电动汽车用逆变器的电磁兼容性设计知识分享

电动汽车用逆变器的电磁兼容性设计知识分享
电动汽车用逆变器的电磁兼容性设计知识分享

电动汽车用逆变器的电磁兼容性设计

电动汽车用逆变器的电磁兼容性设计

段瑞昌,徐国卿

(同济大学电气工程系,上海 200333)

1 引言

近年来,国内外电动汽车的研制取得了长足的发展。与燃油汽车相比,电动汽车具有低噪声,零排放,综合利用能源等突出的优点,成为当今汽车工业解决能源,环保等问题的重要途径。电机及其控制系统是电动汽车的关键技术之一,而车用逆变器则是其核心。由于电动汽车运行环境的复杂性,逆变器处在大量的干扰之中。因此,为使逆变器稳定工作,其电磁兼容性设计就显得十分重要。本文先对车用逆变器所处的电磁环境进行分析,然后从控制电路和主电路两个方面介绍了如何对车用逆变器进行电磁兼容性设计。重点对吸收电路的设计进行了介绍。

对车用逆变器进行电磁兼容性设计之前,必须分析预期的电磁环境,并从电磁骚扰源,耦合途径和敏感设备入手,找出其所处系统中存在的电磁骚扰。然后有针对性地采取措施,就可以消除或抑制电磁干扰。逆变器所处电磁环境中存在的电磁骚扰源主要有:

1)高频开关器件快速通断形成大脉冲电流而引起的电磁干扰;

2)供电电源的负载突变;

3)系统内部及其周围的强电元件造成的强电干扰;

4)电机电枢传输线与其它传输线间的电容性耦合和电感性耦合引起的干扰;

5)由连续波干扰源等造成的空间辐射干扰。

逆变器中各个电子部件、元器件都可能成为被干扰的敏感受扰设备。当干扰信号电平低于系统门坎电平时,不会对系统造成危害。但若高于低限门坎电平时,就可能导致电子器件的误触发,对系统产生干扰。干扰信号可以通过多种途径从骚扰源耦合到敏感受扰设备上,主要有4种方式:

1)传导耦合;

2)公共阻抗耦合;

3)感应耦合;

4)辐射耦合。

在电机控制系统中,功率模块在开关过程中出现高压切换难以避免,同时电机定子电压呈脉冲状态,d u/d t的值很高,电机定子电流d u/d t在开关切换时也很大,因此,通过感应耦合和辐射耦合传输的干扰最为严重。

2 车用逆变器控制电路的电磁兼容性设计

车用逆变器的控制电路由控制板和驱动板组成。控制板的主要作用是接受上位机的给定指令,经高速数字运算产生功率模块的驱动控制信号,并对来自驱动板的反馈信号进行处理。驱动板的主要作用是接受来自控制板的功率模块驱动控制信号,经功率驱动电路控制功率模块导通或关断,同时将输入电压,输入电流,输出三相电流和温度等反馈信号经放大及滤波等环节后送给控制板进行处理。

2.1 控制电源的抗干扰设计

控制电源的稳定性对控制电路的稳定工作至关重要。逆变器的控制电路共有3种电源:+12V给模拟信号供电;+5V给数字信号供电;+15V给运算放大器供电。控制电源的电磁兼容性设计主要采取了以下几种措施:

1)尽可能地缩短输入输出连线,并相互绞合,以减小“天线”效应;

2)尽可能地缩短电源输出端与负载间的距离,并增大连接导线的截面积,以减小连接电阻对负载调整率的影响;

3)在控制电源进线接电源滤波器,此滤波器采用了双L型滤波,可有效减小由电源进线引入的传导干扰;

4)在模块电源输入端安装维持电容,其作用是防止在模块出现输入短路故障或其它导致输入母线电压瞬间跌落的意外时,维持电容可在一定时间内给模块提供维持电压,另外,还可吸收模块输入端的电压尖峰;

5)由于电源及其输出配电线都会有一定的输出电阻和输出电感存在,因此,在高速的模拟电路和数字电路的负载上并联去耦电容;同时在负载上还并联旁路电容,以获得对中频和高频干扰信号的旁路作用,从而防止多个负载之间的相互干扰。

2.2 控制电路PCB线路设计

控制电路的印刷电路板(PCB)上有各种不同功能的电路,如模拟电路,数字电路,放大电路等,不同的电路相互之间存在电磁干扰。同时,印制线的电感成分产生的噪声电压也不容忽视。因此,PCB线路的合理设计可以有效地抑制电磁干扰,提高系统的可靠性。控制电路PCB的线路设计应遵循以下原则:

1)根据电路功能要求,按功率大小,信号强弱与性质等因素,进行分区布置,以削弱它们之间的相互干扰;

2)本着减小导线的引线电感和导线间分布电容的原则,尽量减小导线的平行布线;

3)在考虑安全的条件下,电源线应尽可能靠近地线,并远离信号线,以减小差模辐射的环面积,也有助于减小电路的交扰;

4)信号线尽量靠近地线,信号线之间布线垂直,并远离大电流信号线及电源线;

5)模拟地、数字地、电源地等各自分开走,自成系统,然后辐射状地汇集到一个公共接地点。

2.3 控制电路的接地设计

接地设计有两个基本目的:消除各支路电流流经公共地线时所产生的噪声电压;避免受磁场和地电位差的影响,形成地环路。为达到以上目的,逆变器控制电路的接地设计中采取了以下几项措施:

1)地线分流,主要是通过结构措施减少公共地阻抗造成的信号串扰,根据地线分流原则,将强电地线和弱电地线分线,数字电路地线和模拟电路地线分线,安全地、信号地和噪声地分线。

2)阻隔地环流,主要是通过布局来减小交变磁场的感应,辐射所造成的干扰,这里采用光电隔离来阻隔地环流;

3)金属构件(如机箱,散热器等)与大地直接相连,以防止触电事故,外界电磁场的干扰以及静电等;

4)直流电源的反馈线和回线应当绞和起来,以防止其接受并且重新辐射外来的射频能量;

5)灵活采用单点和多点接地。

2.4 控制电路的屏蔽设计

根据屏蔽体对电磁波的衰减机理,屏蔽效果主要由穿过屏蔽材料的衰耗决定。而穿过屏蔽材料的衰耗则由屏蔽材料的厚度以及材料的电导率和磁导率共同决定。经综合考虑,采用2mm厚的钢板制成控制器的封闭式机箱,驱动板和控制板与功率模块平行放置,中间加铝板隔离。机箱起到屏蔽体的作用,经测试,其屏蔽效能在100dB以上。机箱通过散热器可靠接地,使得屏蔽体同时具有静电屏蔽和电磁屏蔽的作用,确保逆变器周围的静电场能量,直流磁场能量,50Hz低频磁场能量不侵入控制电路中,同时,控制电路中产生的高频电磁场能量不扩散出去。此外,制约整体屏蔽效能的主要因素是屏蔽体上的缝隙及孔洞等结构不连续性。因此,在机箱的永久性接缝处采用焊接工艺密封;在机箱的非永久性接缝处加入实心导电橡胶条作为导电衬垫,从而有效保证了屏蔽的完整性。

3 车用逆变器主电路的电磁兼容性设计

车用逆变器主电路主要由功率模块,功率母线,滤波电容器,吸收电容和接触器等组成。与通用逆变器相比,逆变器的输出功率较大,而且在安装空间、重量等方面都有限制。因此,对逆变器主电路的电磁兼容性作了详细的设计。

3.1 功率母线设计

在功率模块的开关过程中,浪涌电压的出现在所难免。主要有关断浪涌电压和续流二极管恢复浪涌电压。浪涌电压会导致很高的瞬态电压,从而可能导致功率模块的损坏。浪涌电压的能量与L s I C2成比

例(Ls是母线的寄生电感,IC是模块工作电流)。在使用大电流器件时,为了降低浪涌电压的影响,需要降低功率电路的电感。这就需要一种特殊的母线结构来适应大电流工作的低母线电感电路。因此,我们

逆变器的基础知识

逆变器的基础知识 一、逆变器种类的划分 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。 同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。 针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。 总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 二、何为感性负载 通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。 例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于逆变器所能承受的电压值,很容易引起逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。 三、准正弦波逆变器可以用于哪些电器 准正弦波也分为若干种,从与方波相差无几的方形波到比较接近正弦波的圆角梯形波。 我们这里仅讨论方形波,这也是目前大部分市售高频逆变器能够提供的波形。这类准正弦波逆变器可应用于笔记本电脑、电视机、组合式音响、摄像机、数码相机、打印机、各种充电器、掌电上脑、游戏机、影碟机、移动DVD、家用治疗仪等等,输出功率较大的逆变器还可以应用于小型电热器具如电吹风机、电热杯、厨房电器等等。 但对感性负载类电器如电冰箱、电钻等则不宜长时间使用准正弦波逆变器供电。否则,将可能对逆变器和相关电器产品造成损坏或缩短预期使用寿命。如果一定要使用感性负载,建议选用储备功率较大的准正弦波逆变器。

逆变器使用说明书

车载逆变器用户手册 1、简介 感谢您购买HUASYN系列的逆变器。为了您能舒适、安全的使用本产品,请仔细阅读本说明书,说明书中包含关于本产品的重要信息,请保留此说明书以供以后参考。 HUASYN系列逆变器拥有您所期待的的卓越品质,无论你接在汽车点烟器插孔,还是接在电瓶上,都能直接转换为交流电。它可广泛用于各类家用电器上,让您在商务工作、驾车旅游、停电应急的时候,给您源源不断的动力。 2、产品特性 采用专用智能IC控制逆变器产品,具有非常完善的保护功能和指示功能。采用优质的双面线路板及电子元件,保证产品的高质量,高性能。转换效率高、小巧轻便、适用范围广的特点。 产品示意图: 75W 100W 150W 200W 300W 500W 3、使用说明 a:使用环境 基于安全和性能的考虑,HUASYN系列产品应该在以下环境下使用: 干燥:不能浸水或淋雨

阴凉:环境温度应该在0℃到40℃之间 通风:保持壳体上方5CM内无异物,其它端面通风良好,确认风扇不会在工作过程中不会发生阻塞或障碍(适用于有带风扇的产品),以便防止出现通风不良的情况。 b:操作方法 1、确定所使用的电器功率应小于所使用的逆变器的额定输出功率。 2、当使用设备输出功率小于200W时,将逆变器开关置于关闭位置,然后雪茄头紧密地插入车内点烟器插口,确保雪茄头良好接触。 3、当使用设备输出功率大于200W时,必须通过鳄鱼夹线使用,引线的太阳端子接至逆变器接线柱,颜色应该匹配,引线端为红色的接逆变器上的红色接线柱,引线端为黑色的接逆变器的黑色接线柱;另外一端的鳄鱼夹连接所使用过的电瓶,红色鳄鱼夹接“+”级,黑色鳄鱼夹接“﹣”级)。 4、输入端接好后,打开开关,逆变器指示灯将发亮,表示已经有交流电输出,逆变器便可以开始正常工作。 5、将需要使用的电器插入的逆变器的输出端AC插座或USB接口充电,根据你所使用的设备选择。 6、开启你的电器开关,HUASYN逆变器便可以给你带来源源不断的交流电能。 4、产品规格

电动汽车逆变器功率损耗计算

电动汽车逆变器功率损耗计算 【摘要】针对目前电动汽车电机驱动系统中广泛使用的逆变器,提出一种在不同功率因数角范围内的逆变器中绝缘栅双极型晶体管(IGBT)和续流二级管的导通功率损耗的计算方法。该文是对论文[1]中提出的计算公式的补充,能更精确的计算IGBT以及续流二极管上功率的损失。该方法是基于目前电机控制中普遍运用的空间电压矢量调制(SVPWM)7段式的方法计算得出的,最终推导出了在不同的功率因数角范围内逆变器中IGBT和续流二级管上的导通功率损耗的计算表达式。本文给出的计算表达式可以为设计合适的散热装置提供一定的数学理论基础。 【关键词】逆变器;IGBT;续流二级管;空间电压矢量调制;功率因数角 1.前言 在逆变器中,其功率损耗主要出现在绝缘栅双极型晶体管(IGBT)和续流二级管上。IGBT具有驱动功率低,工作频率高,通态电流大和通态电阻小等优点,已成为当前电力电子装置中的主导器件,因此也成为学者研究的热点。当前,对IGBT/DIODE功率损耗研究的方法主要分为基于物理结构的损耗模型和基于数学方法的损耗模型。通过物理结构计算IGBT功率损耗时,需要通过分析IGBT/DIODE的物理结构和内部载流子的工作情况,采用电容,电阻,电感,电流源,电压源等一些相对简单的元件模拟出IGBT/DIODE的特性。这种损耗模型的准确程度取决于器件物理模型的准确程度,因此实现起来非常困难。相反,通过数学模型的IGBT/DIODE功率损耗模型则是利用相关实验数据,推导出电流,电压与IGBT自身参数之间的数学关系,该方法易于实现且通用较强。在已有的论文中,也有类似的功率损耗计算,但表达式不够精准,且没有在常见的功率因数角范围内分段推导得出。本文推导了SVPWM 7段调制情况下,在不同的功率因数角范围内,逆变器中IGBT和续流二级管的导通功率损耗公式。 2.逆变器的功率损耗模型 逆变器的功率损耗主要集中在IGBT和续流二极管上。而这二者的大小主要取决IGBT的开关次数和导通电流的大小,逆变器与永磁同步电机的拓扑结构如图1所示: 图1 逆变器与永磁同步电机拓扑结构 在如图1的结构中,每个周期内6个IGBT开关按照SVPWM 7段式调制顺序依次开关,在一个PWM周期内,每个IGBT和每个续流二级管导通时间相等,因此在一个PWM周期内,每个IGBT/DIODE的导通功率是相等的,在计算中仅需计算一个IGBT/DIODE导通功率,总功率损耗等于6个IGBT的导通功率损耗加上6个续流二极管的导通功率损耗。

电动车用辅助逆变器的设计与实现

电动车用辅助逆变器的设计与实现 摘要: 电动汽车的运行与普通汽车有许多不同, 需要设计安装大量专用辅助设备, 且要求辅助设备结构简单、运行稳定、运行成本低。文章描述了电动车用辅助逆变器的特殊应用环境和工作要求, 提出一种设计思路, 并分别从硬件结构和软件流程两方面介绍系统的构成。关键词: 逆变器 SA 4828 芯片脉宽调制 CAN 总线 1 引言 目前各种类型的电动汽车发展日新月异, 车辆主动力单元采用的电机和驱动方式各有特色, 但在车用辅助电机的选择上却观点一致, 即充分利用电动车直流母线电压高 (通常为300~ 600 V ) 的特点, 利用辅助逆变器将直流变成三相交流电驱动交流异步电机, 为车上的刹车气泵、液压助力泵、空调压缩机等设备提供动力。在大型电动车上, 驱动这些设备的电机功率在 3~ 10 kW 之间, 采用交流电机可以比同等直流电机成本更低、体积更小、重量更轻, 而且运行噪音小、维护量大大降低。电动车的发展在国外已经进入实际应用阶段, 而国内仍处于开发样车阶段, 多数研发单位只是将通用变频器进行简单改装后作为辅助逆变电源投入使用。这样不仅成本较高, 不能完全适应电动车的实际运行需要, 也不具备 CAN 总线通讯能力, 无法参与整车系统的数据通讯。新公布的国家“863 计划”关于电动车发展规划中已经明确规定: 新申报的电动车开发项目必须采用基于CAN 总线的整车通讯控制系统。因此辅助逆变器在提供三相交流电源功能的同时, 系统必须具有CAN 总线通讯接口, 以便参与整车系统的控制。电动车用辅助逆变器的设计必须充分考虑产品的运行环境和负载特点, 简化系统硬件结构, 确保设备运行稳定。从直流输入来看, 电动车动力电池电压有一定的波动范围, 在电量充足时每个电池单体的电压可以达到 1. 45 V 或更高, 随着使用过程中能量的不断输出, 电压会逐渐降低, 达到 1. 2 V 甚至更低。由 280 节单体串联成的电池组, 其母线电压通常会在 400~ 330 V 之间浮动, 变化率高达 21. 2%。因此逆变器必须能够适应较宽范围内的电压浮动。同时, 作为电源设备, 这种辅助逆变器不仅可以驱动各种三相交流电机, 还可以作为车上的工频电源, 为更多的车载设备服务。因此, 设计开发一种专用的电动车用辅助逆变器, 不仅可适应电动车直流母线电压浮动大的特点, 还可以参与整车控制, 提高系统运行效率、节约能源。 2 系统整体构成设计 完成辅助逆变器的设计必须从其输入?输出要求出发, 做到结构清晰、功能明确。在系统结构上可以将电动车用辅助逆变器按功能分为 4 个部分, 如图 1 所示。

逆变器的原理特点及使用注意事项

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/a11738986.html,)逆变器的原理特点及使用注意事项 逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。它由逆变桥、控制逻辑和滤波电路组成。 一、逆变器的工作原理 逆变器是一种DCtoAC的变压器,它其实与转化器是一种电压逆变的过程。转换器是将电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了用得比较多的脉宽调制(PWM)技术。其核心部分都是一个PWM集成控制器,Adapter用的是UC3842,逆变器则采用 TL5001芯片。TL5001的工作电压范围3.6~40V,其内部设有一个误差放大器,一个调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等。 二、逆变器的特点 1、转换效率高、启动快; 2、带负载适应性与稳定性强; 3、安全性能好:产品具备短路、过载、过/欠电压、超温5种保护功能; 4、安全性能好:产品具备短路、过载、过/欠电压、超温5种保护功能; 三、逆变器使用注意 1、直流电压要一致

每台逆变器都有接入直流电压数值,如12V,24V等,要求选择蓄电池电压必须与逆变器直流输入电压一致。例如,12V逆变器必须选择12V蓄电池。 2、逆变器输出功率必须大于电器的使用功率,特别对于启动时功率大的电器,如冰箱、空调,还要留大些的余量。 3、正、负极必须接正确 逆变器接入的直流电压标有正负极。红色为正极(+),黑色为负极(—),蓄电池上也同样标有正负极,红色为正极(+),黑色为负极(—),连接时必须正接正(红接红),负接负(黑接黑)。连接线线径必须足够粗,并且尽可能减少连接线的长度。 4、应放置在通风、干燥的地方,谨防雨淋,并与周围的物体有20cm以上的距离,远离易燃易爆品,切忌在该机上放置或覆盖其它物品,使用环境温度不大于40℃。 5、充电与逆变不能同时进行。即逆变时不可将充电插头插入逆变输出的电气回路中. 6、两次开机间隔时间不少于5秒(切断输入电源)。 7、请用干布或防静电布擦拭以保持机器整洁。 8、在连接机器的输入输出前,请首先将机器的外壳正确接地。 9、为避免意外,严禁用户打开机箱进行操作和使用。 10、怀疑机器有故障时,请不要继续进行操作和使用,应及时切断输入和输出,由合格的检修人员或维修单位检查维修。

电动汽车逆变器用IGBT驱动电源设计与可用性测试

电动汽车逆变器用IGBT驱动电源设计及可用性测试 电动汽车逆变器用于控制汽车主电机为汽车运行提供动力,IGBT功率模块是电动汽车逆变器的核心功率器件,其驱动电路是发挥IGBT性能的关键电路。驱动电路的设计与工业通用变频器、风能太阳能逆变器的驱动电路有更为苛刻的技术要求,其中的电源电路受到空间尺寸小、工作温度高等限制,面临诸多挑战。本文设计一种驱动供电电源,并通过实际测试证明其可用性。 常见的驱动电源采用反激电路和单原边多副边的变压器进行设计。由于反激电源在开关关断期间才向负载提供能量输出的固有特性,使得其电流输出特性和瞬态控制特性相对来说都比较差。在100kW量级的IGBT模块空间布局中,单个变压器集中生产4到6个互相隔离的正负电源的设计存在诸多不弊端:电源过于集中,爬电距离和电气间隙难以保证,板上电源供电距离过长等等。本设计采用常见的非专用芯片进行电路设计,前级SEPIC电路实现闭环,后级半桥电路实现隔离有效解决了上述问题。该电路成功应用于国际领先的新能源汽车逆变器设计中。应用表明,该设计具有较好的灵活性、高可靠性和瞬态响应能力。 1 电动汽车逆变器驱动电源的要求分析 电动汽车逆变器驱动电源一般为6个互相隔离的+15V/-5V电源。该电源的功率、电气隔离能力、峰值电流能力、工作温度等等都有严格的要求。以英飞凌的汽车级IGBT模块FS800R07A2E3_B31为目标进行电源指标的具体计算,该模块支持高达150kW的逆变器系统设计。 1.1 驱动功率计算 该驱动电源的输入功率计算公式为: P=f_sw×Q_g×△V_g/η(1) 其中f_sw开关频率取10kHz,Q_g根据数据手册取8.6nC,△V_g为门极驱动电压取23V。考虑到功率较小,效率取85%。此外注意到数据手册中的8.6nC 是按照电压+/-15V计算,需考虑折算,最后计算结果为1.8W。考虑设计裕量1.1倍,记为2W。 1.2 驱动电流计算 平均驱动电流计算公式为:

逆变器的分类及选用和使用环境

逆变器的作用 简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。我们处在一个“移动”的时代,移动办公,移动通讯,移动休闲和娱乐。在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。 逆变器的分类 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 逆变器根据发电源的不同,分为煤电逆变器,太阳能逆变器,风能逆变器,核能逆变器。根据用途不同,分为独立控制逆变器,并网逆变器。 目前国内市场逆变器的效率问题。 如同上文所述,逆变器在工作时其本身也要消耗一部分电力,因此,它的输入功率要大于它的输出功率。逆变器的效率即是逆变器输出功率与输入功率之比。如一台逆变器输入了100瓦的直流电,输出了90瓦的交流电,那么,它的效率就是90%。目前世界上太阳能逆变器,欧美效率较高,欧洲标准是97.2%,但价格较为昂贵,国内市场只有江苏艾索新能源股份有限公司销售部李先生最近接受采访时候自称旗下的TL系列太阳能光伏逆变器单项机最大效率可达到97.6%,国内其他的逆变器效率都在90%以下,但价格比进口要便宜很多.除了效率以为,选择逆变器的波形也非常重要。 如何选择逆变器 如何选购车载逆变器2010-05-06 15:42 逆变器是车上常用的设备,有了它,可以将电瓶出来的直流电转换成220V交流电。这样我们就能在车上使用一些常用的电器。如手机充电器,笔记本电脑,小冰箱等。做为越野车来说,逆变器更是必不可少的了。 作为一种在车上使用的电器,车载逆变器的安全性显得十分重要,因为产品的设计与使用合理与否,不仅关系着用电电器、整车线路的安全,从更高的角度上来说,还关系着车辆驾驶的行车安全和人身安全。下面我就从车载逆变器的设计与使用两个方面来谈谈安全性的问题。 一、设计上要考虑的安全性问题 1、必须选择金属外壳产品:车载逆变器由于功率较大,发热亦大,如果内部热量不能及时散出,轻则影响元器件寿命,重则有产生火灾的危险。金属外壳,一方面具有良好的散热特性,另一方面也不会燃烧。塑胶外壳的产品,最好不要选用。市面上有些产品为了节约

车载逆变器的使用方法

车载逆变器的使用方法,注意事项和技术支持 什么是车载逆变器、逆变电源? 车载逆变器(电源转换器、 Power Inverter )是一种能够将 DC12V 直流电转换为和市电相同的 AC220V 交流电,供一般电器使用,是一种方便的车用电源转换器。车载电源逆变器在国外市场受到普遍欢迎。在国外因汽车的普及率较高,外出工作或外出旅游即可用逆变器连接蓄电池带动电器及各种工具工作。中国进入 WTO 后,国内市场私人交通工具越来越多,因此,车载逆变器电源作为在移动中使用的直流变交流的转换器,会给你的生活带来很多的方便,是一种常备的车用汽车电子装具用品。通过点烟器输出的车载逆变器可以是 20W 、 40W 、 80W 、 120W 直到 150W ,功率规格的。再大一些功率逆变电源200W,300W,400W,500W,600W,700W,800W,1000W,1500W要通过连接线接到电瓶上。把家用电器连接到电源转换器的输出端就能在汽车内使用各种电器象在家里使用一样方便。可使用的电器有:手机、笔记本电脑、数码摄像机、照像机、照明灯、电动剃须刀、 CD 机、游戏机、掌上电脑、电动工具、车载冰箱及各种旅游、野营、医疗急救电器等。 车载电源转换器的使用知识 首先要选择专业的正规的工厂生产或经销代理的车载逆变器产品。在国内有些用户为图方便将一些 DC 直流电器如:手机充电器、笔记本电脑等在车上不使用自身配的 220V 电源而配上简易转接器直接插到点烟器上,这样是不对的,汽车的电瓶电压不稳,直接取电可能会烧毁电器很不安全而且会大大影响电器使用寿命,因为原厂家供应的 220V 电源是厂家专为其电器设计的,有极好的稳定性。 另外,在购买时要查看车载逆变器是否有各种保护功能,这样才能保证电瓶和外接电器的安全。还要注意车用逆变器的波形,方波的转换器会造成供电不稳定,可能损伤所使用的电器,所以最好选正弦波或修正正弦波形的最新型的车载逆变器。 车载逆变器使用方法 即插即用 1. 把车载逆变器 Power inverter 插入汽车点烟器插座内,转一下使其接触良好,插入时请检查雪茄头与插座之间松紧程度。太松时把插头部的两边弹片张开,然后插入雪茄头插座内

(汽车行业)混合电动汽车用逆变器关键技术研究

(汽车行业)混合电动汽车用逆变器关键技术研究

混合电动汽车用逆变器关键技术研究 电动汽车(EV)、混合电动汽车(HEV)和燃料电池汽车(FCEV)具有良好的应用前景和经济效益[1-2],其中HEV的应用在当前壹段时期可能达到较大的规模。许多X公司和科研机构对HEV的研究非常深入,所包括的不同于普通汽车的关键技术有:电池[3];电机及其驱动系统[4];系统能源管理[5]等。 电机及其驱动系统是HEV的关键部件。首先,其高可靠性必须能够保证HEV长期可靠工作;其次,系统效率对HEV的能耗水平具有决定影响。当下得到大规模应用的有基于永磁电机和感应电机的变频调速系统(以下简称逆变器)。基于永磁电机的逆变器,以日立、川崎等日本X公司的产品最为成熟;基于异步电机的逆变器,ABB、SIEMENS、ALSTON等欧洲著名X公司都能够提供不同功率等级的应用系统。在电力机车市场方面,产品应用和发展趋势也是壹致的。本文研究的是基于异步电机的逆变器,配套电机为湘电股份X公司生产的YQ57型变频牵引异步电动机,应用于湘电股份X公司的XD6120型HEV客车上。 不同于普通的风机、水泵等壹般工业应用场合,应用于HEV的逆变器由于使用环境的特殊性,其关键要求有:结构设计可靠,安装维修方便,防护等级高,适应恶劣的环境。 1电气系统设计 HEV的电气系统主要包括三个部分:蓄电池、电机、逆变器。参考文献[6]对电气系统设计过程进行了详细说明,而且也对这三个部分的参数进行了详细的说明和分析。 (1)电机基本参数确定:电机的功率和转矩参数应根据HEV的速度要求、转矩特性和传动比来确定,最后确定和XD6120型混合电动汽车配套的电机功率为57kW,额定转速为2000r/min,最大起动转矩为2Tn。 (2)电压等级确定:由于汽车以安全为第壹要素,因此在HEV上应用的IGBT以600V和1200V 系列最为广泛。确定电池和电机电压的等级应考虑如下因数:IGBT在关断时有可能产生过电压,因此600V系列IGBT实际使用时的直流侧电压低于400V;电池电压是浮动的,按照壹般要求,最高电压等于额定电压的120%;功率相同时,电压等级越高,电流越小,电机和变频器的体积就相对越小。综合之上因素,确定电池的电压等级为312V,电机的电压等级为230V。 (3)其他参数确定:蓄电池电压选定后,仍应根据HEV的续航里程等要求选定蓄电池的安时数;根据电机电流计算逆变器电流;根据系统电压和电流等级选择保护用开关及其熔断器、电线电缆的型号规格、各种电气系统的绝缘和电气间隙等。 2逆变器设计关键技术 逆变器设计关键技术包括:主电路参数计算;散热器和风机计算;数字控制电路设计和软件设计;总体结构设计。 2.1主电路电气图和主要器件参数计算 逆变器采用电压源型主电路,直流侧加支撑电容,附加直流继电器和预充电电路。其电路图如图1所示。 在主电路设计时,最重要的是确定功率器件的电压和电流等级。本系统选择的IGBT电压等级为600V,对应的蓄电池电压等级选择为312V,电机额定电流In=192A,考虑到在低速起动时要求起动转矩为2Tn,对应的电机的启动电流约为2In,因此选择IGBT的电流等级为600A。 根据所选择的电压等级,直流侧电容电压等级选定为450V。其容量则壹般使用如下经验公式进行计算[7]: 式中,P为逆变器输出功率,VDC为直流侧电压,CDC为直流侧电容容量。经计算得到需要的电容容量为0.0175F≤CDC≤0.035F。实际系统中的电容容量为20000μF。 2.2功率器件损耗计算[8]

逆变器用变压器设计

计算方法 A 已知条件: 输出功率:2P =25W ; 次级电流:2I =0.115A ;(220V ?) 初级电流:1I =1.0A ; 电源频率:f =50Hz ; 效率:η>0.9; 功率因数:cos ?>0.9; 温升:m τ?<55℃。 B 电压计算输入功率:212527.80.9P P η= ==W 初级电压:11127.827.81P U I = ==V 次级电压:22225217.390.115 P U I ===V 次级负载电阻:()222222518900.115P R I = ==?C 选择铁芯 按2P 选择铁芯。当使用R 型铁芯R-30,材料使用DQ151-35时。铁芯 相关性能为: 当0B =1.70T 时,S P ≤2.2W/kg ,磁化伏安≤8V A/kg ,~H ≤3.5A/cm 2 223.1410 3.142C d S cm π??==×=????;()()2 5.45 2.021.95 2.022.8C L =×+++=cm ;

C G =0.425(kg );c F =64cm 2 D 匝数计算 44 1010108.43864.44 4.4450 1.7 3.14 c TV fB S ===×××匝/V 当%U ?=15%(8%?),()()128.43869.92781%10.15TV TV U ===???匝/V (()()128.43869.1721%10.08TV TV U ===???)11127.88.4386235N U TV =×=×=匝 2222179.92782155N U TV =×=×=匝(2222179.1721990N U TV ==×= )E 导线直径确定(数据提供23.5~4.0/j A A mm = )1 1.130.604d === mm 2 1.130.205d ===mm 若取QZ-2(二级聚酯漆包线)标准导线,则10.630d mm =,1max 0.704d mm =,铜导体电阻54.84/km ?;20.224d mm =,2max 0.266d mm =,铜导体电阻433.8/km ?。

600W正弦波逆变器资料大全

600W正弦波逆变器资料大全 逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。正弦波逆变器原理图,有方波的输出和正弦波输出的区别。方波输出的逆变器效率高,但对于都是为正弦波电源设计的电器来说,使用总是不放心,虽然可以试用于许多电器,但部分电器就不适用,或用起来电器的指标会变化。正弦波输出的逆变器就没有这方面的缺点,却存在效率低的缺点。为此设计了一款高效率正弦波逆变器。正弦波逆变器广泛运用于各类:通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。下面介绍一个600W的正弦波逆变器。 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

逆变器操作说明和故障处理

一逆变器原理介绍 1.1逆变(invertion):把直流电转变成交流电的过程。 逆变电路是把直流电逆变成交流电的电路。当交流侧和电网连结时,为有源逆变电路。变流电路的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,称为无源逆变。 逆变桥式回路把直流电压等价地转换成常用频率的交流电压。逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。 1.2 IGBT的结构和工作原理 1.2.1 IGBT的结构 IGBT是三端器件,具有栅极G、集电极C和发射极E。IGBT由N沟道VDMOSFET 与双极型晶体管组合而成的,VDMOSFET多一层P+注入区,实现对漂移区电导率进行调制,使得IGBT具有很强的通流能力。图1-1为IGBT等效原理图及符号表示 图1-1 IGBT等效原理图及符号表示 1.2.2IGBT的工作原理 IGBT的驱动原理与电力MOSFET基本相同,是一种场控器件。 其开通和关断是由栅极和发射极间的电压U GE决定的。

当U GE为正且大于开启电压U GE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而使IGBT导通。 当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。 电导调制效应使得电阻R N减小,这样高耐压的IGBT也具有很小的通态压降。 1.3逆变电路介绍 1.3.1逆变产生的条件为 1,要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。 2要求晶闸管的控制角α>π/2,使U d为负值。 两者必须同时具备才能实现有源逆变。 逆变运行时,一旦发生换相失败,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器的输出平均电压和直流电动势变成顺向串联,由于逆变电路的内阻很小,形成很大的短路电流,这种情况称为逆变失败,或称为逆变颠覆。 逆变失败的原因 1触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致使晶闸管不能正常换相。 2晶闸管发生故障,该断时不断,或该通时不通。 3交流电源缺相或突然消失。 4换相的裕量角不足,引起换相失败 为了防止逆变失败,不仅逆变角β不能等于零,而且不能太小,必须限制在某一允许的最小角度内。 1.3.2逆变电路基本的工作原理 图1-2单相逆变电路原理图

逆变器用户使用说明材料

GDLYEC-PV-3~270/500光伏并网逆 变器 用户使用手册

版本2.0 国电龙源电气有限公司

目录 1关于本手册 (5) 1.1 前言 (6) 1.2 内容简介 (6) 1.3 面向读者 (7) 1.4 手册使用 (7) 2 安全须知 (8) 2.1 警示符号说明 (9) 2.2 安全提示 (10) 2.3 操作中的注意事项 (12) 3 产品简介 (14) 3.1 光伏并网系统 (15) 3.2 产品特点 (16) 3.3 电气原理 (17) 3.4 产品外观 (19) 4 产品功能与LCD操作指南 (23) 4.1 GDLYEC-PV-3~270/500主要功能 (24) 4.1.1 并网发电 (24)

4.1.2 MPPT功能 (24) 4.1.3低电压穿越功能 (25) 4.1.4 保护功能 (26) 4.1.5 远程控制功能 (26) 4.1.6自动开关机功能 (27) 4.2 GDLYEC-PV-3~270/500运行模式 (27) 4.3 GDLYEC-PV-3~270/500 LCD操作指南 (29) 4.3.1 LCD主界面 (29) 4.3.2 LCD控制指令发送 (32) 5 产品安装 (38) 5.1 注意事项 (39) 5.2 机械尺寸 (40) 5.3 放置与移动 (40) 5.4 直流输入线缆连接 (41) 5.4.1 直流输入电气参数规格 (41) 5.4.2 直流输入线缆要求 (42) 5.4.3 线缆连接 (42) 5.5 交流输出线缆连接 (45) 5.5.1 交流输出电气规格 (45) 5.5.2 交流输出线缆要求 (45) 5.5.3 线缆连接 (45)

逆变器用户使用手册

GDLYEC-PV-3~270/500光伏并网逆变器 用户使用手册 版本2.0 国电龙源电气有限公司

目录 1关于本手册 (3) 1.1 前言 (4) 1.2 内容简介 (4) 1.3 面向读者 (4) 1.4 手册使用 (4) 2 安全须知 (5) 2.1 警示符号说明 (6) 2.2 安全提示 (7) 2.3 操作中的注意事项 (9) 3 产品简介 (10) 3.1 光伏并网系统 (11) 3.2 产品特点 (11) 3.3 电气原理 (12) 3.4 产品外观 (14) 4 产品功能与LCD操作指南 (17) 4.1 GDL YEC-PV-3~270/500主要功能 (18) 4.1.1 并网发电 (18) 4.1.2 MPPT功能 (18) 4.1.3低电压穿越功能 (18) 4.1.4 保护功能 (19) 4.1.5 远程控制功能 (20) 4.1.6自动开关机功能 (20) 4.2 GDL YEC-PV-3~270/500运行模式 (20) 4.3 GDL YEC-PV-3~270/500 LCD操作指南 (22) 4.3.1 LCD主界面 (22) 4.3.2 LCD控制指令发送 (24) 5 产品安装 (30) 5.1 注意事项 (31) 5.2 机械尺寸 (31) 5.3 放置与移动 (31) 5.4直流输入线缆连接 (32) 5.4.1 直流输入电气参数规格 (32)

5.4.2直流输入线缆要求 (33) 5.4.3线缆连接 (33) 5.5交流输出线缆连接 (36) 5.5.1交流输出电气规格 (36) 5.5.2 交流输出线缆要求 (36) 5.5.3 线缆连接 (36) 5.6 系统地线连接 (38) 5.6.1地线线缆要求 (38) 5.7 远程监控通信线连接 (38) 6 产品运行指南 (40) 6.1 启动 (41) 6.2 关机 (42) 7 电气特性 (43)

家用电动车汽车电源逆变器怎么选择

家用电动车汽车电源逆变器怎么选择 在长途驾驶中,当我们的手机或笔记本电脑电池耗尽而手边只有普通充电器时,这是无助的。大多数汽车没有配备AC110v/220v电源。在这种情况下,电源逆变器与汽车一起工作将绝对保持这种尴尬,汽车电源逆变器将12vDC转换为普通的110v或220v交流电为小家庭提供常规电源家电。但是,当我们使用我们并不熟悉的汽车逆变器时,我们需要注意很多事情,因此,英高达逆变器发布此购买指南供您选择合适的电源逆变器。 我们都知道,无论什么价格,无论什么牌子的汽车,它配备一个或多个12伏电源,12伏直流电源通常用于点烟器,行车记录仪或其他一些设备。但这些电源的电压非常低,它的直流电源,它们不能用于普通家用110v/220v交流电器,如笔记本电脑,吹风机,手机充电器。因此,12伏电源12v点烟器电源供电。 如何选择合适的汽车电源逆变器? 汽车零部件网,电子零售商店和网上商店中有许多电源逆变器品牌,成本从几十到几百甚至几千不等。功率容量从几十瓦到几百瓦,到几千瓦(千瓦)。那么,我们如何为我们的汽车选择最好的电源逆变器呢?以下是我们可以遵循的一些指南。 对于普通家庭用户,购买汽车逆变器的最大功率限制在200瓦以下完全足够了。因为绝大多数家用轿车12v电源安全电流小于或等于20A,也就是说最大允许电器大约是20A。230瓦,一些旧车允许安全电流甚至只有10A,所以我们不必为您的汽车购买大容量电源逆变器。目前,大多数12v点烟器连接的汽车逆变器用于低于150瓦的电器。 对于一些户外工作者,或需要使用大功率电器,可以选择电池直接连接的电源逆变器。这种汽车逆变器可以提供500瓦甚至更高的功率,它可以驱动一些小

30kw逆变器使用说明书

用户手册 WI300-240-CM01 离网型纯正弦波逆变器 版本:3.0

目录 一、安全说明 (1) 1.1 使用安全 (1) 1.2 维护安全 (1) 二、产品概述 (2) 三、产品结构 (2) 3.1 产品结构示意图 (2) 3.2 LCD显示界面 (3) 四、设备原理框图 (4) 五、产品安装 (5) 5.1 安装流程 (5) 5.2 安装细节说明 (6) 5.3 环境选择 (6) 5.4 电气连接 (7) 5.4.1 逆变器与蓄电池组相连接 (7) 5.4.2 逆变器与用电负载相连接 (8) *5.4.3 逆变器与市电电网相连接 (10) 六、故障排除 (11) 七、质保与售后服务 (12) 八、质保与售后服务 (12) 用户手册中带有*内容为具有市电互补功能产品的使用说明。

一、安全说明 1.1使用安全 本手册中使用安全标志,强调潜在的安全风险和重要的安全信息,如果操作不当可能导致人身伤害或设备损坏。 严禁在有易燃性、易爆性气体或物品的环境下使用,谨防火焰和火花; 无论在何种工作状态下,请勿带电拆除或连接设备连线,以免发生危险; 逆变器输出禁止与市电电网相连接,使用前要做到市电线路与逆变器线路隔 离,否则将严重损坏逆变器。 应安装在儿童触摸不到的位置,以确保儿童安全。 逆变器检修或维护时,在拆除相关连接线后必须等待超过10分钟时间间隔方 可打开设备盖板,防止逆变器电容器件存储的电荷对人身造成电击伤害。 使用过程中请勿用杂物阻塞设备的散热孔,确保良好的通风和散热; 若设备发生保护报警,禁止立刻重启设备,应按照故障分析内容查明原因且 修复后再次开机使用。 1.2维护安全 蓄电池组虚接或损坏是造成设备出现故障的主要因素之一。建议您每两周定 期检查蓄电池的电压和连接端子是否连接可靠(可用工具对各个端子进行紧 固),及时清除接线柱上的锈渍。 定期清理设备内部灰尘,在清理时需要断开逆变器相关连接线。

新能源汽车电机逆变器Power HiL测试方案

新能源汽车电机逆变器Power HiL测试方案 新能源汽车电驱动系统的开发对业界来说是一个新的挑战,因为以往在传统的驱动系统开发上积累的测试规范和测试循环的相关经验并不能直接套用,并且需要新的流程。这是因为高电压部件的出现以及其要遵从国内和国际法规(比如ECE-R 100)和标准(比如IEC 61851)。汽车E/E 系统必须同时具备实用、耐久、安全、紧凑、轻量化以及高效的功率和低成本这些特点。这些要求施加了高复杂性,尤其在系统级别上。 随着测试技术的进步,Power-HiL的出现电子部件的LV-HiL及网络测试的之间的空缺。Power-HiL方法能够进行控制接口的仿真,和高电压、高电流、高功率的仿真,这些是与实际应用情况精确吻合的,并且是可以复现的。任何现实中缺失的部件都可以使用各种高电压的模拟器代替。它们能够按照特定模型、系统特定硬件和实际工作点,来生成相应的电压和电流。特别地,这种Power-HiL 的方法能够使得部件在不影响其他部件的情况下一直工作在特定工作点下。

德国Scienlab能够实现对电驱动系统从各模块到整个系统的递进式测试,而且是全电气化的功率级仿真测试。在过去的几年中,Scienlab的Power-HiL 测试环境成为了测试电力电子车辆部件系统的非常成功的产品。典型的应用领域包括能量存储、逆变器、充电技术以及车载电气系统和动力传动系统。 系统组成: 针对新能源汽车电机逆变器的实际特点和工作需求,Scienlab逆变器提供一个优化的测试方案,通过高品质的电机模拟器及电池模拟器仿真逆变器实际的交流和直流工作环境,对逆变器的软件和硬件进行功率级的测试,同时作为一个开放的平台,支持汽车行业主流的HiL系统(如dSPACE、ETAS、MicroNova等),支持主流的环境温仓。为了保护被测的逆变器、测试台架以及人员安全,Scienlab 还有专门的独立的安全保护系统来确保安全。 一、电机模拟器 电机模拟器可以模拟三相电机的电气特性,因而可以在没有真实电机的情况下对牵引逆变器进行操作和测试。电机模拟器可以工作在速度模式及负载转矩模

逆变器问题解答

逆变器问题解答

目 录 一、有关逆变器的基本知识问答 1. 什么是逆变器,它起什么作用? 2. 按输出波形划分,逆变器分几类? 3. 何谓感性负载? 4. 准正弦波逆变器可以用于哪些电器? 5. 何谓逆变器的效率? 6. 什么是持续输出功率?什么是峰值输出功率? 7. 应该怎样连接逆变器与电源和负载? 8. 汽车点烟器插口能够输出多大功率的电能? 9. 在关闭汽车发动机的情况下可以使用车载逆变器吗? 10. 如果想较长时间地使用逆变器而不启动发动机,怎么办? 11. 使用逆变器有何危险性? 12. 如何知道蓄电池的容量? 13. 一般的家用轿车使用什么规格的蓄电池? 14. 如何为蓄电池配备合适的逆变器? 15. 使用车载逆变器须要注意些什么? 16. 为何使用普通万用表测量准正弦波逆变器的交流输出时,显示的电压比220伏低? 17. 如何挑选逆变器产品? 二、关于家庭备用电源的介绍 1. 什么是家庭备用电源? 2. 如何选购家庭备用电源系统中的逆变器? 3. 如何选购家庭备用电源系统中的蓄电池? 4. 如何选购家庭备用电源系统中的蓄电池充电器? 5. 怎样知道电视机的实际耗电量? 6. 为何使用备用电源系统时电视机的画面质量不如使用电网电? 7. 为何准正弦波逆变器时输出的交流电不能用来推动电扇和日光灯? 8. 使用家庭备用电源系统应注意什么? 9. 能否利用电动自行车的蓄电池作为家庭备用电源? 有关逆变器的基本知识问答 1. 问:什么是逆变器,它起什么作用? 答:简单地说,逆变器就是一种将低压(12-48伏)直流电转变为220伏交流电 的电子设备。因为

电动汽车用逆变器的电磁兼容性设计知识分享

电动汽车用逆变器的电磁兼容性设计

电动汽车用逆变器的电磁兼容性设计 段瑞昌,徐国卿 (同济大学电气工程系,上海 200333) 1 引言 近年来,国内外电动汽车的研制取得了长足的发展。与燃油汽车相比,电动汽车具有低噪声,零排放,综合利用能源等突出的优点,成为当今汽车工业解决能源,环保等问题的重要途径。电机及其控制系统是电动汽车的关键技术之一,而车用逆变器则是其核心。由于电动汽车运行环境的复杂性,逆变器处在大量的干扰之中。因此,为使逆变器稳定工作,其电磁兼容性设计就显得十分重要。本文先对车用逆变器所处的电磁环境进行分析,然后从控制电路和主电路两个方面介绍了如何对车用逆变器进行电磁兼容性设计。重点对吸收电路的设计进行了介绍。 对车用逆变器进行电磁兼容性设计之前,必须分析预期的电磁环境,并从电磁骚扰源,耦合途径和敏感设备入手,找出其所处系统中存在的电磁骚扰。然后有针对性地采取措施,就可以消除或抑制电磁干扰。逆变器所处电磁环境中存在的电磁骚扰源主要有: 1)高频开关器件快速通断形成大脉冲电流而引起的电磁干扰; 2)供电电源的负载突变; 3)系统内部及其周围的强电元件造成的强电干扰; 4)电机电枢传输线与其它传输线间的电容性耦合和电感性耦合引起的干扰; 5)由连续波干扰源等造成的空间辐射干扰。 逆变器中各个电子部件、元器件都可能成为被干扰的敏感受扰设备。当干扰信号电平低于系统门坎电平时,不会对系统造成危害。但若高于低限门坎电平时,就可能导致电子器件的误触发,对系统产生干扰。干扰信号可以通过多种途径从骚扰源耦合到敏感受扰设备上,主要有4种方式: 1)传导耦合; 2)公共阻抗耦合; 3)感应耦合; 4)辐射耦合。

相关文档
最新文档