混合器原理介绍

混合器原理介绍
混合器原理介绍

混合器原理介绍2011-02-27

静态混合器的工作原理

静态混合器的工作原理:就是让流体在管线中流动冲击各种类型板元件,增加流体层流运动的速度梯度或形成湍流,层流时是“分割-位置移动-重新汇合”,湍流时,流体除上述三种情况外,还会在断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体进一步分割混合,最终混合形成所需要的乳状液。之所以称之为“静态”混合器,是指管道内没有运动部件,只有静止元件。

管道混合器是一种没有运动部件的高效混合设备,通过固定在管内的混合单元内件,使二股或多股流体产生流体的切割、剪切、旋转和重新混合,达到流体之间良好分散和充分混合的目的。静态混合器与传统的混合设备相比,具有流程简单,结构紧凑、能耗小、投资少、操作弹性大、不用维修、混合性能好等优点。凡涉及到液—液、液—气、液—固、气—气的混合,乳化,中和,吸收,萃取,

反应和强化传热等过程。

通道混合器是七十年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,八十年代后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得

到了很好的应用。

静态混合器的本身没有运动部件、依靠单元的特殊结构和流体运动,使互不相溶的流体各自分散、

彼此混合,达到良好混合效果。

SV型静态混合器:适用于粘度≤102厘泊的液–液、液–气、气–气的混合、乳化,反应、吸收、萃取、强化传热过程。其中dh≤3.5尤适用于清洁介质,dh≥5可用于介质伴有少量非粘结性杂质。

SK型静态混合器:适用于石油、化工、精细化工、塑料挤出、环保、矿冶等行业的中高粘度(≤106厘泊)流体或液固混合,反应,萃取,吸收,塑料配色,挤出,传热等过程。对小流量并伴有杂质的

粘性介质尤为适用。

SX型静态混合器:适用于粘度≤104厘泊的中高粘度液一液混合,反应吸收过程或生产高聚物流体的混合,反应吸收过程或生产高聚物流体的混合,反应过程,处理量较大时使用效果更佳。

SL型静态混合器:适用于化工、石油、油脂等行业、粘度≤106厘泊或伴有高聚物流体的混合,同时进行传热,混合和传热反应的热交换器,加热或冷却粘性产品等单元操作。

SH型静态混合器:适用于精细化工、塑料、合成纤维、矿冶等行业流体的混合,乳化、配色,注塑,纺丝,传热等过程,对流量小,混合要求高的中高粘度(≤104厘泊)的清洁介质尤为适合。

静态混合器的工作原理

静态混合器的工作原理:就是让流体在管线中流动冲击各种类型板元件,增加流体层流运动的速度梯度或形成湍流,层流时是“分割-位置移动-重新汇合”,湍流时,流体除上述三种情况外,还会在断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体进一步分割混合,最终混合形成所需要的乳状液。之所以称之为“静态”混合器,是指管道内没有运动部件,只有静止元件。

管道混合器是一种没有运动部件的高效混合设备,通过固定在管内的混合单元内件,使二股或多股流体产生流体的切割、剪切、旋转和重新混合,达到流体之间良好分散和充分混合的目的。静态混合器与传统的混合设备相比,具有流程简单,结构紧凑、能耗小、投资少、操作弹性大、不用维修、混合性能好等优点。凡涉及到液—液、液—气、液—固、气—气的混合,乳化,中和,吸收,萃取,

反应和强化传热等过程。

通道混合器是七十年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,八十年代后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得

到了很好的应用。

静态混合器的本身没有运动部件、依靠单元的特殊结构和流体运动,使互不相溶的流体各自分散、

彼此混合,达到良好混合效果。

SV型静态混合器:适用于粘度≤102厘泊的液–液、液–气、气–气的混合、乳化,反应、吸收、萃取、强化传热过程。其中dh≤3.5尤适用于清洁介质,dh≥5可用于介质伴有少量非粘结性杂质。

SK型静态混合器:适用于石油、化工、精细化工、塑料挤出、环保、矿冶等行业的中高粘度(≤106厘泊)流体或液固混合,反应,萃取,吸收,塑料配色,挤出,传热等过程。对小流量并伴有杂质的

粘性介质尤为适用。

SX型静态混合器:适用于粘度≤104厘泊的中高粘度液一液混合,反应吸收过程或生产高聚物流体的混合,反应吸收过程或生产高聚物流体的混合,反应过程,处理量较大时使用效果更佳。

SL型静态混合器:适用于化工、石油、油脂等行业、粘度≤106厘泊或伴有高聚物流体的混合,同时进行传热,混合和传热反应的热交换器,加热或冷却粘性产品等单元操作。

SH型静态混合器:适用于精细化工、塑料、合成纤维、矿冶等行业流体的混合,乳化、配色,注塑,纺丝,传热等过程,乳化机,对流量小,混合要求高的中高粘度(≤104厘泊)的清洁介质尤为适合。

静态混合器的工作原理

静态混合器的工作原理:就是让流体在管线中流动冲击各种类型板元件,增加流体层流运动的速度梯度或形成湍流,层流时是“分割-位置移动-重新汇合”,湍流时,流体除上述三种情况外,还会在断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体进一步分割混合,最终混合形成所需要的乳状液。之所以称之为“静态”混合器,是指管道内没有运动部件,只有静止元件。

管道混合器是一种没有运动部件的高效混合设备,通过固定在管内的混合单元内件,使二股或多股流体产生流体的切割、剪切、旋转和重新混合,达到流体之间良好分散和充分混合的目的。静态混合器与传统的混合设备相比,具有流程简单,结构紧凑、能耗小、投资少、操作弹性大、不用维修、混合性能好等优点。凡涉及到液—液、液—气、液—固、气—气的混合,乳化,中和,吸收,萃取,

反应和强化传热等过程。

通道混合器是七十年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制

开发的静态混合器,八十年代后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得

到了很好的应用。

静态混合器的本身没有运动部件、依靠单元的特殊结构和流体运动,使互不相溶的流体各自分散、

彼此混合,达到良好混合效果。

SV型静态混合器:适用于粘度≤102厘泊的液–液、液–气、气–气的混合、乳化,反应、吸收、萃取、强化传热过程。其中dh≤3.5尤适用于清洁介质,dh≥5可用于介质伴有少量非粘结性杂质。

SK型静态混合器:适用于石油、化工、精细化工、塑料挤出、环保、矿冶等行业的中高粘度(≤106厘泊)流体或液固混合,反应,萃取,吸收,塑料配色,挤出,传热等过程。对小流量并伴有杂质的

粘性介质尤为适用。

SX型静态混合器:适用于粘度≤104厘泊的中高粘度液一液混合,反应吸收过程或生产高聚物流体的混合,反应吸收过程或生产高聚物流体的混合,反应过程,处理量较大时使用效果更佳。

SL型静态混合器:适用于化工、石油、油脂等行业、粘度≤106厘泊或伴有高聚物流体的混合,同时进行传热,混合和传热反应的热交换器,高剪切分散乳化机,加热或冷却粘性产品等单元操作。

SH型静态混合器:适用于精细化工、塑料、合成纤维、矿冶等行业流体的混合,乳化、配色,注塑,纺丝,传热等过程,对流量小,混合要求高的中高粘度(≤104厘泊)的清洁介质尤为适合。

静态混合器的工作原理

静态混合器的工作原理:就是让流体在管线中流动冲击各种类型板元件,增加流体层流运动的速度梯度或形成湍流,层流时是“分割-位置移动-重新汇合”,湍流时,流体除上述三种情况外,还会在断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体进一步分割混合,最终混合形成所需要的乳状液。之所以称之为“静态”混合器,是指管道内没有运动部件,只有静止元件。

管道混合器是一种没有运动部件的高效混合设备,通过固定在管内的混合单元内件,使二股或多股流体产生流体的切割、剪切、旋转和重新混合,达到流体之间良好分散和充分混合的目的。静态混

合器与传统的混合设备相比,具有流程简单,结构紧凑、能耗小、投资少、操作弹性大、不用维修、混合性能好等优点。凡涉及到液—液、液—气、液—固、气—气的混合,乳化,中和,吸收,萃取,

反应和强化传热等过程。

通道混合器是七十年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,八十年代后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得

到了很好的应用。

静态混合器的本身没有运动部件、依靠单元的特殊结构和流体运动,使互不相溶的流体各自分散、

彼此混合,达到良好混合效果。

SV型静态混合器:适用于粘度≤102厘泊的液–液、液–气、气–气的混合、乳化,反应、吸收、萃取、强化传热过程。其中dh≤3.5尤适用于清洁介质,dh≥5可用于介质伴有少量非粘结性杂质。

SK型静态混合器:适用于石油、化工、精细化工、塑料挤出、环保、矿冶等行业的中高粘度(≤106厘泊)流体或液固混合,反应,萃取,吸收,塑料配色,挤出,传热等过程。对小流量并伴有杂质的

粘性介质尤为适用。

SX型静态混合器:适用于粘度≤104厘泊的中高粘度液一液混合,反应吸收过程或生产高聚物流体的混合,反应吸收过程或生产高聚物流体的混合,反应过程,处理量较大时使用效果更佳。

SL型静态混合器:适用于化工、石油、油脂等行业、粘度≤106厘泊或伴有高聚物流体的混合,同时进行传热,混合和传热反应的热交换器,加热或冷却粘性产品等单元操作。

SH型静态混合器:适用于精细化工、塑料、合成纤维、矿冶等行业流体的混合,乳化、配色,注塑,纺丝,传热等过程,对流量小,混合要求高的中高粘度(≤104厘泊)的清洁介质尤为适合。

静态混合器的工作原理

静态混合器的工作原理:就是让流体在管线中流动冲击各种类型板元件,增加流体层流运动的速度梯度或形成湍流,层流时是“分割-位置移动-重新汇合”,湍流时,流体除上述三种情况外,还会在断面方

向产生剧烈的涡流,有很强的剪切力作用于流体,使流体进一步分割混合,最终混合形成所需要的乳状液。之所以称之为“静态”混合器,是指管道内没有运动部件,只有静止元件。

管道混合器是一种没有运动部件的高效混合设备,通过固定在管内的混合单元内件,使二股或多股流体产生流体的切割、剪切、旋转和重新混合,给料阀,达到流体之间良好分散和充分混合的目的。静态混合器与传统的混合设备相比,具有流程简单,结构紧凑、能耗小、投资少、操作弹性大、不用维修、混合性能好等优点。凡涉及到液—液、液—气、液—固、气—气的混合,乳化,中和,吸收,

萃取,反应和强化传热等过程。

通道混合器是七十年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,八十年代后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得

到了很好的应用。

静态混合器的本身没有运动部件、依靠单元的特殊结构和流体运动,使互不相溶的流体各自分散、

彼此混合,达到良好混合效果。

SV型静态混合器:适用于粘度≤102厘泊的液–液、液–气、气–气的混合、乳化,反应、吸收、萃取、强化传热过程。其中dh≤3.5尤适用于清洁介质,dh≥5可用于介质伴有少量非粘结性杂质。

SK型静态混合器:适用于石油、化工、精细化工、塑料挤出、环保、矿冶等行业的中高粘度(≤106厘泊)流体或液固混合,反应,萃取,吸收,塑料配色,挤出,传热等过程。对小流量并伴有杂质的

粘性介质尤为适用。

SX型静态混合器:适用于粘度≤104厘泊的中高粘度液一液混合,反应吸收过程或生产高聚物流体的混合,反应吸收过程或生产高聚物流体的混合,反应过程,处理量较大时使用效果更佳。

SL型静态混合器:适用于化工、石油、油脂等行业、粘度≤106厘泊或伴有高聚物流体的混合,同时进行传热,混合和传热反应的热交换器,加热或冷却粘性产品等单元操作。

SH型静态混合器:适用于精细化工、塑料、合成纤维、矿冶等行业流体的混合,乳化、配色,注塑,纺丝,传热等过程,对流量小,混合要求高的中高粘度(≤104厘泊)的清洁介质尤为适合。

静态混合器的工作原理

静态混合器的工作原理:就是让流体在管线中流动冲击各种类型板元件,增加流体层流运动的速度梯度或形成湍流,层流时是“分割-位置移动-重新汇合”,湍流时,流体除上述三种情况外,还会在断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体进一步分割混合,最终混合形成所需要的乳状液。之所以称之为“静态”混合器,是指管道内没有运动部件,只有静止元件。

管道混合器是一种没有运动部件的高效混合设备,通过固定在管内的混合单元内件,使二股或多股流体产生流体的切割、剪切、旋转和重新混合,达到流体之间良好分散和充分混合的目的。静态混合器与传统的混合设备相比,具有流程简单,结构紧凑、能耗小、投资少、操作弹性大、不用维修、混合性能好等优点。凡涉及到液—液、液—气、液—固、气—气的混合,乳化,中和,吸收,萃取,

反应和强化传热等过程。

通道混合器是七十年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,八十年代后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得

到了很好的应用。

静态混合器的本身没有运动部件、依靠单元的特殊结构和流体运动,使互不相溶的流体各自分散、

彼此混合,达到良好混合效果。

SV型静态混合器:适用于粘度≤102厘泊的液–液、液–气、气–气的混合、乳化,反应、吸收、萃取、强化传热过程,给料阀。其中dh≤3.5尤适用于清洁介质,dh≥5可用于介质伴有少量非粘结性杂质。SK型静态混合器:适用于石油、化工、精细化工、塑料挤出、环保、矿冶等行业的中高粘度(≤106厘泊)流体或液固混合,反应,萃取,吸收,塑料配色,挤出,传热等过程。对小流量并伴有杂质的

粘性介质尤为适用。

SX型静态混合器:适用于粘度≤104厘泊的中高粘度液一液混合,反应吸收过程或生产高聚物流体的混合,反应吸收过程或生产高聚物流体的混合,反应过程,处理量较大时使用效果更佳。

SL型静态混合器:适用于化工、石油、油脂等行业、粘度≤106厘泊或伴有高聚物流体的混合,同时进行传热,混合和传热反应的热交换器,加热或冷却粘性产品等单元操作。

SH型静态混合器:适用于精细化工、塑料、合成纤维、矿冶等行业流体的混合,乳化、配色,注塑,纺丝,传热等过程,对流量小,混合要求高的中高粘度(≤104厘泊)的清洁介质尤为适合。

静态混合器的工作原理

静态混合器的工作原理:就是让流体在管线中流动冲击各种类型板元件,增加流体层流运动的速度梯度或形成湍流,层流时是“分割-位置移动-重新汇合”,湍流时,流体除上述三种情况外,还会在断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体进一步分割混合,最终混合形成所需要的乳状液。之所以称之为“静态”混合器,是指管道内没有运动部件,只有静止元件。

管道混合器是一种没有运动部件的高效混合设备,通过固定在管内的混合单元内件,使二股或多股流体产生流体的切割、剪切、旋转和重新混合,达到流体之间良好分散和充分混合的目的。静态混合器与传统的混合设备相比,具有流程简单,结构紧凑、能耗小、投资少、操作弹性大、不用维修、混合性能好等优点。凡涉及到液—液、液—气、液—固、气—气的混合,乳化,中和,吸收,萃取,

反应和强化传热等过程。

通道混合器是七十年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,八十年代后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得

到了很好的应用。

静态混合器的本身没有运动部件、依靠单元的特殊结构和流体运动,使互不相溶的流体各自分散、

彼此混合,达到良好混合效果。

SV型静态混合器:适用于粘度≤102厘泊的液–液、液–气、气–气的混合、乳化,反应、吸收、萃取、

强化传热过程。其中dh≤3.5尤适用于清洁介质,dh≥5可用于介质伴有少量非粘结性杂质。

SK型静态混合器:适用于石油、化工、精细化工、塑料挤出、环保、矿冶等行业的中高粘度(≤106厘泊)流体或液固混合,星型给料阀,反应,萃取,吸收,塑料配色,挤出,传热等过程。对小流量

并伴有杂质的粘性介质尤为适用。

SX型静态混合器:适用于粘度≤104厘泊的中高粘度液一液混合,反应吸收过程或生产高聚物流体的混合,反应吸收过程或生产高聚物流体的混合,反应过程,处理量较大时使用效果更佳。

SL型静态混合器:适用于化工、石油、油脂等行业、粘度≤106厘泊或伴有高聚物流体的混合,同时进行传热,混合和传热反应的热交换器,加热或冷却粘性产品等单元操作。

SH型静态混合器:适用于精细化工、塑料、合成纤维、矿冶等行业流体的混合,乳化、配色,注塑,纺丝,传热等过程,对流量小,混合要求高的中高粘度(≤104厘泊)的清洁介质尤为适合。https://www.360docs.net/doc/9f17525623.html,/51437398/blog/14931914.html

ps 利用“通道混合器”调整颜色

利用“通道混合器”调整颜色 1、打开一张图片,选择“图像>调整>通道混合器”命令(见图8-37),弹出对话框: 图8-37 2、在对话框的左下角选择“单色”选项,此时在对话框上部的“输入通道”拉列表中只包含“灰色”选项(见图8-38), 图8-38 选择“单色”的对话框灰度图像效果 3、在“源通道”区域中拖动各滑块以调整图像的灰度效果,这样就可以得到高品质的灰图像效果,如果想在图像上添加颜色,可以继续下面的操作, 4、在“图像通道器”对话框中取消“单色”选项。 因为是RGB图像,所以在“输出通道”下拉列表中有“红”、“绿”、“蓝”三个选项,此时图像还是保持灰色。

图8-39 5、在“输出通道”下拉列表中选择一个通道,根据需要设置适当的参数,得到新的图像效果(见图8-39)。 实习二、利用“通道混合器”调整颜色 1、打开一张图片,选择“图像>调整>通道混合器”命令(见图8-37),弹出对话框: 图8-37 2、在对话框的左下角选择“单色”选项,此时在对话框上部的“输入通道”拉列表中只包含“灰色”选项(见图8-38), 图8-38 选择“单色”的对话框灰度图像效果 3、在“源通道”区域中拖动各滑块以调整图像的灰度效果,这样就可以得到高品质的灰图像效果,如果想在图像上添加颜色,可以继续下面的操作, 4、在“图像通道器”对话框中取消“单色”选项。 因为是RGB图像,所以在“输出通道”下拉列表中有“红”、“绿”、“蓝”三个选项,此时图像还是保持灰色。

图8-39 5、在“输出通道”下拉列表中选择一个通道,根据需要设置适当的参数,得到新的图像效果(见图8-39)。

文丘里洗涤器工作原理

简介 文丘里洗涤器又称文丘里管除尘器。由文丘里管凝聚器和除雾器组成。除尘过程可分为雾化、凝聚和除雾等三个阶段,前二阶段在文丘里管内进行,后一阶段在除雾器内完成。文氏管是一种投资省、效率高的湿法净化设备。根据文氏管喉管供液方式的不同,可分为外喷文氏管和内喷文氏管。第一级文氏管的收缩管材质通常采用铸铁,喉管为铸铁或钢内衬石墨,扩张管为硬铅,也可以用硬PVC或钢内衬橡胶。第二级文氏管材质通常全部采用硬PVC。 工作原理 文丘里管包括收缩段、喉管和扩散段。含尘气体进入收缩段后,流速增大,进入喉管是达到最大值。洗涤液从收缩段或喉管加入,气液两相间相对流速很大,液滴在高速气流下雾化 文丘里洗涤器 ,气体湿度达到饱和,尘粒被水湿润。尘粒与液滴或尘粒之间发生激烈碰撞和凝聚。在扩散段,气液速度减小,压力回升,以尘粒为凝结核的凝聚作用加快,凝聚成直径较大的含尘液滴,进而在除雾器内被捕集。文丘里管构造有多种型式。按断面形状分为圆形和方形两种;按喉管直径的可调节性分为可调的和固定的两类;按液体雾化方式可分为预雾化型和非雾化型;按供水方式可分为径向内喷、径向外喷、轴向喷水和溢流供水等四类。适用于去除粒径0.1-100μm的尘粒,除尘效率为80-99%,压力损失范围为1.0-9.0kPa,液气比取值范围为0.3-1.5L/m3。对高温气体的降温效果良好,广泛用于高温烟气的除尘、降温,也能用作气体吸收器。 工艺参数 文氏管的主要工艺参数是炉气在喉管中的流速、液气比和压力降。其中最关键的参数是喉管气速,只要压力降允许,喉管气速以大于等于60m/s为宜。对于以捕集粒径较粗的尘为主 文丘里洗涤器 要目的的文氏管,宜采用较低的气速和压力降;对于捕集粒径较小的酸雾和As2O3为主要目的,则宜采用较高的气速和较高的压力降。

ps高级技巧之通道混合器色彩平衡可选颜色区别

可选颜色,通道混合器,色彩平衡有什么区别 每一个颜色中都含有红绿蓝三种色光,只不过是各光强度不同,如品红#FF00FF,即含有红光,又含有蓝光,但不含绿光。向右滑动“红色”滑块,会增大红光的值,但品红颜色中,红光已经达到最在值,再加入已无意义。如果向左滑动滑块,会减小红光的值,如变成#cc00FF 或#3300FF等。 根据通道和三原色原理,有规律(在头脑里一定要熟记!): 在RGB颜色模式中, 通道红——越亮画面就越红少青;越暗就越青少红; 通道绿——越亮画面就越绿少品;越暗就越品少绿; 通道蓝——越亮画面就越蓝少黄;越暗就越黄少蓝; 通道混和器的规律有: 规律1: 在通道混和器中,如果对某通道始终有等式成立: 红色百分比%+绿色百分比%+蓝色百分比%=总计100%那么,该通道的中性灰的颜色就会保持不变。

用通道混合器调色的时候:: 有个基本的操作技巧我觉的有必要提醒你一下: 为了便于说明,我们将图像分为两个区域,一个是调整区,即我们通过调整主动改变的区域;另一个是影响区,即在调整过程中被动改变的区域,而这种改变通常是我们所不需要的。 如何选择基准色阶(源通道),确实是有个技巧: 1、为了能够快速改变调整区的颜色,通常应该选择较大的基准色阶。 比如上例中的绿叶要变为橙色,自然是要加红,但以什么为基准呢?由于在绿叶区绿色最大,因此,应该选择以绿色阶为基准增加红色。如果以红色为基准增加红色,由于绿叶区的红色阶较小,因此需要调整很大的幅度才可以达到橙色的效果;相反,原来的皮肤区,由于红色阶最大,因此,受到的影响也最大,皮肤明显变红了。 2、为了基本保持调整区的结果,同时对影响区进行有效补偿,则应该以调整区中较小的色阶值为基准(最好为最小值,其次可以用中间值)。 比如上例中的不论是对绿叶调整区,还是后来的皮肤调整区,都是以最小的兰色阶为基准进行补偿。这是显而易见的,因为,如果以最大值进行补偿的话,相当于直接减弱了调整区的调整力度。 Ⅱ可选颜色 看第一个调整色:青色! 青色代表什么呢?大家在RGB三原色及其对应色的关系中可以看出,青色是红色的对应色,如果我们把滑块向右拖动增加青色,红色是不是越来越黑了,那正是两个对应色混合,相互吸收的原理。拖动滑块向左减少青色,大家看到什么?是不是没有变化呀,因为在红色本色就不具有青色

汽车传感器类型及其工作原理

汽车传感器类型及其工作原理 汽车技术的发展,使得越来越多的元器件用到整个汽车系统的控制上面。 最常用的就是使用传感器来检测各种需要检测或者对汽车行驶、控制需要参考 的重要参数,并将这些信号转化成电信号等待再次处理。下面,小编来和大家 分享一些汽车传感器类型,并针对这些不同性能的传感器它的工作原理,来告 诉大家它在汽车中是用在什么地方,具体是怎么操作的,并且它在整个系统中 有什么样的作用。常用的汽车传感器类型、工作原理和使用方式(1) 里程表传感器在差速器或者半轴上面的传感器,来感觉转动的圈数,一般 用霍尔,光电两个方式来检测信号,其目的利用里程表记数可有效的分析判断 汽车的行驶速度和里程,因为半轴和车轮的角速度相等,已知轮胎的半径,直 接通过历程参数来计算。在传动轴上设计两个轴承,大大减轻了运行中的力距,减少了摩擦力,增强了使用寿命;由原来的动态检测信号改为齿轮运转式检测信号;由原来直插式垂直变速箱改为倒角式接口变速箱。里程表传感器插头一般是在变速箱上,有的打开发动机盖可以看到,有的要在地沟操作。 (2) 机油压力传感器是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。常用的有硅压阻式和硅电 容式,两者都是在硅片上生成的微机械电子传感器。一般情况上,我们通过机 油压力传感器来检测汽车的机油向内的汽油还有多少,并将检测到的信号转换 成我们可以理解的信号,提醒我们还有多少汽油,或者还可以走多远,甚至是 提醒汽车需要加汽油了。(3) 水温传感器它的内部是一个半导体热敏电阻,温度愈低,电阻愈大;反之电阻愈小,安装在发动机缸体或缸盖的水套上,与冷却水直接接触。从而侧得发动机冷却水的温度。电控单元根据这一变化测 得发动机冷却水的温度,温度愈低,电阻愈大;反之电阻愈小。电控单元根据这

JY型管式静态混合器

JY型管式静态混合器 一、适用范围 管式静态混合器,是净水厂、污水厂及工业用水、废水处理设备中投加混凝剂、助凝剂、消毒剂后与水流实现瞬时混合的新颖设备,适用于生活饮用水、城市自来水厂。 二、结构特点 管式静态混合器整件均为钢制结构,具有坚固耐用、结构简单、不需专门占用场地、安装容易、投资少、使用寿命长、混合效率高等特点,在运行过程中五任何有害物质溶析出。 三、工作原理 管式静态混合器主体在混合管内设一系列特殊设计的螺旋状混合单体,每两个相邻的形状相同的单体,方向相反地交叉固定在管道内,运行中单体本身不发生旋转运动,混合器内也无任何转动部件,而是以流水的动能作为混合的能量,流体在混合单体内流动时,每一单体将水流一分为二,混合器的总分流数将按单体的数量成几何级数逐增,这种混合作用称为成对分流混合,而由于相邻的混合单体方向相反,使水流不断产生方向相反的漩涡和反漩涡,这种漩涡和反漩涡更增强了混合效率,在混合器内同时发生三种混合作用,从而使得本体具有传质速度快,能完成不同液体介质在瞬时内有效混合的特点。、 四、技术性能 1、混合器公直径D150--D1200mm 2、混合单体与管中心线夹角26°30′ 3、混合单体个数一般为三个 亦可根据混合效率的不同要求而增减 4、混合单体板在管中心线方向上的投影长度: D/LX=1:1 5、设计流速V,由设计人(用户)选用,一般为: <500mm V<1.0m/s D N ≥500mm V>1.0m/s D N 6、混合效率:一般为90%以上 五、外形及尺寸安装 1、外形尺寸附表、附图 2、安装 (1)静态混合器一般宜水平安装,在条件不许可时也可采用垂直或倾斜安装,水平安装时一般宜按设于矩形井室内。 (2)管式静态混合器的安装位置应尽可能接近反映池或者微絮凝接触过滤池的进口处,可将药加在前端管中用计量泵或其他方法加入加药后的水流通过混合器后直接进入反应池或接触过滤池。 (3)为便于检修在混合器的两端宜安装闸阀,并在后端设有一个活接头,以便

文丘里洗涤器原理和作用

新型文丘里洗涤器 文丘里洗涤器的应用十分广泛———除尘、除沫、气体净化。传统的文丘里洗涤器由收缩管、喉管、扩散管组成。高压液体通过喷嘴形成大液滴喷入气流中,在喉管处较高的气速和剪切力的作用下雾化成细小的液滴,与气体中的尘粒接触使其分离。但是,最近国外设计的新型文丘里洗涤器却采用了与传统文丘里洗涤器大相径庭的结构形式。 新型文丘里洗涤器采用管缝隙作为气—液接 触区,其最大特点是,液体的雾化不是由高速气流产生的,而是由液体喷嘴形成的,喉部只是提供气—液间的密切接触。因此高除尘(雾)效率不是以高气体压降为代价的。最初的管—隙式文丘里洗 〓$/〓硫酸工业%00;年第$期 涤器见图!。 图!最初的管—隙式文丘里洗涤器 在一根垂直管内,上部装有两个高压液体喷 嘴,中部由两根水平细管构成一道狭窄的缝隙,水平细管下面装有一个柱形调节器,与之形成两道缝隙。洗涤液通过高压喷嘴雾化,在狭缝处与气体相接触,操作时,由一个传动装置上下移动调节器以改变缝隙宽度即喉部截面积大小,以在气体流量波动的情况下达到稳定的分离效果。设备的下游采 用离心式除沫器(旋风分离器)除去气流中夹带的雾沫。在管—隙式文丘里洗涤器的基础上又开发了复式喷嘴"#$%&'"%()*%&文丘里洗涤器,其结 构见图+。

图+"#$%&'"%()*%&文丘里洗涤器 "#$%&'"%()*%&文丘里洗涤器采用若干个 平行缝隙作为喉部,运行时无需调节缝隙宽度,从而进一步简化了结构。更重要的是,这种洗涤器采用了近年来国外开发的脉冲复式喷嘴,运行时以单式(只用洗涤液)和复式(同时采用压缩空气和洗涤液)的方式交互雾化。它在喷嘴的喷头中装有两个共振盒,自动产生共振。这种雾化技术的最大优点是,加速和减速交替出现,以诱发更剧烈地湍动,从而极大地提高分离效率。此外,脉冲可阻止尘粒在喉部沉降。缝隙和喷嘴的数量取决于流量的大小。由于在管缝隙处几乎没有气—液间的能量交换,所以这种洗涤器可以达到极高的分离效率,而气体压降却趋于零。 德国拜耳公司技术部曾于!,,,-./0中试装 置上测定了"#$%&'"%()*%&文丘里洗涤器的分 离效果。结果表明,对于,1!2!,!-直径的尘粒, 分离效率达到3+42!,,4,并且能耗低于其它文 丘里洗涤器。 与此同时,还进行了用氢氧化钠溶液吸收二氧 化硫的试验。试验气体流量为!,,,-./0、!(56 +) 分别为!,,和7,,-8/-.,采用9*值为!!17的氢 氧化钠溶液进行吸收。结果表明,复式喷嘴文丘里洗涤器的二氧化硫吸收率明显高于压力喷嘴文丘 里洗涤器,而两者压降相当,见图.。此外,零压降时复式喷嘴文丘里洗涤器所需的传质单元数为压 力喷嘴文丘里洗涤器的一半。 图.56 +吸收试验结果 !、.压力喷嘴,进气!(56 +)分别为7,,、!,,-8/-. +、:复式喷嘴,进气!(56 +)分别为7,,、!,,-8/-. 综上所述,复式喷嘴"#$&%'"%()*%&文丘 里洗涤器具有结构简单,分离效率高、能耗低、 可同时除尘和分离气体、操作弹性大、可靠性高、结构紧凑等优点,非常适合于现有装置的改造。(瑾)

漩涡混合器KHVORTEX-5

漩涡混合器KHVORTEX-5 产品简介: 振动与旋涡混合方式:可调速控制,能从低速振动到高速漩涡混合。可根据需要选择适合的混合方式。 多元功能:碗型振动台与平板型振动的双重提供,可适应不同试管及容器的手动或自动的两种混合方式。 自动与点振混合方式:三点开关可选择自动或点振混合方式。 稳定操作:足够重量和整体金属外壳为各种混合提供了稳定操作平台。 技术参数 电源:220V、功率:50W 转速:2800转/分 工作方式:连续、点触、调速 工作台:碗型、平板型可调换 外形尺寸:170×120×170mm 选配件 (H106多样品垫片套装) 60孔微量管插件:0.5ml离心管30管,1.5ml离心管30管 微孔板插件:96孔酶标板 振动与旋涡混合方式:可调速控制,能从低速振动到高速漩涡混合。可根据需要选择适合的混合方式。 多元功能:碗型振动台与平板型振动的双重提供,可适应不同试管及容器的手动或自动的两种混合方式。 自动与点振混合方式:三点开关可选择自动或点振混合方式。 稳定操作:足够重量和整体金属外壳为各种混合提供了稳定操作平台。

技术参数 电源:220V、功率:50W 转速:2800转/分 工作方式:连续、点触、调速 工作台:碗型、平板型可调换 外形尺寸:170×120×170mm 选配件 (H106多样品垫片套装) 60孔微量管插件:0.5ml离心管30管,1.5ml离心管30管 微孔板插件:96孔酶标板振动与旋涡混合方式:可调速控制,能从低速振动到高速漩涡混合。可根据需要选择适合的混合方式。 多元功能:碗型振动台与平板型振动的双重提供,可适应不同试管及容器的手动或自动的两种混合方式。 自动与点振混合方式:三点开关可选择自动或点振混合方式。 稳定操作:足够重量和整体金属外壳为各种混合提供了稳定操作平台。 技术参数 电源:220V、功率:50W 转速:2800转/分 工作方式:连续、点触、调速 工作台:碗型、平板型可调换 外形尺寸:170×120×170mm 选配件 (H106多样品垫片套装) 60孔微量管插件:0.5ml离心管30管,1.5ml离心管30管 微孔板插件:96孔酶标板

文丘里流量计等的工作原理

文丘里流量计等的基本原理 文丘里流量计等的基本原理 充满文丘里流量计管道的流体,当它流经文丘里流量计管道内的节流件时,流速将在文丘里流量计节流件处形成局部收缩,因而流速增加,静压力降低,于是在文丘里流量计节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当文丘里流量计节流装置形式或文丘里流量计管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。 文丘里流量计等的流量方程 式中 qm--质量流量,kg/s; qv--体积流量,m3/s; C--流出系数; ε--可膨胀性系数; β--直径比,β=d/D; d--工作条件下文丘里流量计节流件的孔径,m; D--工作条件下上游文丘里流量计管道内径,m; △P--差压,Pa; ρ --上游流体密度,kg/m3。 l 由上式可见,流量为C、ε、d、ρ、△P、β(D)6个参数的函数,此6个参数可分为实测量[d,ρ,△P,β(D)]和统计量(C、ε)两类。 (1)实测量 1)d、D 式(4.1)中d与流量为平方关系,其精确度对流量总精度影响较大,误差值一般应控制在±0.05%左右,还应计及工作温度对材料热膨胀的影响。标准规定管道内径D必须实测,需在上游管段的几个截面上进行多次测量求其平均值,误差不应大于±0.3%。除对数值测量精度要求较高外,还应考虑内径偏差会对节流件上游通道造成不正常节流现象所带来的严重影响。因此,当不是成套供应节流装置时,在现场配管应充分注意这个问题。 2)ρρ在流量方程中与△P是处于同等位置,亦就是说,当追求差压变送器高精度等级时,绝不要忘记ρ的测量精度亦应与之相匹配。否则△P的提高将会被ρ的降低所抵消。 3)△P 差压△P的精确测量不应只限于选用一台高精度差压变送器。实际上差压变送器能否接受到真实的差压值还决定于一系列因素,其中正确的取压孔及引压管线的制造、安装及使用是保证获得真实差压值的关键,这些影响因素很多是难以定量或定性确定的,只有加强制造及安装的规范化工作才能达到目的。 (2)统计量 1)C 统计量C是无法实测的量(指按标准设计制造安装,不经校准使用),在现场使用时最复杂的情况出现在实际的C值与标准确定的C值不相符合。它们的偏离是由设计、制造、安装及使用一系列因素造成的。应该明确,上述各环节全部严格遵循标准的规定,其实际值才会与标准确定的值相符合,现场是难以完全满足这种要求的。 应该指出,与标准条件的偏离,有的可定量估算(可进行修正),有的只能定性估计(不确定度的幅值与方向)。但是在现实中,有时不仅是一个条件偏离,这就带来非常复杂的情况,因为一般资料中只介绍某一条件偏离引起的误差。如果

Ps通道混合器

Ps通道混合器 转自https://www.360docs.net/doc/9f17525623.html,/page/e2009/0911/77989.html 先说一下通道亮度与颜色变化的关系: 一般规律: 在RGB颜色模式中, 通道红——越亮,画面就越红(减绿);越暗就越绿(减红); 通道绿——越亮,画面就越绿(减品);越暗就越品(减绿); 通道蓝——越亮,画面就越蓝(减黄);越暗就越黄(减蓝); 现在建一个大小合适的文档,填充中性灰颜色(H=0、S=0%、B=50%或R=G=B=128或#808080等)。 通道混和器的面板见图1。 图1 通道混和器只在RGB颜色、CMYK颜色模式中起作用,而在其它颜色模式中不可用。

通道混和器是一个调整图层。加全白蒙版,通道混和器就作用于整个某通道;加局部透明蒙版,通道混和器就只作用于某通道的局部透明区域。 在RGB颜色模式下,输出通道只有红(Alt+3)、绿(Alt+4)、蓝(Alt+5)。 在CMYK颜色模式下,输出通道只有青色(Alt+3)、洋红(Alt+4)、黄色(Alt+5)、黑色(Alt+6)。 通道混和器的面板中,红色百分比、绿色百分比、蓝色百分比是指原图通道相对应的通道红、通道绿、通道蓝参与计算的百分比。比如,在修复通道时,往往是某个通道噪点太多,品质不高;相反,另一个通道的品质很好,色阶丰富、平滑、细腻。这时,我们就会让品质好的通道,占更多的百分比参与计算,从而得到一个较好的新通道,将原来品质差的通道替换掉。 选择输出通道红(Alt+3),这时面板参数计算得到的新通道就将替换原来的通道红; 选择输出通道绿(Alt+4),这时面板参数计算得到的新通道就将替换原来的通道绿; 选择输出通道蓝(Alt+5),这时面板参数计算得到的新通道就将替换原来的通道蓝; ?????? 规律1: 如果通道混和器中,对某通道始终有等式成立: 红色百分比%+绿色百分比%+蓝色百分比%=总计100% 那么,该通道的中性灰的颜色就会保持不变。见图2

静态混合器

全世界经济发展的同时,我们周围的环境在不断恶化。在我国尤其如此,近二十年经济的迅猛发展给环境带来严重影响。我国境内的河流受污染情况十分严重,大多数河流的水质都出现了不同程度的下降。地球上的淡水资源是有限的,在我国的北方大部分地区水资源是缺乏的,因此我国实施了南水北调工程。日益严重的水污染与水资源短缺,使得有效的水处理技术变得越来越重要,人们从不同的方向改进着水技术。其中,混凝技术是一种常见的水处理技术,得到广泛的认可和推广。水的混凝机理十分复杂,一直得到广大学者的关注。一般认为:混凝过程中包含凝聚和絮凝两个步骤,其中凝聚是在瞬间内完成的,它是指化学药剂与水接触形成小颗粒的过程,在水处理过程中表现为使用各种混合设备将药剂与水均匀地混合,其均匀的程度关系着混凝效果优劣;絮凝是指凝聚过程中形成较小颗粒后,它们之间相互碰撞形成较大颗粒并沉降的过程。 影响混合效果的因素主要有三方面:一、废水水质,包括废水中浊度、PH值、水温及共存杂质等;二、混凝剂,包括混凝剂种类、投加量和投加顺序等;三、水利条件,主要指混合的方式。混合方式有:管式混合、水力混合、机械搅拌混合以及水泵混合等。其中管式混合主要形式有管式静态混合器、孔板式、文氏管道混合器、扩散混合器等;机械搅拌混合是在池内安装搅拌装置,以电动机驱动搅拌器将水与药剂混合;水泵混合是将药剂投放在水泵吸水管或吸水喇叭口处,利用水泵叶片的高速旋转来达到快速混合。 在水处理过程中,管式静态混合器具有高效混合、节约用药、设备小等特点,它是由一组组混合元件组成,而混合元件组数的确定应根据水质、混合效果而定。 在不需外动力情况下,水流通过混合元件时可以产生较大范围对流、返流和漩涡等运动,这些均能促使药剂均匀的分布(图1-1所示)。在选择管式静态混合器时,其管内流速应控制在经济流速范围内,当水流量较大所选管径大于500毫米时速度范围可以适当地放宽。混凝剂的入口方式以较大的速度,射流进入混合器管道内为佳。实际应用中管式静态混合器的水头损失一般在0.4-0.6米范围内,条件允许时可将管径放大50-100毫米,可以减少水头损失。本文的主要研究对象即为管式静态混合器。 2静态混合器 静态混合器(static mixer)是一种没有运动部件的高效混合设备,它在管道内加入静止元件,其主要包括三类:一类对流体起切割作用、二是使流体发生旋转、三是使流道形状与截面积变化(图1-2至1-6),然后依靠流体自身的动力(压力降),在流经元件的时候实现对流体的混合,被誊为是一种“虽然非常简单,却能发挥巧妙的作用”的工业元件。它可以在很大的流体粘度范围内,不同的流动状态下应用,既可间歇的又可连续的操作。其能使不同的流体达到均匀混合,根本原因在于混合元件使流体产生分流、拉伸、旋转、合流等运动,过程中增强了湍动,这些均极大地促进了对流扩散和紊动扩散,从而造成完善的径向混合效果。静态混合器有许多优点,与动态混合器相比,其结构简单、能耗低、安装维修简便、混合性

通道混合器的原理

祥解photoshop通道混合器的用法(一) :(今天我把我认为的通道混合器的原理、应用等和大家讨论一下。错了也不要用西红柿看我哦!其实通道混合器就像我们原来认识的通道一样,以前大家谈通道色变,而现在通道就像自己的手机一样,太熟悉不过了。不要把不会的东西想得太恐怖。 首先我们用红绿蓝三色图来研究: 打开通道,可以分别看到在3个通道,因为三种颜色都是255,所以在各自的通道中都显示为白色,CMYK与其相反,跑题了~

下面打开通道混合器,也许很多人会奇怪,什么是输出通道是什么,原通道又是什么?输出通道就是你要修改的通道,源通道可以理解为向你要向修改的通道(输出通道)中添入的另外两个通道的成分。也许现在不明白,没关系,下面就会明白了。也许你还奇怪为什么源通道中的红色为什么是100%,这个问题关系到RGB原理构成,我就不跑题了。

不胡侃了,进入正题了。我们首先将红色从100%调到0%。why?图怎么一下子变成青色的了?再看看通道调板,红色通道变成了一个黑通道!这是为什么?我想很多朋友已经猜到了,那我来解释一下:首先因为你所选的输出通道为红色,调整这个通道时并不影响其他通道,在通道调板中可以看出来。其次将红色调为0%表示在红色通道中将不显示白色,可以观察红色的通道调板,全黑。(题外话:在RGB的各个通道中显示为白色的表示该该通道该成分多,黑色表示少,灰色就没准了--!)最后,青色和红色是对势不两立的颜色,红色强青色就弱,青色强红色就弱。因为将红色变为了0%,所以青色胜利了。

继续我们的话题。源通道选择绿色,并调到100%。咦?图像怎么又亮啦?这时相当于在红色通道中添加了绿色通道的白色部分。因为进行的是100%的操作,所以这步相当于用绿色通道来替换红色通道,通过通道调板可以看到这一切。补充:在RGB图上,原来绿色的部分变成了黄色,是因为红+绿=黄的原因。

FL-SOP-GA-3007 XW-80A型旋涡混合器标准操作规程

1.Intended Use目的 正确操作使用仪器设备,确保检测质量,保障仪器设备的使用寿命,充分发挥仪器效益和效率。 2.Sphere of Application适用范围 适用于旋涡混合器的操作规程。 3.Instrument仪器 3.1.名称:旋涡混合器 3.2.型号:XW-80A 3.3.生产厂家:上海医大仪器厂 4.Start-up & shutdown Procedure开关机程序 4.1.开机程序:直接打开仪器电源开关。 4.2.关机程序:直接关闭仪器电源开关。 5.Routine Operation常规操作程序 5.1.接通漩涡混合器的电源。 5.2.打开混合器上方的绿色开关,混合器即开始工作。 5.3.把装有欲混匀物品的容器放于混合器的海绵上。 5.4.稍微用力按压混匀物,用力越大,混匀强度越大。 5.5.混匀完毕,关闭开关,切断电源。 6.Maintenance维护保养

6.1.每次使用完毕,切断电源,清洁表面。 6.2.工作台面上的海绵在混合中起着力的传递作用,使用一定时间后会老化,需要更换。6.3.使用中如果海绵被溶液污染,应立即停止使用,取出海绵,予以清洗,待海绵脱水干燥 后方可重新装入使用。 7.System Specification仪器的基本技术性能 7.1.操作方便、体积小、耗电省、混合速度快。 7.2.偏心距:1.5mm 7.3.连续工作时间:不大于4小时 7.4.噪声:不大于60dB(A) 8.Environmental Requirements运行环境 8.1.相对湿度:20℅~85℅;运行温度:5~40℃。 8.2.不能再易燃麻醉气和空气的混合气或和氧或氧化亚氮的混合气体情况下使用设备。 9.Problems and Solutions故障及处理 出现不能解决的故障,应及时联系维修人员并通知实验室负责人。 10.Points for Attention 注意事项 按仪器规定的规格更换熔断器,更换熔断器时应关闭电源,拔去电源插头。

通道混合器使用方法

先说一下通道亮度与颜色变化的关系: 一般规律: 在RGB颜色模式中, 通道红——越亮,画面就越红(减绿);越暗就越绿(减红); 通道绿——越亮,画面就越绿(减品);越暗就越品(减绿); 通道蓝——越亮,画面就越蓝(减黄);越暗就越黄(减蓝); 现在建一个大小合适的文档,填充中性灰颜色(H=0、S=0%、B=50%或R=G=B=128或#808080等)。 通道混和器的面板见图1。 图1 通道混和器只在RGB颜色、CMYK颜色模式中起作用,而在其它颜色模式中不可用。 通道混和器是一个调整图层。加全白蒙版,通道混和器就作用于整个某通道;加局部透明蒙版,通道混和器就只作用于某通道的局部透明区域。 在RGB颜色模式下,输出通道只有红(Alt+3)、绿(Alt+4)、蓝(Alt+5)。

在CMYK颜色模式下,输出通道只有青色(Alt+3)、洋红(Alt+4)、黄色(Alt+5)、黑色(Alt+6)。 通道混和器的面板中,红色百分比、绿色百分比、蓝色百分比是指原图通道相对应的通道红、通道绿、通道蓝参与计算的百分比。比如,在修复通道时,往往是某个通道噪点太多,品质不高;相反,另一个通道的品质很好,色阶丰富、平滑、细腻。这时,我们就会让品质好的通道,占更多的百分比参与计算,从而得到一个较好的新通道,将原来品质差的通道替换掉。 选择输出通道红(Alt+3),这时面板参数计算得到的新通道就将替换原来的通道红; 选择输出通道绿(Alt+4),这时面板参数计算得到的新通道就将替换原来的通道绿; 选择输出通道蓝(Alt+5),这时面板参数计算得到的新通道就将替换原来的通道蓝; ?????? 规律1: 如果通道混和器中,对某通道始终有等式成立: 红色百分比%+绿色百分比%+蓝色百分比%=总计100% 那么,该通道的中性灰的颜色就会保持不变。见图2

传感器类型

传感器的种类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参数的

测量。 3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光敏电

(完整word版)Photoshop通道混合器讲解

本教程主要通过实例来详细的解说 Photoshop 通道混和器的用途 , 希望大家的理 论知识可以更进一步 ! ( 这个规律正如在曲线中,对 R 红、 G 绿、B 蓝曲线的调整一样 ) 通道混和器的规律有: 规律 1: 在通道混和器中,如果对某通道始终有等式成立: 红色百分比 %+绿色百分比 %+蓝色百分比 %=总计 100%那么,该通道的中性灰的颜 色就会保持不变。 规律 2: 新图色阶 =原图( 红色阶×红色百分比 %+绿色阶×绿色百分比 %+蓝色阶×蓝色百 分比 %)+255×常数百分比 %。 由此可知常数的作用: 某通道的常数百分比增加或减少, 该通道亮度就平均增加或减暗, 相当于平均增 加或减少了该通道的颜色。 或者说常数的作用, 就是给输出源通道再叠加一个更 亮或者更暗的灰色通道。或者说常数就是,以原图的通道红、通道绿、通道蓝按 不同百分比计算之后, 在色阶图上, 再加一个偏移量, 向纯白方向还是向纯黑方 向偏移多少的一个数量。 规律 3: 当选定某输出通道时,当增加红色、绿色、蓝色、常数的百分比,该通道的亮度 就更亮,画面就增加该输出通道颜色 ( 减少该输出通道颜色的补色 ); 当减少红色、 绿色、蓝色、常数的百分比,该通道的亮度就更暗,画面就减少该输出通道颜色 ( 增加该输出通道颜色的补色 ) 。 如果是分开来叙述就是: 当选定输出通道红时,当增加红色、绿色、蓝色、常数的百分比,通道红的亮度 就更亮,画面就增加红色 (减少青色 ); 当减小红色、绿色、蓝色、常数的百分比, 通道红的亮度就更暗,画面就减少红色 (增加青色 )。 当选定输出通道绿时,当增加红色、绿色、蓝色、常数的百分比,通道绿的亮度 就更亮,画面就增加绿色 ( 减少品红色 ); 当减小红色、绿色、蓝色、常数的百分 比,通道绿的亮度就更暗,画面就减少绿色 ( 增加品红色 ) 。 一、归纳的几个要点 根据通道和 三原色原理,有规律 在 RGB 颜色模式中, 通道红——越亮画面就越红少青 通道绿——越亮画面就 越绿少品 通道蓝——越亮画面就越蓝少黄 ( 在头脑里一定要熟 记 !) : ; 越暗就越青少红 ; ; 越暗就越品少绿 ;

传感器分类与代码

《传感器分类与代码》 国家标准(征求意见稿)编制说明 一、任务来源 国家标准《传感器分类与代码》由中国标准化研究院提出,2013年列入国家标准委国家标准制、修订计划,计划号为-T-469。本标准由全国信息分类与编码标准化技术委员会(TC353)归口,由中国标准化研究院负责组织起草工作。 二、背景及意义 传感器是一种能把特定的被测信号,按一定规律转换成某种可用信号输出的器件或装置,以满足信息的传输、处理、记录、显示和控制等要求。传感器位于物联网的感知层,可以独立存在,也可以与其他设备以一体方式呈现,是物联网中感知、获取与检测信息的窗口,为物联网提供系统赖以进行决策和处理所必需的原始数据。 传感器分类与代码标准是物联网的基础标准。选取合理的分类依据对物联网中各类传感器进行分类编码,有助于传感器及相关设备的管理与统计等,促进物联网传感器的生产、销售及应用等。 三、工作过程 (一)资料调研 调研相关标准及资料中关于传感器分类的现状: 1) GB/T 7665-2005 传感器通用术语:规定了传感器的产品名称和性能等特性术语,适用于传感器的生产、科学研究、教学以及其他有关领域。术语在标准中的编排基本上是按照被测量进行的。 2) GB/T 7666-2005 传感器命名法及代号:规定了传感器的命名方法、代号标记方法、代号,适用于传感器的生产、科学研究、教学以及其他有关领域。在传感器的命名法中主要反映了被测量、转换原理、特征描述以及量程、精度等主要技术指标。 3) GB/T 20521-2006 半导体器件第14-1部分半导体传感器-总则和分类:描述了有关传感器规范的基本条款,这些条款适用于由半导体材料制造的传感

射流器工作原理

射流器工作原理 Last updated on the afternoon of January 3, 2021

射流器(文丘里混合器\水射器\气水、液混合器)文丘里混合器,又称为喷射式混合器,是一种本身没有运动部件,它是由喷嘴、吸入室、扩压管三部分组成。具有一定压力的工作流体通过喷嘴高速喷出,使压力能转化速度能,在喷嘴出口区域形成真空,从而将被抽介质吸引出来,二股介质在扩压管内进行混合及能量交换,并使速度能还原成压力能,最后以高于大气压力而排出。文丘里混合器是一种集吸气和混合反应于一体的设备。独特的混合气室设计,强劲的水流与空气或液体混合喷射,使搅拌均匀、完全,产生的气泡多而细腻,促使气体溶解效率提高。常见于液~气相混合,液~液相混合,还可以用于气~气相混合以及气~液相混合。射流器结构简单、工作可靠、噪音低、无污染、使用寿命长、极少维修、管理使用方便、便于综合利用。尤其适用于作为传质和化学混合反应设备或抽吸气体。文丘里混合器俗称射流器、水射器等。制造材料有金属,塑料等。一般通量较大需定制。 采用模具压铸的文丘里混合器有以下三种材料: 1、氟塑料(PVDF)材料 黑色,耐强氧化、耐强酸碱腐蚀、耐臭氧;寿命长,广泛用于臭氧水混合、污水处理、加药领域。规格较为齐全,规格参数详见下表。 2、聚丙烯(PP)材料

乳白色,PP材料常用在一般耐酸碱条件下。进出口径有以下规格有:1寸(DN25),可配软管接口。 3、透明有机玻璃材料 无色透明,透明的有机玻璃则通常应用于可直观了解射流效果的场合,如实验室。进出口径有以下规格有:6分(DN20),1寸(DN25)无软管接口。

PS中通道混合器在蒙板中的应用详细教程

PS中通道混合器在蒙板中的应用详细教程 通道混合器命令可能是ps中所有调色命令里最不常用的一个命令了,它因为操作复杂、不够直观、涉及到的理论知识多,而让很多初学者望而生畏。然而,一旦能够熟练掌握它,就能够打通颜色、通道、蒙板等之间的关节,从而加深对PS的理解和运用。这一次,关于通道混合器我想谈谈源通道本身在通道混合器中发挥的蒙板作用,这一点也是很多初学者没有引起注意的地方,希望对大家有所启发。 一、通道对颜色的表现: 通道中白色的部分为完全选择,黑色的部分为完全不选择,灰色的部分为部分选择。 红通道中白色表现的是红色、****、品色; 绿通道中白色表现的是绿色、****、青色; 蓝通道中白色表现的是蓝色、青色、品色。 了解这个很重要,所有的调色命令直观上调整的是颜色,其实编辑的是通道中黑白关系,应用图像、计算等命令则直观上调整的是通道中的黑白关系,其实调整的是颜色。示意图如下:

二、源通道在通道混合器中发挥着蒙板作用 结论:源通道对输出通道起着蒙版作用,可以把源通道看作是输出通道的蒙版,源通道的变化只有其黑色以外部分的变化才能叠加到输出通道中来。输出通道中变化的部分正是

源通道中白色的部分,换言之,源通道的变化没有反映到自身上来,而是叠加到了输出通道中去。 验证:仍以上面的图,以输出通道红为例,变化三个源通道的数值,观察RGB通道和红通道的变化情况。

三、实例运用

实践证明,使用通道混合器调整一幅图像中的主要颜色,可以改善整幅图像的影调关系,使用起来非常方便。以下图为例,我想调整蓝天的颜色,使其更蓝一些 1、观察三个通道的情况:

市场上常见的压力传感器的种类及原理分析

市场上常见的压力传感器的种类及原理分析 什么是压力传感器呢?压力传感器是指将接收的气体、液体等压力信号转变成标准的电流信号(4~20mADC),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节的元器件。它主要是由测压元件传感器、测量电路和过程连接件等组成的(进气压力传感器)。 那么压力传感器的种类有哪些呢?就目前市场而言,压力传感器一般有差压传感器、绝压传感器、表压传感器,静态压力传感器和动态压力传感器。对于这几者之间的关系,我们可以这样定义定义:差压是两个实际压力的差,当差压中一个实际压力为大气压时,差压就是表压力。绝压是实际压力,而有意义的是表压力,表压力=绝压-大气压力。静态压力是管道内流体不流动时的压力。动态压力可以简单理解为管道内流体流动后发生的压力。 根据不同的方式压力传感器的种类也不尽相同。小编通过搜集整理资料,将与压力传感器的种类相关的知识做如下介绍,下面我们来看具体分析。 1.扩散硅压力传感器 扩散硅压力传感器工作原理是被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 扩散硅压力传感器原理图 2.压电式压力传感器 (1)压电式压力传感器原理 压电式压力传感器原理基于压电效应。压电效应是某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。 (2)压电式压力传感器的种类与应用 压电式压力传感器的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。这种传感器的特点是体积小、动态特性好、耐高温等。 现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。石英是一种非常好的压电材料,压电效

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类 传感器的分类方法很多.主要有如下几种: (1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。这种分类有利于选择传感器、应用传感器 (2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。 (3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。这种分类法可分出很多种类。 (4)按照传感器输出量的性质分为摸拟传感器、数字传感器。其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。传感器数字化是今后的发展趋势。 (5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。 (6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。 主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。 主要功能常将传感器的功能与人类5大感觉器官相比拟: 光敏传感器——视觉 声敏传感器——听觉 气敏传感器——嗅觉 化学传感器——味觉 压敏、温敏、传感器(图1) 流体传感器——触觉 敏感元件的分类: 物理类,基于力、热、光、电、磁和声等物理效应。 化学类,基于化学反应的原理。 生物类,基于酶、抗体、和激素等分子识别功能。 通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。 1)光纤传感器 光纤传感器技术是随着光导纤维实用化和光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高.抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小.耗电少,光路有可挠曲性,以及便于实现遥测等. 光纤传感器一般分为两大类,一类是利用光纤本身的某种敏感特性或功能制成的传感器.称为功能型传感器;另一类是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其他敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。

相关文档
最新文档