水池液面为1—1断面,泵入口处为2-2断面。根据伯努里方程,有: h g g p H g p g +++=222211υρρ Pa h g Hg g p p 55 52 522112105485.0104645.010013.1266.08.92203.14.48.9100010013.12?=?-?=??? ? ??+?+??-?=??? ? ??++-=υρ mmHg H 46.34854.41176028 .133105485.07605=-=?-=真

O mmH O mH p H 225 25597597.59800 105485.09800==?== 1—2解:设泵入口处为1-1断面,泵出口处为2-2断面。根据伯努里方程,有: g g p z H g g p z 2222222111υρυρ++=+++ 入口和排出管径相同,有21υυ=。 g p g p z z H ρρ1212-+-= Pa p 613168.9136003.010013.151=??-?= Pa p 24840014710010013.152=+?= m H 95.258 .9750613162484005.0=?-+= 1-3解:吸水管内平均流速:s m d Q /183.31.04025.042 211=?==ππ υ 排出管内平均流速:s m d Q /659.5075.04025.042 222=?==ππ υ 设泵入口处为1—1断面,泵出口处为2—2断面。根据伯努里方程,有:

泵和压缩机总结

第一章 1、离心泵的基本构成及作用(P3,图1-1) 离心泵的过流部件包括吸入室、叶轮及排出室(蜗壳)等,其作用如下: ⑴吸入室:处于叶轮进口前。作用是引液体入叶轮。要求吸入室的流动损耗较小,液体流入叶轮时速度分布较均匀。 ⑵叶轮:作用是对液体做功。要求在流动损失最小情况下液体获得较高能头。 ⑶排出室:位于叶轮出口之后。作用是把从叶轮流出来的液体收集起来,减速增压,以减少蜗壳中的流动损失。 2、离心泵的工作原理(框图) 3、扬程定义:泵的扬程是单位质量液体通过泵以后获得的有效能头。 4、转速定义:泵的转速是指泵轴每秒旋转的次数。 5、欧拉公式理论式:H T∞=u2c2u∞-u1c1u∞ 欧拉公式实用式:H T∞=1/g(u2c2u∞-u1c1u∞) 由欧拉方程可看出:①离心泵的理论扬程H T∞只与进、出口速度有关。②理论扬程与被输送液体性质无关。 6、(必须掌握)叶轮出口处叶片角β2A<90°的叶轮称为后弯叶片形叶轮;β2A=90°的叶轮称为径向叶片形叶轮;β2A >90°的叶轮称为前弯叶片形叶轮。常用的为后弯型。 7、反作用度定义:叶轮中静压能的提高与理论功的比值,称为反作用度。 ρR∞=H pot/H T∞ 0.5<ρR∞≤1,后弯;0≤ρR∞<0.5,前弯;ρR∞=0.5,径向。 8、离心泵的各种损失:流动损失(包括摩擦阻力损失、冲击损失)、流量损失、机械损失。 9、离心泵的各种功率和效率(P24,必须掌握) 10、水泵性能曲线主要有三条曲线:流量—扬程(H-Q)性能曲线,流量—功率(N-Q) 性能曲线,流量—效率(η-Q) 性能曲线。(全性能曲线+流量-汽蚀余量(Q-NPSHr)曲线) 11、实际性能曲线的用途: (1)离心泵的H-Q性能曲线是选择泵和操作使用的主要依据。 (2)离心泵的N-Q性能曲线是合理选择驱动机功率和操作启动泵的依据。 (3)离心泵的η-Q性能曲线是检查泵的工作经济性的依据。

离心泵实验

离心泵实验(第6组)——工程楼102&104 摘要 本实验以水为介质,使用IHG32-125型离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。实验验证了离心泵的扬程He随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大;当Re大于某值时,C0为一定值,使用该孔板流量计时,应使其在C0为定值的条件下。 一、实验目的 1、熟悉离心泵的结构、性能铭牌及配套电机情况 2、了解孔板流量计的结构、使用及变频器的作用 3、了解计算机数据采集和控制系统 4、掌握最小二乘法回归管路特性方程、扬程方程中的参数A、B 5、学会选择、使用离心泵(由物性+泵特性+管路特性等决定) 二、实验内容 1、测定某一转速条件下的离心泵特性曲线 2、测定阀门处于某一开度条件下的管路特性曲线 3、测定孔板流量计的孔流系数C0随Re d变化关系 二、实验原理 1,离心泵特性曲线测定 由于流体流经泵时,不可避免的会遇到种种损失,产生能量损失和摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验直接测定其参数间的关系,并将测出的He—Q,N—Q,和η—Q三条曲线称为离心泵的特性曲线,根据此曲线也可求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程 He He = H压力表+ H真空表+ H0 H压力表——泵出口处的压力,mH2o;H真空表——泵入口处的真空度,mH2o;H0——压力表和真空表测压口之间的垂直距离,H0=0.85m (2)泵的有效功率和效率 由于泵在运转过程中存在能量损失,使泵的实际压头和流量较理论值低,而输入功率又比理论值高,所以泵的总效率为 η=N e N 轴 N e=QH 102 e Ne—泵的有效功率,Kw; Q—流量,m3/s; He—扬程,m;ρ—液体密度,kg/m3 由泵轴输入离心泵的功率为 N轴= N电*η电*η转 N电—电机的输入功率,Kw;η电—电机效率,取0.9;η—传动装置的传动效率;一般取1.0 2,孔板流量计孔流系数的测定 孔板流量计的构造原理如下图所示。

泵与压缩机[参考内容]

参考。材料 1 《泵与压缩机》综合复习资料 一、简述题 1.简述离心泵的抗汽蚀措施,说明较为有效实用的抗汽蚀措施。 2.简述离心压缩机的单级压缩和多级压缩的性能特点。 3.简述往复活塞式压缩机的工作循环,指出工作循环中的热力过程。 4.简述离心泵的性能曲线,说明性能曲线的主要用途。 5.简述离心压缩机的喘振工况和堵塞工况,说明对离心压缩机性能影响较大的特殊工况。 6.简述往复活塞式压缩机的排气量调节方法,说明较为实用有效的调节方法。 7.简述离心泵的主要零部件,说明离心泵的工作原理。 8.简述往复活塞式压缩机的动力平衡性能,说明动力平衡的基本方法。 9.简述离心泵的速度三角形和基本方程式。 10.简述离心压缩机的工况调节方法,说明较为节能实用的工况调节方法。 11.简述往复活塞式压缩机多级压缩的性能特点。 二、计算题 1.一台离心水泵,实测离心泵出口压力表读数为0.451 MPa ,入口真空表读 数为256 mmHg ,出口压力表和入口真空表之间的垂直距离Z SD =0.5 m ,离心泵入口管径与出口管径相同,水密度ρ=1000 kg/m 3。求离心泵的实际 扬程H (m )。 2.一台单级双吸式离心水泵,流量Q =450 m 3/h ,扬程H =92.85 m ,转速n =2950 r/min 。求离心泵的比转数n s 。 3.一台单级离心式空气压缩机,压缩机叶轮圆周速度u 2=255.235 m/s ,流量系数φ2r =0.28,叶片出口安装角β2A =50o,叶片数z =20。求离心压缩机的理论能头H T (J/kg )。 4.一台离心泵流量Q 1=100.0 m 3/h ,扬程H 1=80.0 m ,功率N 1=32.0 kW ,转速n 1=2900 r/min 。求离心泵转速调节至n 2=1450 r/min 时的流量Q 2(m 3/h )、扬程H 2(m )和功率N 2(kW )。 5.一台离心水泵,离心泵样本允许汽蚀余量[H s ]=5.0 m ,使用当地大气压p a ′=0.07 MPa ,使用当地饱和蒸汽压p v ′=1400 Pa ,水密度ρ=1000 kg/m 3。求离心泵在当地使用的允许真空度[H s ]′(m )。 6.一台多级离心式空气压缩机,第一级理论能头H T =44786.0 J/kg ,内漏气损失系数βl =0.012,轮阻损失系数βdf =0.030,有效气体流量m =27000 kg/h 。求离心压缩机第一级的总功率H tot (kW )。 7.一台往复活塞式空气压缩机,单级双缸单作用结构型式,标准吸入状态排气量Q =0.60 m 3/min ,容积系数λv =0.798,一级系数λp λT λl =0.900,转速n =1200 r/min ,活塞行程S =0.055 m 。求往复压缩机的气缸工作容积V h (m 3)和气缸直径D (m )。 8.一台单级往复活塞式空气压缩机,容积系数λv =0.800,气缸工作容积V h =0.1330 m 3,压缩机转速n =330 r/min ,当量过程指数m =1.33,平均实际吸气压力p 1'=92910 Pa ,平均实际排气压力p 2'=422741 Pa 。求往复压缩机的指示功率N i (kW )。

离心泵性能实验报告

北京化工大学化工原理实验报告 实验名称:离心泵性能实验 班级:化工100 学号:2010 姓名: 同组人: 实验日期:2012.10.7

一、报告摘要: 本次实验通过测量离心泵工作时,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ?、电机输入功率Ne 以及流量Q (t V ??/)这些参数的关系,根据公式 0e H H H H ++=压力表真空表、转电电轴ηη??=N N 、102e ρ ??= He Q N 以及轴 N Ne =η可以得出 离心泵的特性曲线;再根据孔板流量计的孔流系数ρp u C ?=2/ 0与雷诺数 μ ρdu = Re 的变化规律作出Re 0-C 图,并找出在Re 大到一定程度时0C 不随Re 变化时的0C 值;最后测量不同阀门开度下,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ?,根据已知公式可以求出不同阀门开度下的Q H -e 关系式,并作图可以得到管路特性曲线图。 二、目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 三、基本原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He :e 0H H H H =++真空表压力表 式中:H 真空表——泵出口的压力,2mH O , H 压力表——泵入口的压力,2mH O 0H ——两测压口间的垂直距离,0H 0.85m = 。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入

泵与压缩机课程复习要点(机设专业)

泵与压缩机课程要点 一、离心泵 1、离心泵的工作原理?种类?用途?参数及含义? 2、离心泵的结构、各种叶轮结构及应用、三种形式的叶片出口角。 3、离心泵的轴向力产生的原因、方向、危害、消除或减小轴向力的措施。 4、离心泵的基本方程式、离心泵的特性曲线及应用。三种H-Q曲线的应用场合。 5、离心泵的叶轮直径、转速与流量关系;流量与扬程的关系;扬程与液体性质的关系。 6、离心泵的相似条件、相似公式、比转数。 7、离心泵内的各种能量损失及原因。 8、离心泵汽蚀的原因,汽蚀的过程,防止汽蚀的措施。 9、离心泵最大允许安装高度的确定。 10、离心泵的管路特性曲线、泵管联合工作特性、工况点的确定。离心泵工况点的调节方法?。 11、离心泵的串联、并联特性、目的。 12、离心泵的启动、停止操作步骤。 13、离心泵各参数的相关计算。 二、往复泵 1、往复泵的工作原理。种类。 2、往复泵的组成及主要易损零部件。 3、往复泵排量、压力波动的原因、变化规律、减小波动的措施。各种往复泵排量波动的比较。 4、往复泵的有效压头、实际排量、各种功率、效率间的计算。 5、往复泵内的各种能量损失。 6、往复泵的排量系数与其容积效率的区别与联系。 7、往复泵的特性曲线、临界特性曲线、管路特性曲线、泵管联合工作特性曲线及应用。 8、钻井泵排量、泵压与井深的关系。 9、钻井泵在钻井时为什么要换缸套?何时换?缸套直径与泵压的关系。 10、往复泵的排量调节方式? 三、压缩机 1、压缩机的分类、特点及各自适用范围。 2、活塞式压缩机、螺杆压缩机各自的工作原理(过程)。

3、二种压缩机的结构组成及结构特点。 4、活塞式压缩机的理论工作循环(过程)与实际工作循环(过程)的区别及原因。 5、活塞式压缩机的吸气温度、压力,排气温度、压力与消耗功的关系。 6、活塞式压缩机采用多级压缩的优点?(为什么?) 7、活塞式压缩机的能量损失。 8、活塞式压缩机的排气量与余隙容积的关系。提高排气量的方法? 9、活塞式压缩机的排气量调节方式? 10、活塞式压缩机的旋转惯性力的平衡。 11、双螺杆压缩机的结构特征。 12、干式(无油)和湿式(喷油)螺杆压缩机的区别、冷却方式。 13、螺杆式压缩机的排气量调节方法?

《泵与压缩机》

中国石油大学(北京)远程教育学院 期 末 考 试 《泵与压缩机》 学习中心:_______ 姓名:________ 学号:_______ 关于课程考试违规作弊的说明 1、提交文件中涉嫌抄袭内容(包括抄袭网上、书籍、报刊杂志及其他已有论文),带有明显外校标记,不符合学院要求或学生本人情况,或存在查明出处的内容或其他可疑字样者,判为抄袭,成绩为“0”。 2、两人或两人以上答题内容或用语有50%以上相同者判为雷同,成绩为“0”。 3、所提交试卷或材料没有对老师题目进行作答或提交内容与该课程要求完全不相干者,认定为“白卷”或“错卷”,成绩为“0”。 一、题型 简答题,6题,每题10分,共60分;计算分析题,2题,共40分。 二、题目 1、简答题要求:每位同学从7道题中任选5题完成; 2、计算分析题要求:每位同学从3道题中任选2题完成。 简答题: 1、 离心泵的过流部件有哪些?它们的主要功能是什么(12分) 答:离心泵的过流部件包括吸入室、叶轮、及排除室。 (1)吸入室是把液体从吸入管引入叶轮,要求液体流过吸入室时流动损失较小,并使液体流入叶轮时速度分布均匀。 (2)叶轮是离心泵的唯一做工部件,液体从叶轮中获得能量。对叶轮的要求是在流动损失最小的情况下使单位质量的液体获得较高的能头。 (3)排出室是把从叶轮内流出来的液体收集起来,并按一定的要求送入下级叶轮入口或送入排出管。 2、 写出比例定律和切割定律的表达式?(12分) (1)比例定律:在不同转速情况下,泵相似工况点的性能参数的变化规律用比例定律来确定。 表达式: 2 1 21n n Q Q (1 - 50)

2 2121???? ??=n n H H (1 - 51) 3 2121??? ? ??=n n N N (1 - 52) (2)切割定律:当叶轮切割量较小时,可认为切割前后叶片的出口角和通流面积近似不 变,泵效率近似相等。 表达式: v r v r c b D c b D Q Q ητητ22222222'''''= ' 222222ττb D b D ≈''' ; v v ηη=' 故切割前后的流量间关系为: 2 22222D D n D n D c c Q Q r r ' =''='=' (1 - 56扬程间的关系为: 2 222222 ??? ? ??'='''='D D c u c u H H h u u u ηη (1 - 57) 功率间的关系为: 3 22??? ? ??'=''''='D D QH H Q N N ηρηρ (1 - 58) 3、 简述汽蚀发生的过程,并描述汽蚀产生的危害。(12分) 答:当叶轮入口附近最低压力P k 小于该处温度下被输进液体的饱和蒸汽压P v 时,液体 在叶轮入口处就会气化,同时溶解在该液体中的气体也在逸出,形成大量小气泡。当气泡随液体流到叶道内压力较高处时,外面液体压力高于气泡内的气化压力,则气泡会凝结溃灭,形成空穴。瞬间内,周围的液体以极高的速度向空穴冲击,造成液体互相撞击,使局部压力骤然剧增(有时可达数百大气压),阻碍液体正常流动。如过这些气泡在叶道壁面附近溃灭,则周围的液体以极高频率连续撞击金属表面。金属表面因冲击、疲劳而剥落。若气泡内还夹杂着某些活性气体,它们借助气泡凝结时放出的热量,对金属起电化学腐蚀作用,这就更加快了金属剥落速度。上述这种液体气化、凝结形成高频冲击负荷,造成金属材料的机械剥落和电化学腐蚀的综合现象统称为“汽蚀现象”。 汽蚀现象的危害主要有(1)产生振动和噪音(2)降低泵的性能(3)破坏过流部件 4、 离心压缩机流量调节可用哪些方法?最常用的是哪些方法,有何特点?(12分) 答:a .出口节流调节;b .进口节流调节;c .改变转速调节;d .转动进口导叶调节(又 称进气预旋调节);e.可转动的扩压器叶片调节方法。 5、 离心压缩机完全相似条件是什么?在性能换算中有哪两种近似相似情况?(12分)

相关文档
最新文档