智能车线性CCD路径识别方法

四信息技术四胡世林,等四智能车线性CCD 路径识别方法

Machine

Building

Automation ,Aug 2015,44(4):123~125

基金项目:滨州学院创新基金资助(BZXYQNLG201101)

作者简介:胡世林(1988-),男,陕西汉中人,硕士,研究方向为机械工程三智能车线性CCD 路径识别方法

胡世林1,韩致信1,崔继强2

(1.兰州理工大学机电工程学院,甘肃兰州730050;2.滨州学院,山东滨州256603)摘一要:论述了TSL1404CL 线性CCD 的识别原理,设计了CCD 路径识别系统硬件电路,分析固定阀值与动态阀值以及固定中心点边缘检测与浮动中心点边缘检测的优缺点,运用LabVIEW 软件编写上位机界面,获取了不同检测方法下的赛道信息,优化了系统的控制策略,

提高系统的响应速度和准确性三实验证明该系统能在不同光照条件下准确识别赛道,具有很好的鲁棒性三

关键词:飞思卡尔;线性CCD ;边缘检测

中图分类号:TP273一一文献标志码:B一一文章编号:1671-5276(2015)04-0123-03

Research on Path Identification Method of Intelligent CarBased on Linear CCD

HU Shilin 1,HAN Zhixin 1,CUI Jiqiang

2

(1.College of Mechanical and Electrical Engineering ,Lanzhou University of Technology ,Lanzhou 730050,China ;2.Binzhou University ,Binzhou 256603,China )

Abstract :This paper discusses TSL 1404CL linear principle of CCD and designs the hardware circuit of a CCD path identification sys-tem ,analyzes the fixed threshold and dynamic threshold and the advantages and disadvantages of fixed centre point edge detection algorithm and floating point edge detection algorithm ,uses LabVIEW to compile upper computer interface ,achieves circuit informa-tion with different detection methods and optimizes the system control strategy to improve the response speed and accuracy.The ex-periment results show that the circuit can be accurately identified in this system and it has good robustness.

Keywords :freescale ;linear CCD ;edge detection

0一引言

路径识别是自主循迹智能车实现控制并稳定运行的基础,道路信息提取的准确与否直接影响到控制策略能否实现三而道路信息提取的准确性取决于传感器能否准确地区分出黑色引导线与白色背景以及其他干扰信息三如图1所示,第八届飞思卡尔车模竞赛的赛道是一个具有特定几何尺寸约束二摩擦系数及光学特性的

KT

图1一赛道示意图

板,45cm 宽的白色KT 板两边贴有宽度为2.5cm 对可见光及不可见光均有较强吸收特性的黑色条带作为引导线三大赛规定赛道传感器选用线性CCD三线性CCD 提取信号是被动的接受反射回的光线,因此,采集的信号易受外界环境的影响三例如,赛道黑色引导线很可能由于发生镜面反射而被误判为白色背景三所以,设计一个识别准确,抗干扰能力强的路劲识别系统,使智能车在不同光照条件下均能正常运行,这对自主循迹智能车是尤为重要的三

1一线性CCD 识别方案

该系统采用飞思卡尔MC9S12XS128单片机作为控制核心,将线性CCD 捕获的模拟量赛道信息转化成数字信号,进行分析计算小车与赛道之间的偏差和赛道走势,进而控制小车沿赛道行驶而不偏离赛道三

该车道路传感器使用的是Texas Advanced Optoelec-

tronic Solution 公司的TSL1401CL 线性CCD三该传感器

是包含128个光电二极管的线性阵列三每个光电二极管都有各自的积分电路,此电路统称为像素三每个像素在光电二极管的不同光能量冲击下产生不同的模拟电荷信号,该信号的大小与光强和积分时间成正比三在驱动时序的作用下,CCD 将模拟电荷信号串行位移输出[1]三

321四

智能小车的路径识别问题

智能小车的路径识别问题 摘要:智能小车路径识别技术是系统进行控制的前提,介绍了路径识别技术的几种分类及相应的优缺点,通过分析得出面阵CCD摄像更适合作为采集信息的工具。 关键词:智能小车;路径识别;面阵CCD摄像器件 Abstract: Smart car’s path recognition technology is the premise of the control system, this paper introduces the path of several classification and recognition technology, through the analysis of the advantages and disadvantages of the corresponding to array CCD camera is more suitable for gathering information as the tool. Key words:smart car; Path recognition; Surface array CCD camera device 0 引言:为培养大学生的自主创新设计的能力,各大高校都设置了智能车比赛,智能小车 行驶在给定的白色路面,由中间的黑色轨迹线引导,实现自主循迹功能。实现该 功能的小车主要由电源模块、循迹模块、单片机模块、舵机模块、后轮电机驱动 模块组成。路径模块一般由ATD模块,外围芯片和电路,与路面信息获取模块 组成,要能够快速准确得进行路径识别检测及相关循迹算法研究,本文就这两个 方面进行相应的分析和介绍。 1 光电传感器 1.1 反射式红外发射接收器 半导体受到光照时会产生电子-空穴对,是导电性能增强,光线愈强,阻值愈低。这种光照后电阻率变化的现象称为光电导效应[1],用于路径检测的反射式红外光电传感器基于此原理设计。该传感器一般由一个红外线发射二极管和一个光电二极管组成,可以发射并检测到反射目的光线。不同颜色的物体对光的反射率不同,当发射出的红外光对准黑色物体时,反射的红外线很少,光电二极管不能导通,反之,当对准白色物体时,光电二极管导通[2]。系统的单片机接收到光电二极管的信息根据相应的算法分析出小车此时的位置及位置偏离度,进而控制小车的方向和速度。 光电式传感器是通过对光的测量通过光电元件转化为电信号,并输出有效的输出量,由于外界光电因素的原因导致空间分辨率低是每个红外传感器存在的缺点,因此必须对原始传感器信息进行预处理,取相对值是一种有效解决外界干扰的方法,即将传感器未发射红外线时的A/D转换值进行提取,再与红外线时的转换值取相对值。文献[2]同时也提出了如何根据每个传感器的相对值与传感器位置推断出车模相对于黑色引导线的横向偏移位置。而文献[3]中所描述的方法与文献[2]有异曲同工之妙,文献[4][5]也对光电传感器的路径算法有详细科学的介绍。 1.2光敏电阻阵列传感器 假设光敏电阻阵列布置如图1所示,在智能小车的正前方布置n个光敏电阻( n=1,2,…, 11 ) ,在其质心位置依次紧密排列m个光敏电阻(m=1,2…7),首先测出路径黑色区域和白色区域的光敏电阻值,以通过d点的中心线的交点为原点建立坐标系,两排光敏之间的距离为K,光敏n和n+1且n>6或者(n和n-1且n<6)所测的值分别为黑色区域值和白色区域值,光敏6中心为智能小车的中心线通过点,而光敏d也为其通过点,连接这两点即为智能小车的中心线,则通过小车中心线并与黑色区域光敏值对应的光敏n与光敏m的连线即为所求路径信息。理论上讲,只要有两点就可以确定唯一的直线。

智能车高速稳定行驶局部路径规划算法

引言 智能车高速入弯时,若地面附着力不足以提供转向向心力,将导致侧滑等危险发生。智能车能否以较高平均车速安全驶过弯道,取决于路径规划基础上的转向半径与车速的合理匹配。本文采用局部优化对智能车CCD摄像头视野内的道路进行路径规划。局部优化算法包括人工势场[1]、模糊[2]、遗传[3]、蚁群[4]及粒子群算法[5]等,它们对硬件实时性要求较高。本文考虑智能车和道路几何尺寸,智能车及CCD的位置与姿态,以及弯道类型等因素,建立了简单可行且满足实时性要求的局部路径规划算法,进而确定了智能车高速稳定行驶的转向角和车速。 局部路径规划算法流程 控制程序流程如图1所示。首先,采集图像信号并去噪、提取道路中心线;然后,计算并返回图像失真校正后的世界坐标;第三,计算并返回偏航计算后的当前时刻世界坐标;第四,计算并返回路径规划算法得到的目标转向半径;最后,查询预储存在ROM 内的舵机转角和行驶速度,并调用执行程序,完成对智能车的控制。

智能车高速行驶局部路径规划算法 CCD传感器图像信息采集 CCD输出标准PAL制信号,LM1881视频同步分离芯片提取行同步和场同步信号,进而触发单片机图像采集中断,通过A/D模块将视频信号转换为数字信号。CCD输出图像分辨率为320×600,考虑单片机内存和运算速度限制,取分辨率为37×150。CCD传感器标定 假设道路为水平面,故在二维平面内标定CCD传感器,从而建立CCD图像坐标系与世界坐标系的对应关系。如图2所示,图像坐标系原点位于图像左下角,坐标轴u、v分别为CCD图像平面的横向和纵向;世界坐标系原点O'位于智能车几何中心,x'和y'轴分别为智能车横向与纵向对称面在水平面的投影线;中间坐标系原点O1'位于视场最近端中点,x1和y1轴分别为中间坐标系所在平面的横向和纵向。图2中各参数的物理意义与几何尺寸数值见表1。

路径识别代码

路径识别代码 识别是用来设定速度的。。。简单的识别还是容易,贴个代码。。。 其中gap值为极左极右差值,附 for(i=49;i>=(M_Row_End+3);i--) // recored_end_row { if(Black_Flag[i].Mid_flag&&Black_Flag[i-3].Mid_flag) { n = Runway_Midpoint[i-3] - Runway_Midpoint[i]; if(n>=2) S_right++; else if(n<=-2) S_left++; elseS_straight++; } } void Road_S_Dis(void) { prespeed_value = speed_value; if(curValidline<11) { if(gap<=24) //包括了直道和小S弯 { straight_flag++; straight_flag%=3000; } else if(gap<=65) //入弯口 { if(S_right>3&&S_left>3) Big_S = 1; elsebend_flag=1; } else {zhongsu++;zhongsu%=3000;}//较远前瞻的弯,给定中速 zhongsu3_flag = 0; danwan_flag = 0; } else if(M_Row_End<=22) { if(gap>=75||S_right>= (50-M_Row_End)-6||S_left>=50-M_Row_End - 6) {danwan_flag++;danwan_flag%=3000;} //单向弯道,给定中速2 else if(gap>=45) { if(S_right>3&&S_left>3) jiman_flag=1;//较近前瞻的S弯,给定慢速 else {zhongsu2_flag++;zhongsu2_flag%=3000;} //较近前瞻的缓慢程度弯道,给定中速

基于摄像头的最佳道路识别及赛车控制算法 飞思卡尔

基于摄像头的道路识别及赛车控制算法 杨运海周祺吕梁 摘要:本文探讨了摄像头在智能车道路识别中的应用,并提出了一种通用的控制算法。在准确采集图像的基础上,利用临近搜索法对有效道路信息进行快速提取,通过分析赛道信息,计算出赛道黑线的走向趋势及赛车当前位置。在充分考虑当前和过去的赛道信息的基础上,对赛道类型进行判断及分类。在综合考虑赛道类型,黑线走向及车当前位置,对舵机的转向和电机的速度进行精确控制。 关键词:图像采集;临近搜索;转向控制,速度控制 1.概述 在飞思卡尔智能车汽车比赛中,路径识别方法主要有两大类,一类是基于红外光电传感器,令一类是基于摄像头。通常,红外光电传感器安装灵活,原理简单,可靠性好,不易受环境光干扰,因而得到了广泛应用,但其对前方道路的预判距离非常有限,不适宜赛车高速行驶。另一类是基于摄像头,与光电传感器相比,其优点非常明显,能提前获取大量前方道路信息,有利于实现赛车的最优控制。但其缺点是图像采集要求有高的AD转换频率,图像处理算法复杂度高,且容易受环境光的干扰。考虑到摄像头的优点远大于其缺点,因此选择了摄像头。以下是摄像头的工作流程图: 图B-1 摄像头工作流程

摄像头控制赛车行驶方案有三大模块:图像采集、赛道信息提取、转向和速度控制。 2.图像采集 考虑到S12的运算能力,我们采用了黑白制式、320*240的CMOS单板摄像头。摄像头出来的是模拟信号,每秒有50场图像,场之间有场消隐信号,行之间有行消隐信号,经过lm1881分离后,可得到场同步信号和行同步信号,作为行中断信号。由于行中断中要采集该行的信号,对时间要求很严格,其中断优先级应比普通中断的优先级高,因此我们选择IRQ作为行同步信号输入口,PT0作为场信号输入口。此外,为保证图像不丢失,我们仅对场信号的下降沿进行捕捉。 图B-2 摄像头视频信号 按照目前车的刹车时的加速度,我们选定图像拍摄最远处为前方1米就足以对速度做出了控制。考虑到前轮到前方20cm为摄像头的盲区,故有效拍摄范围为0.8m,为了保证不丢失起跑线,每2.5cm至少拍摄一行,故一幅图像至少采集32行。为了稳妥起见,我们选择了ROW=45行。摄像头最前方拍摄的宽度为80cm,而黑线宽度为2.5cm,故一行至少采集32,为了稳妥起见,一行采集的点数定为COL=45个点。 正常情况下,S12的AD频率不能超过2M,转化一个点需要14个周期,如果不超频,一行将只能采集8个点(24M主频时)。将分频系数设为0,此时AD 频率为12M。在行采集过程中,我们通过查询方式来判断AD是否转换完成,并对AD转换时间进行了记录,发现记录到的时间恰是期间指令执行一次的时间,这表明,影响一行采集的点数已不是AD的频率,而是执行指令的时间,因此采集过程中不需要查询A TDSTA T0的标志位,只需要通过执行一定数量的NOP空操作指令延时即可。例如采集47个点需要时,每个点的时间间隔是53us/47=1.125us,对应的指令周期数为1.125*24=27。通过反编译知读写等指令本身有13个指令周期,故令加14个NOP指令即可实现。 由于摄像头的角度关系,拍摄是不均匀的,而是前方疏,近处密。为了保证采集的均匀,采集的行之间间隔的行数就不能相同。摄像头的有效行数为285行左右,具体关系如下表: 行采集计数器line 摄像头行计数器row 备注 0 0 每3行采集一行

高速公路路径识别标识站车牌识别准确率验证方法——以武汉中交沌

高速公路路径识别标识站车牌识别准确率验证方法——以武汉中交沌口长江大桥为例 发表时间:2018-10-16T17:04:17.137Z 来源:《防护工程》2018年第11期作者:王兴国1 王庆晖2 [导读] 笔者借助湖北省高速公路收费站综合管理系统、冗余标识点等方法,解决了该项目验证车牌识别设备的捕捉率、识别正确率的难题,为其他不设收费站的高速公路运营模式提供参考,为无人收费模式的可行性提供了新的探索。王兴国1 王庆晖2 武汉中交沌口长江大桥投资有限公司武汉 430119 摘要:随着我国高速公路路网规划的不断完善,形成了复杂的环网结构,为了解决收费、清分争议问题,保障高速公路使用者和投资主体的利益,各省高速公路采用了最短路径法、最小费额法、统计概率法、车牌识别法和RFID标识站法等方法。本文以采用车牌识别法来实现精确路径识别的武汉中交沌口长江大桥为研究对象,该项目因不设立收费站,加大了验证车牌识别设备捕捉率、识别正确率的难度。笔者借助湖北省高速公路收费站综合管理系统、冗余标识点等方法,解决了该项目验证车牌识别设备的捕捉率、识别正确率的难题,为其他不设收费站的高速公路运营模式提供参考,为无人收费模式的可行性提供了新的探索。关键词:车牌识别法;高速公路;牌照识别设备;捕捉率、识别正确率;验证截至2016年底,我国高速公路通车里程已超过13万公路,有10个省高速公路通车里程达到5000公里以上,高速公路业主单位也达到了1500余家。随着各省高速公路建设规模和密度的扩大,形成的复杂环网和二义性路径数量也在逐年增加。在联网收费的路网中,从起点出发,到达目的地,可以有多条不同的路径(多义性路径)供选择。没有路径信息,无法按实际行驶路径来收费,造成高速公路所有者利益分配不公,成为联网收费的核心问题(多义性路径检测问题)。高速公路联网收费环境下的多义性路径检测本质是解决两个问题:一是对车主而言,按照哪一个路径路线的标准收取通行费;二是对多义性路线环上各高速公路投资主体而言,如何拆分收取的通行费。 针对多义性路径的问题,目前主要有两类识别方式,一类是精确路径识别,主要有无源电子标签识别法(RFID)、车牌照识别法、停车标识站法,另一类是概率识别法,主要有布瑞尔交通分配法、路网平衡法、最短路径法、最大概率法、协商法等。 在我国,各省高速公路多采用在多义性路网的关键点位布设路段标识点采集路径标识信息,结合收费站牌识系统的入口信息、出口信息,在车辆驶出高速公路时完成多义性路径的精确检测/识别,识别结果关联车辆收费记录;收费中心管理系统对多义性路径精确识别的车辆通行费进行精确清分,对小概率的无法识别的多义性路径车辆多采用概率法或最短路径法清分。 一、各类识别法优缺点分析 概率识别法,无法精确识别车辆行驶路径,其缺点是对于高速公路使用者及各投资主体来说,无法精确了解收费及清分是否公平合理。对于路网不复杂、投资主体单一的高速公路适用;其优点是费用低、相对公平合理,也经常用于未能精确路径识别车辆收费、清分。 对于精确清分主要介绍下有无源电子标签识别法(RFID)、车牌照识别法、停车标识站法三种。 1.停车标识站法 停车标识站是在主线建立收费站的方式,根据国务院办公厅2002年31号文件《关于治理向机动车辆乱收费和整顿道路站点有关问题的通知》要求,高速公路以及其他具备封闭条件的连续通行的收费公路,除两端出入口外,一律不得在主线上设置收费站。该方法目前已被淘汰。 2. 无源电子标签识别 利用RFID非接触式自动识别技术,在多义性路径关键节点架设标识站,在司机领取的复合通行卡上带有发射装置,在通过标识站时自动与接收装置通信,从而确定行驶路径,实现精确识别。优点是识别率高,不需要停车。缺点是复合卡成本高,联网通信投入大,且在识别时有被干扰的风险。 3.车牌照识别法 牌照识别系统利用视频车辆特征识别技术特点,即对动态场景中车辆的定位、识别和跟踪,其关键是车辆特征的捕获和识别。由于车辆号牌是车辆特征中具有唯一性的元素,通过对车辆号牌的识别和跟踪,可以有效地检测、识别、跟踪车辆。在高速公路网内存在多义性路径两点之间的主线路径断面上安装门架式车牌识别设备,通过车牌识别器采集、识别车辆的牌照号码,汇集至收费中心,通过清分模型比对进行通行费拆分账(图1)。 牌照识别系统可实现实时高清视频检测,当有车辆进入检测区域时,进行抓拍并对图片实时处理。在抓拍的图片中,车辆特征、车牌号码可清晰辨识。该系统具有识别速度快、可靠性高、工作环境的适应性强等特点,可以适应复杂的气候及光照条件,车牌识别率高,能适应大交通流量;多应用于高速公路、城市收费道路、交通违法检测、停车场等。 其优点是车牌捕捉率可达99%以上;车牌识别率高可达97%以上,不需要停车,建设成本较无源电子标签识别方式成本低廉。其缺点是受气候及环境影响大,联网通信投入大,无法解决无车牌车辆识别问题,对车牌污损的车辆识别率低。综合来看,车辆牌照识别法可做到精确路径识别,且建设成本相对较低,是目前流行的车辆路径识别方式。

智能小车自主路径规划算法的设计与改进

龙源期刊网 https://www.360docs.net/doc/9f5867450.html, 智能小车自主路径规划算法的设计与改进 作者:王汉元 来源:《电子技术与软件工程》2018年第04期 摘要本文探讨了智能小车自主路径规划算法的设计与改进,并对所提出的算法进行了仿 真分析。该自主路径规划算法简单可行,能够使智能小车在顺利避开障碍物的同时从起始位置行进至目标位置,确保智能小车在整个行驶路径上的安全。该算法综合使用动态窗口法,根据智能小车与障碍物之间的距离,在智能小车通过动态窗口法规划得到的速度中引入从障碍物指向智能小车的逃逸速度,补偿了动态窗口法的不足,获得了搜索路径快、可执行性好、有效地防止智能小车与障碍物碰撞的优点。 【关键词】智能小车路径规划动态窗口法逃逸速度 1 引言 智能小车是各种高新技术综合集成的载体,其集环境感知、规划决策等功能于一体,融合了机器人技术、人工智能技术、自动化控制技术、机器视觉技术等。智能小车在进行自主路径规划时,其主要任务在于,在存在障碍物的环境中发现一条从起始位置到目标位置的适当的行驶路径,使智能小车在行进途中顺利地绕过障碍物而不与障碍物发生碰撞。如何提出一种简单可行的算法使智能小车在顺利避开障碍物的同时从起始位置行进至目标位置,是本领域的一个重要问题。 2 自主路径规划的背景介绍 2.1 自主路径规划的任务 智能小车的路径规划需要解决如下问题: (1)智能小车从起始位置行进至目标位置; (2)智能小车在不碰到障碍物的前提下对智能小车的路径进行优化。 2.2 路径规划方法的分类 根据对环境信息的把握程度,路径规划方法分为:基于先验完全信息的全局路径规划,在这种规划方法中,智能小车所处的环境的全部信息已知;以及基于传感器信息的局部路径规划,在这种规划方法中,智能小车所处的环境的部分信息或者全部信息未知。其中,局部路径规划是指,基于传感器的信息,在智能小车行进过程中动态地确定其当前位置以及周围局部范围内的环境,规划出局部最优路径以到达目标位置。

基于线性CCD图像识别智能小车的设计与开发

基于线性CCD图像识别智能小车的设计与开发 目前,具有自动驾驶功能的智能车越来越引起人们的重视。智能车装备了各种传感器来采集路况信息,通过计算机的控制可以实现自适应巡航,并且又快又稳、安全可靠。智能车不仅能在危险、有毒、有害的环境里工作,而且能通过计算机的控制实现安全驾驶,能大幅度降低车祸的发生率。智能车的设计关键是路况信息的采集,传统的方案多采用红外光电传感器,此方案不仅噪声较大,而且与主控CPU的连接电路复杂,传输速率慢。本文研究的智能小车系统选用了TSL1401CL线性CCD图像采集模块,该模块采用串行通信方式与主控CPU连接,不仅电路简单、性能稳定,而且采集速率快。通过实验测试,本文设计的智能车能根据采集到的图像分析前方路径及障碍而实现智能驾驶,具有极强的实用价值和市场前景。 1 系统设计思想 经过调研与分析,我们采用了MC9S12XS128单片机、TSL1401CL线性CCD图像采集模块、稳压芯片以及液晶OLED等外围器件设计与开发出这套智能小车系统。MC9S12XS128高速单片机为Freescale公司新推出的16位高性能高速单片机,其接口丰富、功耗低、信息处理能力强大,能对小车前方路径及障碍进行及时分析,处理迅速、性能稳定。为了提高路面图像采集的速度与质量,我们选用了TSL1401CL线性CCD图像传感器。TSL1401CL 具有功耗小、性能稳定、灵敏度高、响应速度快等优点,其工作过程是先将路况光学信号转换为模拟电流,模拟电流放大后再进行A/D转换变成数字信号,最后通过串口送至主控CPU。智能小车的CPU根据CCD采集到的信息进行分析和处理,从而实现系统的自动控制与障碍处理、路径探测。在软件设计中我们采用了先进的PID(比例、积分、微分)算法,其运算参数可以根据过程的动态特性及时整定。通过PID算法,模糊PID算法来实现智能车的转向、控速等精确自动控制,另外还有很好的避障功能,实现了全智能的安全控制。 2 系统硬件设计 本项目采用模块化设计与开发,主要有CCD采集模块、电源模块、电机驱动模块、车速

飞思卡尔智能车黑线识别算法及控制策略研究

智能车黑线识别算法及控制策略研究 时间:2009-05-1811:23:07来源:电子技术作者:北京信息科技大学,机电工程学院张淑 谦王国权 0引言 “飞思卡尔”杯全国大学生智能车大赛是由摩托罗拉旗下飞思卡尔公司赞助由高等学校自动化专业教学指导委员会负责主办的全国性的赛事,旨在加强大学生的创新意识、团队合作精神和培养学生的创新能力。此项赛事专业知识涉及控制、模式识别、传感技术、汽车电子、电气、计算机、机械等多个学科,对学生的知识融合和动手能力的培养,对高等学校控制及汽车电子学科学术水平的提高,具有良好的推动作用。 智能车竞赛所使用的车模是一款带有差速器的后轮驱动模型赛车,它由大赛组委会统一提供。自动控制器是以飞思卡尔16位微控制器MC9S12DGl28(S12)为核心控制单元,配合有传感器、电机、舵机、电池以及相应的驱动电路,它能够自主识别路径,控制车高速稳定运行在跑道上。比赛要求自己设计控制系统及自行确定控制策略,在规定的赛道上以比赛完成的时间短者为优胜者。赛道由白色底板和黑色的指引线组成。根据赛道的特点,比赛组委会确定了两种寻线方案:1.光电传感器。2.摄像头。 两种寻线方案的特点如下: (1)光电传感器方案。通过红外发射管发射红外线光照射跑道,跑道表面与中心指引线具有不同的反射强度,利用红外接收管可以检测到这些信息。此方案简单易行程序调试也简单且成本低廉,但是它受到竞赛规则的一些限制(组委会要求传感器数量不超过16个(红外传感器的每对发射与接收单元计为一个传感器,CCD传感器计为1个传感器)),传感器的数量不可能安放的太多,因而道路检测的精度较低,能得到指引线的信息量也较少。若采用此方案容易引起舵机的回摆走蛇形路线。 (2)摄像头方案。根据赛道的特点斯用黑白图像传感器即可满足要求。CCD摄像头有面阵和线阵两种类型,它们在接口电路、输出信号以及检测信息等方面有着较大的区别,面阵摄像头可以获取前方赛道的图像信息,而线阵CCD只能获取赛道一条直线上的图像信息。摄像头方案的所能探测的道路信息量远大于光电传感器方案,而且摄像头也可以探测足够远的距离以方便控制器对前方道路进行预判。虽然此方案对控制器的要求比较高,但组委会提供的MC9S12DGl28(S12)的运算能力以及自身AD口的采样速度完全能够满足摄像头的视频采样和大量图像数据的处理的要求。 本文就是在摄像头方案的前提下,在实时的图像数据获取的基础上对图像信息进行数据处理,从而提取赛道中心的黑色指引线,再以此来作为舵机和驱动电机的控制依据。 1摄像头采样数据的特点 采用的黑白摄像头的主要工作原理为:按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出,见图1。摄像头连续地扫描图像上的一行,则输出就是一段连续的电压信号,该电压信号的高低起伏反映了该行图像的灰度变化。当扫描完一行,视频信号端就输出一个低于最低视频信号电压的电平(如O.3V),并保持一段时间。这样相当于紧接着每行图像信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步脉

单目视觉智能车路径识别及控制策略

单目视觉智能车路径识别及控制策略研究* 陈启迅 薛 静 (西北工业大学自动化学院 西安710072 )摘 要 研究了基于CMOS摄像头的图像采集方法,以及智能车赛道路径识别。提出了自适应差分边缘检测算法,采用取点求面积的方法提取指引线的相关参数。自适应差分边缘检测算法是在一般的边缘检测算法的基础上提出的,它能根据提取的左右边缘存在情况调整搜索范围、阈值,以及差值的求取方法。使用海伦公式求指引线上所取的三角形的面积, 据此提出了1种基于三角形面积的智能车速度控制方法,此方法以指引线上的三角形面积反映赛道的弯曲程度,并以此作为智能车速度控制的控制变量。 关键词 自适应差分边缘检测;智能车;图像采集;海伦公式 中图分类号:TP301.6 文献标志码:A doi:10.3963/j .issn 1674-4861.2012.05.006收稿日期:2012-07-04 修回日期:2012-09- 07 *西北工业大学研究生创业种子基金项目( 批准号:Z2011047)资助第一作者简介:陈启迅(1984),硕士生.研究方向:控制工程、系统工程.E-mail:cq x062014@126.com0 引 言 智能车辆系统是1个拥有感知环境能力,具备规划决策能力以实现自动行驶,并且可以实现多等 级辅助驾驶等功能于一体的综合系统[ 1 ]。与很多学科有着密切关系,如计算机、控制、通信、图像处 理、人工智能、信号处理等,同时也是多种传感器融 合的载体。因为它一般集中了摄像机、GPS、超声波雷达、激光雷达等多种传感器来感知周围环境, 并根据多传感器融合所获得的道路、车辆状态和障碍物信息进行控制车辆的转向和速度,从而使得车辆安全、可靠、稳定地在道路上行驶,因此智能车辆 是多学科综合于一体的高度智能化的产物[ 2- 3]。文献[4] 中介绍了一般差分边缘检测算法。文献[5 ]中描述了基于序列图像运动分割的车辆边界轮廓提取算法。文献[6]中提到了道路裂纹线检测中的脊波域图像增强算法。选用功耗低、前瞻性好的CMOS摄像头作为路径识别视觉传感器,采用自适应差分边缘检测算法有效地提取道路指引线,此算法具有很高的灵活性和适应能 力, 能够有效地降低干扰。进一步使用取点求面积的方法获取指引线参数。 1 视觉图像采集 1.1 硬件实现 CMOS视觉传感器图像采集电路[7] 见图1 ,LM1881可以实现视频同步信号的分离。2脚为视 频信号输入端;3脚和5脚分别为场同步、行同步信号输出端;7脚为奇偶场同步信号输出端,在此不使用。视频信号同时接入微处理器AD转换口 。 图1 视频同步信号分离电路 Fig.1 The circuit for separation of sy nchronizationsig nal of video1.2 软件实现 视频信号采集流程[8] :首先等待场信号的到 来;然后延时,跳过场消隐,约1.44ms;等待行同步信号;判断采集行数是否满足要求,满足则采集完成,否则延时,跳过行同步信号和消隐信号;对1行视频信号进行连续采集; 延时,跳过若干行视频信号,再跳回到等待行同步信号,直至完成,就能采集到1幅有效而完整的视频图像了。 2 自适应差分边缘检测算法 阈值分割法[9- 10]在结构化道路上是提取指引 4 2交通信息与安全 2012年5期 第30卷 总171期

路径识别方案

500W高清路径识别系统 技 术 方 案 北京汉王智通科技有限公司 2011年7月

目录 1系统设计需求3 1.1系统建设目的3 1.2设计原则和标准3 2系统方案5 2.1主要功能6 2.2主要设备技术参数9 3安装方案12 4设备清单13

1系统设计需求 1.1 系统建设目的 随着我国高速公路的不断发展,目前我国已形成了密布的高速公路交通网。为了降低高速公路运营成本,各省高速公路已基本实现了高速公路收费全省联网系统。在省内高速中已取消了主线收费站,实现联网收费,达到了节约运营成本、统一管理的较高水平。车辆进入省内高速公路,在不同业主所有的公路上行驶时已无需一次又一次地进出、交费,而只需在驶入和驶出时进行一次交费。一般由省交通厅或相关部门牵头,结算中心,专门负责高速公路通行费收入的分拆结算,根据车辆所经路段按照一定规则进行分配。 高速公路联网收费一方面减少了通行车辆的交费次数,提高了通行速度,另一方面由于减少了收费站建设和收费人员的聘用、培训,使业主方降低了运营成本,具有可观的经济效益。 然而,对于进行联网收费的高速公路网来说,不可避免的存在有高速公路环网情况,即车辆在网络中从A点驶入到B点驶出,存在多条路径,先行的收费方法是按照最短路径收费,这显然对于业主来说是不合理的。通过路径识别系统可以精确的识别过往车辆的路径,这样可以按照走多少路收多钱的原则收费,减少了业主的损失。该系统建立的目的就是为了更好的解决“路径二义性问题”。 1.2 设计原则和标准 1.2.1设计原则 (1)稳定性和可靠性:系统安装调试后,运行稳定、可靠,在正常使用寿命内,不会出现任何系统和设计缺陷。 (2)经济性:系统配置要具有较高的性能价格比,在满足系统功能要求的前提下,充分了考虑经济性,减轻用户负担,并考虑了系统的运行成本。 (3)先进性:系统设备配置及系统集成具备合理性,并且保证系统具备先进性。

智能循迹车及其路径规划的设计

智能循迹车及其路径规划的设计 本设计采用Arduino和STM32单片机最小系统,运用光电和运动姿态传感器,结合PID自动控制算法和A*路径规划算法,通过设计系统运行的总体框架,开发出了一款在具有基本自主循迹功能的基础上,结合了路径规划能力的智能循迹车。通过在竞赛中实际检验,本设计实现了在迷宫地图中的全场定位以及路径规划中的预设巡航行驶和最短路径行驶的功能,并达到了较佳的控制效果。本设计方案亦可作为相关机器人竞赛项目的基础参考方案。 标签:智能循迹车;路径规划;A*算法;Arduino;STM32 Abstract:This design adopts Arduino and STM32 single chip microcomputer minimum system,uses photoelectric and motion attitude sensor,combines PID automatic control algorithm and A* path planning algorithm,through the design of the overall framework of the system operation,and based on the basic autonomous tracking function,an intelligent tracking vehicle is developed,which combines the ability of path planning. Through the actual test in the competition,this design realizes the full field positioning in the labyrinth map and the preset cruising and the shortest path driving in the path planning,and achieves the better control effect. This design scheme can also be used as the basic reference scheme of the related robot competition projects. Keywords:intelligent tracking vehicle;path planning;A* algorithm;Arduino;STM32 引言 在近年来的各类机器人比赛中,智能循迹车因其具有技术性、竞技性和创新性,而成为了一个热门项目。智能循迹车系统结合传感器学、自动控制、嵌入式、路径规划技术等于一体,集成程度高,使用的算法较为多样,能够体现开发者的创新水平。路径规划技术是循迹车自主导航行驶的核心技术,运用了该技术的智能循迹车或自走机器人可以按程序设定完成规定路径巡航和自主探索两点之间的最短路径等任务。在众多的移动机器人路径规划算法中,A*算法[1]已得到广泛应用、验证以及推广。本设计结合循迹控制和路径规划,运用了PID控制算法[2]、运动传感器姿态解算[3]、全场定位和A*路径规划,综合达到了预期控制效果。 1 智能循迹车设计分析 1.1 智能循迹车设计要求 设计智能小车实现能够在白色底黑色线(25mm宽)地图上以自动循迹行驶为基础,完成按任意预设路径巡航行驶和探索两点间最短路径行驶的任务。地图

基于Dubins路径的智能车辆路径规划算法

收稿日期:2015-05-10 修回日期:2015-06-09 基金项目: 山西省科技攻关基金资助项目(20130321005-04)作者简介:宋国浩(1990-),男,山东曲阜人,在读硕士研究生。研究方向:机械工程、智能车辆。 *摘 要:路径规划是车辆智能化的核心问题之一,而所有路径均可分解为简单的Dubins 路径。在Dubins 路径的 思想下对智能车辆的行驶路径进行分段研究,并利用经典PID 控制对该算法的执行性能进行检验。研究表明:算法能计算出车辆行驶的最短路径,减少了车辆行驶的路径长度,缩短了行驶时间,减少了控制系统的计算量,提高了车辆执行系统的执行力度,降低了执行误差,对最优路径具有较好的选择性。 关键词:智能车,路径规划,Dubins 路径,最短路径中图分类号:TP273+.1 文献标识码:A 基于Dubins 路径的智能车辆路径规划算法* 宋国浩,黄晋英,兰艳亭 (中北大学机械与动力工程学院,太原030051) Intelligent Vehicles Path Planning Algorithm Based on Dubins Path SONG Guo-hao ,HUANG Jin-ying ,LAN Yan-ting (School of Mechanical and Power Engineering ,North University of China ,Taiyuan 030051,Chian ) Abstract :The path planning is one of the core issues of intelligent vehicles.All paths can be decomposed into Dubins path.This paper sectionally researches into the intelligent vehicles ’travel path under the idea of Dubins path and carries out tests on the execution performance of the algorithm using PID control strategy.Researches showed that this algorithm can calculate the vehicles ’shortest path ,reduce the vehicles ’path length ,shorten the time of driving ,reduce the computation amount of the control system ,improve the enforcement of the vehicle execution system ,reduce the execution error ,and have a good selectivity of the optimal path. Key words : intelligent vehicles ,path planning ,dubins path ,the shortest path 0引言 路径规划应用在很多领域,例如:军事无人机、 航天探测机器人、智能车辆以及监视和侦察等工作 [1-3] 。路径规划在现代汽车领域中是一个研究热门领域,需要考虑多方面的因素,如:汽车自身约束条件,车辆行驶环境的约束以及其他的行驶问题。在路径规划中,首先应考虑车辆的可行驶性,在对车辆行驶路线进行规划时,应保证其安全行驶的前提下,尽可能大地规划出车辆行使范围。在保证车辆安全行驶的问题中,需要使车辆自主地绕开其他影响车辆行驶的物体,使车辆避免与障碍物相撞。路径规划算法应具有精确性,占有较小的内存,并满 足实时性的要求,在执行过程中没有明显的延时问 题[4-5]。此外,为了使行驶路径达到最优,提高行驶效率,还应缩短车辆行驶长度。 目前,在有关路径规划的研究中,如张明环等[6]提出的触须算法,此算法是在车辆行驶前,首先对车辆将要行驶的路线进行规划,让车辆按照规划好的16*81条可使用的路径行驶,这样可以使车辆节省大量的反应时间,但却不能够处理突变情况,研究背景过于理想化;王凯等[7]提出了改进的人工势场法,将此算法应用在智能车路径规划中的避障环节,解决了传统人工势场法在路径规划中易陷入局部极小值的问题,具有一定的实时性,但其受限于所用传感器性能的影响,其作用范围较小,且易受 文章编号:1002-0640(2016) 06-0041-05Vol.41,No.6Jun ,2016 火力与指挥控制 Fire Control &Command Control 第41卷第6期2016年6月 41··

CCD视频传感器的智能车路径识别控制系统

第二届全国大学生智能汽车竞赛技术报告 基于CCD视频传感器的智能车路径识别控制系统(下) 4.2电源管理模块设计 电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。模型车系统中接受供电的部分包括:传感器模块、单片机模块、驱动电机模块、转动电机模块以及其它的外围辅助模块等。设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。 全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。本系统主要用到了以下几个不同的电压,如表4.1所示。 电源模块由若干相互独立的稳压电源电路组成。在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。 5V电源的实现是通过电源管理芯片TPS7350来实现的。TPS7350是一款低压稳压芯片,能提供5V的固定电压输出。TPS7350低压差稳压芯片克服了早期稳压芯片的缺点,而且还增加了如节电待机模式和供电管理等功能。与其它的稳压芯片一样,TPS7350需要外接一个输出电容来保持输出的稳定性。出于稳定性考虑,需要在稳压输出端和地之间接一个10uF低等效电阻的电容器。除非该等效电阻小于1.2欧姆,否则引入的陶瓷电容或薄膜电容器会使输出的电压不稳定。在很小或根本就没有旁路电容的情况下,输出电容可以减少到4.7uF,所提

路径规划论文:路径识别与路径规划方法的研究

路径规划论文:路径识别与路径规划方法的研究 【中文摘要】随着科学技术的发展,各种各样的机器人陆续出现,机器人越来越受到人们的重视,而中国大学生机器人大赛暨Robocup 公开赛更是吸引了很多爱好者。机器人游中国可看成迷你的旅游,这跟目前假期短,如何能够合理安排,多参观几个景点的问题相吻合,故也大大引起大家的兴趣。本文以游中国机器人为研究对象,研究路径规划和路径识别的方法。基本思想是:首先根据比赛要求,建立大赛的基本界面平台,对图像进行数据存储,为遍历做准备。然后根据经典的遍历方法,通过改进来实现景点的遍历,比较得到一条较理想的旅游 路线。另一方面机器人在前进时要根据看到的路况来控制速度,因此对道路情况进行提取,并通过一系列方法去由环境等引起除噪声及冗余信息,得到较好的道路目标。然后对前方路况的几种情况进行提取分析,利用角点检测的方法来确定分支数,使机器人能够更好的选择 路线。具体实现过程如下:1.地图的存储。首先建立大赛涉及的基本界面平台,分析比较了几种常用的图存储方法的优劣。2.遍历算法。首先介绍了人工智能中常用的几种遍历算法,并对各个算法的复杂性和适用情况进行分析比较。根据该项目中的需要加以改进,得到不同的遍历路线。再... 【英文摘要】With the development of science and technology, a variety of robots showed up, that’s the reason that more and more people pay attention to the robot. However, Robot

高速公路车辆路径识别系统汇总

高速公路网 车辆路径识别系统方案建议书

目录 一、概述 (3) 1.1需求分析 (3) 1.2高清车牌识别系统解决方案 (4) 1.3系统扩展功能 (4) 二、系统设计 (6) 3.1系统规划 (6) 3.2多路径车辆识别监测系统 (7) 3.2.1点位设计 (8) 3.2.2系统构成 (8) 3.3车辆超速全程监控系统 (10) 3.3.1点位设计 (11) 3.3.2系统构成 (12)

一、概述 1.1需求分析 目前在高速公路路径识别的主要技术方法有标识法、车牌照识别法、最短路径法、布瑞尔交通分配法、出口确认法、路网平衡法、最大概率法、协商法、抽样调查法等等。国内比较实用的有标识站法和车牌照识别法。 1. 标识站法 标识站识别方法是依据精确识别原理,准确识别车辆的实际行驶路径,标识站法可分为停车式和不停车两种。在本文中重点对停车式标识站进行分析,以下提到的标识站均为“停车式标识站”。 在需要设置标识站的地方设置几条带收费岛的车道,前方设标志说明,收费车道上安装费接触式IC卡读写设备,司机通过此路段时,需将IC卡在读写天线的规定距离内划过,自动栏杆开启、车辆通行,记录该标识站信息。标识站还需要设置摄像机(对冲卡车辆进行抓拍)、雾灯等安全设施。该标识站的设立实际上上相当于主线收费站的建设,由收费亭、带IC卡读写器的计算机、自动栏杆、(摄像机)、雾灯、通行灯以及通行系统组成。路径的识别主要依靠写入通行卡的标识站编码,由出口根据入口、标识站信息自动计算车辆行驶路径。 由于标识站识别方法是依据精确识别原理,准确识别车辆的实际行驶路径,因此,标识站识别方法识别的精度较高。标识站的主要缺点是车辆每次经过标识站时必须停车,导致行车速度降低,降低了高速公路的服务水平,与联网收费的精神直接想违背,对社会形象也是一种极大的损害。 2. 车牌照识别技术 随着图像识别技术的发展,也可应用“车牌照识别”技术进行多路径的识别。即高速公路出、入口设置车牌照抓拍系统,在路网内关键点设置车牌照抓拍系统,摄取通过车辆牌照。

基础道路自识别的智能汽车控制系统设计

摘要 智能汽车凭借着其灵活、先进、高级、灵敏便利等特色受到了很多人的喜欢。智能汽车可以依据驾驶者所设置的参数进行判断和运算,判别驾驶者操作智能汽车的指令,而且做出相对应的反映。因而智能汽车除了可以辨识驾驶人员给它的相关指令外,还要可以对将要行驶的道路进行判别,并能够根据驾驶者的选择来行驶。 所以本课题来设计解决基于道路自识别的智能汽车的控制系统,采用单片机控制系统, 用来在其内部存贮实行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令, 并通过数字和模拟的输入和输出, 来控制整个系统,并实现完整的智能汽车的行驶功能。 关键词:智能汽车;运算;控制;行驶

Abstract telligent car with its flexible, advanced, advanced, sensitive and convenient features such as a lot of people like. Intelligent vehicle can be based on the parameters set by the driver to judge and operation, to determine the driver's instructions to operate the smart car, but also to make the corresponding response. Thus the intelligent car in addition to the relevant instructions can be identified by the driver to it, but also on the road will be able to determine the road, and be able to travel according to the choice of the driver. So this topic to design solution based on road recognition in a smart car control system, using single-chip microcomputer control system, used in its internal storage implementation of the logic operation, sequence control, timing, counting and arithmetic operations, such as operating instructions and through digital and analog input and output to control the whole system, and to achieve complete intelligent vehicle driving function. Key words: intelligent vehicle; operation; control; travel

相关文档
最新文档