题型07 函数图象变换及利用对称性求和(原卷版)

题型07 函数图象变换及利用对称性求和(原卷版)
题型07 函数图象变换及利用对称性求和(原卷版)

秒杀高考数学题型之函数图象变换及利用对称性求和

【秒杀题型一】:平移变换。

『秒杀策略』:()()y f x y f x a =→=+,如果0a >,则向左平移a 个单位;反之向右平移a 个单位,即左加右减;()()y f x y f x b =→=+,如果0b >,则向上平移b 个单位,反之向下平移b 个单位,即上加下减。

1.(高考题)为了得到函数321x y -=-的图象,只需把函数2x y =上所有点 ( )

A.向右平移3个单位长度,再向下平移1个单位长度

B.向左平移3个单位长度,再向下平移1个单位长度

C.向右平移3个单位长度,再向上平移1个单位长度

D.向左平移3个单位长度,再向上平移1个单位长度

2.(高考题)将函数21x y =+的图象按 得到函数12x y +=的图象。

3.(高考题)把函数e x y =的图象向右平移两个单位,得到()y f x =的图象,则()f x = ( )

A.e 2x +

B.e 2x -

C.2e x -

D.2e x +

4.(高考题)若01,1a b <<<-,则函数()x f x a b =+的图象不经过 ( )

A.第一象限

B.第二象限

C.第三象限

D.第四象限

5.(高考题)为了得到函数13()3x y =?的图象,可以把函数1

()3x y =的图象 ( )

A.向左平移3个单位长度

B.向右平移3个单位长度

C.向左平移1个单位长度

D.向右平移1个单位长度

6.(高考题)为了得到函数3

lg 10x y +=的图象,只需把函数lg y x =的图象上所有的点 ( )

A.向左平移3个单位长度,再向上平移1个单位长度

B.向右平移3个单位长度,再向上平移1个单位长度

C.向左平移3个单位长度,再向下平移1个单位长度

D.向右平移3个单位长度,再向下平移1个单位长度

7.(高考题)已知定义域为R 的函数()f x 在()8,+∞上为减函数,且(8)y f x =+为偶函数,则 ( )

A.(6)(7)f f >

B.(6)(9)f f >

C.(7)(9)f f >

D.(7)(10)f f >

【秒杀题型二】:对称变换。

『秒杀策略』:①()()y f x y f x =→=-(关于y 轴对称)。②()()y f x y f x =→=-(关于x 轴对称)。 ③()()y f x y f x =→=--(关于原点对称)。④()f x 关于直线x a =对称的函数:()(2)g x f a x =-;

()f x 自身关于x a =对称,则有性质:()(2)f x f a x =-()()()(2)f a x f a x f x f a x ?-=+?-=+。

⑤()f x 关于点(,)a b 对称的函数:()2(2)g x b f a x =--;()f x 自身关于点(,)a b 对称,则有性质:()2(2)f x b f a x =--。

1.(2018年新课标全国卷III)下列函数中,其图象与函数x y ln =的图象关于直线1=x 对称的是 ( )

A.)1ln(x y -=

B.)2ln(x y -=

C.)1ln(x y +=

D.)2ln(x y +=

2.(2017年新课标全国卷I)已知函数()ln ln(2)f x x x =+-,则 ( )

A.()f x 在()2,0单调递增

B.()f x 在()2,0单调递减

C.()f x 的图象关于直线1=x 对称

D.()f x 的图象关于点()0,1对称 3.(高考题)函数x y e =-的图象 ( )

A.与x y e =图象关于y 轴对称

B.与x y e =图象关于坐标原点对称

C.与x y e -=图象关于y 轴对称

D.与x

y e -=图象关于坐标原点对称

4.(高考题)把下面不完整的命题补充完整,并使之成为真命题,若函数x x f 2log 3)(+=的图象与)(x g 的 图象关于 对称,则函数)(x g = 。(注:填上成为真命题的一种情形即可,不必考虑所有可能的情形)。

5.(高考题)与曲线11

y x =

-关于原点对称的曲线为 ( ) A.11y x =+ B.11y x =-+ C.11y x =- D.11y x =--

6.(高考题)已知定义在区间()2,0上的函数)(x f y =的图象如图所示,则)2(x f y --=的图象为 ( )

7.(高考题)函数)(x f 的图象向右平移一个单位长度,所得图象与x e y =关于y 轴对称,则)(x f = ( )

A.1+x e

B.1-x e

C.1+-x e

D.1--x e

8.(高考题)对于函数()f x ,若存在常数0≠a ,使得x 取定义域内的每一个值,有()(2)f x f a x =-,则称 ()f x 为准偶函数,下列函数中是准偶函数的是 ( ) A.()f x x =3()f x x = C.()tan f x x = D.()cos(1)f x x =+

9.(高考题)定义在R 上的函数()f x 是偶函数,且()(2)f x f x =-,若()f x 在区间[]1,2上是减函数,则()f x ( )

A.在区间[]2,1--上是增函数,在区间[]3,4上是增函数

B.在区间[]2,1--上是增函数,在区间[]3,4上是减函数

C.在区间[]2,1--上是减函数,在区间[]3,4上是增函数

D.在区间[]2,1--上是减函数,在区间[]3,4上是减函数

10.(2017年新课标全国卷III11)已知函数()

1122)(+--++-=x x e e a x x x f 有唯一零点,则=a ( ) A.21- B.13 C.12

D.1 11.(2013年新课标全国卷I16)若函数))(1()(2

2b ax x x x f ++-=的图象关于直线2-=x 对称,则)(x f 的 最大值是 。

12.(2020年新课标全国卷III12)已知函数()x x x f sin 1sin +

=,则 ( ) A.()x f 的最小值为2

B.()x f 的图象关于y 轴对称

C.()x f 的图象关于直线π=x 对称

D.()x f 的图象关于直线2π

=x 对称

【秒杀题型三】:翻折变换。

『秒杀策略』:①左右翻折:()()y f x y f x =→=(把y 轴右面的图象保留,左面的图象去掉,然后把右面的图象对称到左面,变为偶函数,关于y 轴对称。) ②上下翻折:,()()y f x x y f x ==轴上面的图象保持不变下面的图象对称到上面。 1.(高考题)函数lg y x = ( )

A.是偶函数,在区间(),0-∞上单调递增

B.是偶函数,在区间(),0-∞上单调递减

C.是奇函数,在区间()0,+∞上单调递增

D.是奇函数,在区间()0,+∞上单调递减

【秒杀题型四】:两个具有相同对称轴(或对称中心)的函数交点坐标之和。

『秒杀策略』:秒杀公式:①若两个函数均关于直线a x =对称,且两函数图象有n 个交点,则n 个交点的横坐标之和为:∑=m

i i

x 1=na 。 ②若两个函数均关于点()b a ,成中心对称,且两函数图象有n 个交点,则n 个交点的横坐标之和为: ∑=m i i x 1=

m

1.(2011)42(sin 2≤≤-x x π的图象所有交点的横坐标

2.(2016)(2)x f x -=-,若函数x

x y 1+=与)(x f y =

图象的交点为()()()m m y x y x y x ,,,,2211???,则()∑=+m

i i

i y x 1= ( ) A.0 B.m C.m 2 D.m 4

秒杀方法:)(x f 为抽象函数,利用抽象函数特殊化思想,设1)(+=x x f ,由11+=+x x x 解得1=x 或1-=x ,即2=m ,()∑=+m

i i i y x 1=2=m 。

3.(2016年新课标全国卷II)已知函数)(x f ()R x ∈满足)2()(x f x f -=,若函数322--=x x y 与 )(x f y =的图象的交点为()()()m m y x y x y x ,,,,2211???,则∑=m

i i

x 1= ( ) A.0 B.m C.m 2 D.m 4

函数的图象变换(习题)

函数的图象变换(习题) 1.函数y=-2x2的图象是由函数y=-2x2+4x+6的图象经过怎样的变换得到的? () A.向左平移1个单位长度,向上平移8个单位长度 B.向右平移1个单位长度,向上平移8个单位长度 C.向左平移1个单位长度,向下平移8个单位长度 D.向右平移1个单位长度,向下平移8个单位长度 4.若函数(1) x y a b =-+(a>0,且a≠1)的图象在第一、三、四象限,则必有()

A .0<a <1,b >0 B .0<a <1,b <0 C .a >1,b <0 D .a >1,b > 5. 若函数()y f x =与()y f x =的图象相同,则()f x 可能是( ) A .1y x -= B .2x y = C .2log y x = D .21y x =- 6. 当0<a <1时,函数()log ()a f x x =-与()1g x ax =-的图象的交点在( ) A . 第四象限 B .第三象限 C .第二象限 D .第一象限 7. 在同一平面直角坐标系内,函数1()3x f x -=与1()3x g x +=的图象关于( ) A .y 轴对称 B .x 轴对称 C .原点对称 D .直线x =1对称

f (x -1)的函数 f (-x )的函数 |f (x )|的函数 f (|x |)的函数 A B C D 10. 将()y f x =的图象向右平移1个单位长度,所得图象与y =ln x 关于y 轴对称, 则()y f x =的解析式为( ) A .()ln(1)f x x =+ B .()ln(1)f x x =- C .()ln(1)f x x =-+ D .()ln(1)f x x =-- 11. 若函数22()(1)()f x x x ax b =-++的图象关于直线x =-2对称,则a ,b 的值分 别为( ) A .15,8 B .8,15 C .3,4 D .-3,-4 12. 已知函数()y f x =的图象关于直线x =1对称,且在[1)+∞,上单调递减, (0)0f =,则(1)0f x +>的解集为( ) A . (1)+∞, B .(1)(1)-∞-+∞,, C .(1)-∞-, D .(11)-, 13. 已知函数() y f x =的图象与ln y x =的图象关于x 轴对称,则 (2)f =_____________.

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

利用函数图像的对称性解题

利用函数图像的对称性解题 【摘要】函数是数学的重要基础,函数性质的考察和应用重点和热点,而函数图像是函数性质的一种直观表现。函数图像的对称性,充分体现了数学的对称美,具有很好的数学价值。 【关键词】函数;图像;对称性;辅助函数; 二次函数是初中数学的重点内容之一,在初中代数中占有重要位置。其图象是一种直观形象的交流语言,含有大量的信息,为考查同学们的数形结合思想和应用图象信息的能力,二次函数图象信息题成了近年来各地中考的热点。所以学会从图象找出解题的突破点成了关键问题,那就要熟练掌握二次函数的基本知识。比如:二次函数的解析式,二次函数的顶点坐标对称轴方程,各字母的意义以及一些公式,对于这些知识,同学们掌握并不是很困难,但对二次函数图象的对称性,掌握起来并不是很容易,而且对于有关二次函数的一些题目,如果用别的方法会很费力,但用二次函数图象的对称性来解答,也许会有事倍功半的效果。现将这两个典型例题,供同学们鉴赏:例1、已知二次函数的对称轴为x=1,且图象过点(2,8)和(4,0),求二次函数的解析式。 分析:此题中我们可以按照常规的解法,用二次函数的一般式来解,但运算量会很大,因为我们将会解一个三元一次方程组。 另外,我们还可以利用二次函数的对称性来解决此题。本道题目的特点是给了抛物线的对称轴方程及一个x轴上的点坐标。因此我们

可以依据二次函数的对称性,求出抛物线所过的x轴上的另一个点的坐标为(-2,0),这样的话我们就可以选择用二次函数的交点式来求解析式。设二次函数的解析式为y=a(x+2)(x-4),然后将(2,8)代入即可求出a值,此题得解。 本题利用二次函数的对称性解题减少了大量的运算,既可以准确解题又节省了时间,不失为一种好的方法。 例2、若二次函数y=ax2+b(ab≠0),当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值是____________ 分析:此题我们可以采用常见的将x1、x2代入解析式,由于y 值相等,则可求出x1+x2的值为0,将x=0代入解析式可得函数值为b。 我们也可以用二次函数的对称性来解题。由于二次函数的对称性,当函数值相等时,则两点为对称点,且本题中的二次函数y=ax2+b(ab≠0)的对称轴为y轴(x=0),所以,我们也可以得到x1+x2的值为0,将x=0代入解析式可得函数值为b。 相比较我们可以知道,利用二次函数的对称性解决本题,减少了运算量,但对于知识点的理解和掌握的要求大大增加了。要求学生对二次函数的对称性的把握要进一步理解、深化。 我们还可以将上题中的解析式变为一般式y=ax2+bx+c,其他条件不变,结果为c。 下面仅以a>0时为例进行解答。当a<0时也是成立的。 由二次函数的对称性可知,x1+x2在第一个图中为点D的横坐标,

函数的对称性82459

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。

函数图象变换的四种方式

函数图象变换的四种方 式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

函数图象变换的四种方式 一,平移变换。 (1)水平平移: 要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。 (简记:左加右减,这里的a>0。) (2)上下平移: 要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。 (简记:上加下减,这里的a>0) 二,对称变换。 (1)y=f(x)与y=f(-x)的图象关于y轴对称。 所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。(简记:左右翻折) (2)y=f(x)与y=-f(x)的图象关于 x轴对称。 所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。(简记:上下翻折) (3)y=f(x)与y=-f(-x)的图象关于原点对称。

所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。(简记:旋转180度) 三,翻折变换。 (1)如何由y=f(x)的图象得到y=f(|x|)的图象? 先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形 (简记:右不动,左对称) (2)如何由y=f(x)的图象得到y=|f(x)|的图象? 先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。 (简记:上不动,下上翻) 四,伸缩变换。 (1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0) 可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。 (2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0) 可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。

函数图像变换及应用

上节课知识检测 一、基本内容 1.利用描点法作函数图像 其基本步骤是列表、描点、连线,具体为: 2、会画基本函数图像(一次(两点想x 取0,,y 取0(或X 取1))、反比例(三点(x 取1/2、1,2)对称轴、对称中心)、二次(对称轴\顶点\开口)、幂(四点x 取0,1/2,1,2对称)、指数(三点x 取-1,0,1)、对数(三点Y-1,0,1)、对勾(两部分相等时X 值点)、三角(x 取五点;对称轴、对称中心)) 3.掌握画图像的基本方法:(1)描点法(2)图像变换法.平移、伸缩、翻折 (3)讨论分段法 (1)平移变换: y =f (x ) ――――――――――→a >0,右移a 个单位a <0,左移|a |个单位 y =f (x -a ); y =f (x ) ―――――――――→b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b . (2)伸缩变换: y =f (x ) 1 011 1ωωωω <<>????????→,伸原的倍 ,短原的 长为来缩为来 y =f (ωx ); y =f (x ) ――――――――――――→A >1,伸为原来的A 倍0

2020最新函数图像的对称问题(小结)

解填空题常用到的几个公式 1. AB 和平面M 所成的角为α,AC 在平面M 内,AC 和AB 在平面M 内的射影AB 1所成 的角是β,设∠BAC=θ,则βαθcos cos cos = 2. 在二面角N l M --的面M 内,有直角三角形ABC,斜边BC 在棱上,若A 在平面内N 的射影为D,且∠ACD=1θ,∠ABD=2θ,二面角为θ,则22 122sin sin sin θθθ+= 3. 设F 1,F 2为椭圆122 22=+b y a x (a>b>0)的焦点,M 是椭圆上一点,若∠F 1MF 2=θ 则21MF F S ?=2tan 2θ b , 21e a b -= . 4. 设F 1,F 2为双曲线122 22=-b y a x (a>b>0)的焦点,M 是双曲线上一点,若∠F 1MF 2=θ,则21MF F S ?=2cot 2θ b , 12-=e a b . 5.已知椭圆122 22=+b y a x (a>b>0)上一点,F 1,F 2为左右两焦点,∠PF 1F 2=α, ∠P F 2F 1=β,则2 cos 2cos βαβα-+==a c e . 6.设直线b kx y +=与椭圆12222=+b y a x (双曲线122 22=-b y a x )相交于不同的两点A ),(11y x ,B ),(22y x ,AB 的中点为M ),(00y x ,则0202y a x b k -=(0 202y a x b k =). 7.过抛物线两点,的直线交抛物线于作倾斜角为的焦点B A F p px y ,)0(22θ>= 函数图像的对称问题(小结) 函数问题的对称性问题是函数性质的一个重要方面,也是历年高考热点问题之一,除了常见的自身对称(奇偶函数的对称性),两函数图像对称(原函数与反函数的对称性)以外,函数图象的对称性还有一些图像关于点对称和关于直线对称的两类问题,在这里,两函..数图象关于某直线对称或关于某点...............成.中心对称....与函数自身的对称轴或对称中心............. 是有本质区别的,注意不要把它们相混淆。造成解题失误,下面就这些问题给出一般结论,希望对同学们有帮助。 一、 同一个函数图象关于直线的对称

函数图象的三种变换

. 函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下3种: 一、平移变换 2,在同一坐标系中画出:=x设f(x)例1 (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图 (2)如图

点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到; y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到; y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到. 小结:

二、对称变换的图象,并观察两个函数图)-xy=f(x+1,在同一坐标系中画出y=f()和x例2设f(x)=象的关系.1的图象如图所示.=-x+x与y=f(-)+y解画出=f(x)=x1 由图象可得函数y=x+1与y=-x+1的图象关于y轴对称. 点评函数y=f(x)的图象与y=f(-x)的图象关于y轴对称; 函数y=f(x)的图象与y=-f(x)的图象关于x轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数1 / 6

. 图象的关系. 解y=f(x)的图象如图1所示,y=|f(x)|的图象如图2所 示. 点评要得到y=|f(x)|的图象,把y=f(x)的图象中x轴下方图象翻折到x轴上方,其余部分不变.例4 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=f(|x|)的图象,并观察两个函数图象的关系. 解如下图所 示. 点评要得到y=f(|x|)的图象,先把y=f(x)图象在y轴左方的部分去掉,然后把y轴右边的对称图象补到左方即可. 小结: 保留x轴上方图象y?f(x)????????y=|f(x)|. 将x轴下方图象翻折上去保留y轴右侧图象y?f(x)?????????y=f(|x|). 并作其关于y轴对称的图象如图:

对数函数的图象变换及在实际中的应用苏教版

对数函数的图象变换及在实际中的应用 对数函数图象是对数函数的一种表达形式, 形象显示了函数的性质。为研究它的数量关 系提供了“形”的直观性,它是探求解题途径、获得问题结果的重要途径。 一. 利用对数函数图象的变换研究复杂函数图象的性质 (一) 图象的平移变换 y log 2(x 2)的图象 主:图象的平移变换: 1.水平平移:函数y f (x b) , (a 0)的图像,可由y f (x)的 2.竖直平移:函数y f (x) b , (b 0)的图像,可由y f (x)的图像向上(+)或向下 平移b 个单位而得到. (二) 图像的对称变换 例2.画出函数y log 2 x 2的图像,并根据图像指出它的单调区间 ? 解:当 x 0 时,函数 y log 2 x 2 满足 f ( x) log 2( x)2 log 2 x 2 f (x),所以 2 2 y log 2 x 是偶函数,它的图象关于 y 轴对称。当x 0时,y log 2 x 2 log 2 x 。因 此先画出y 2 log 2 x ,( x 0)的图象为s ,再作出&关于 y 轴对称C 2, c i 与C 2构成函数y 由图象可以知道函数 y log 2 x 2 调增区间是(0,) 例1. 画出 函数 y log 2 (x 2) 与 y log 2(x 2)的图像,并指出两个图像 之间的关系? 解:函数y log 2 x 的图象如果向右平移 到y Iog 2(x 2)的图像;如果向左平移 /pl y i. J - ■- .— w ■■ *-------- 1 ------ ~ / - 1 ] ''5 / 3 = / ' 到y log 2(x 2)的图像,所以把y log 2(x 2) 图像向左(+)或向右 平移a 个单位而得到 2个单位就得 2个单位就得 的图象向右平移4个单位得到

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(01)到原来的1/a倍,纵坐标不变。

4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

函数图像的三种变换

函数图像的三种变换 函数在中学数学及大学数学中都是极其重要的内容,函数思想是解决函数问题的理论源泉; 函数的性质是解决函数问题的基础,而函数的图象则是函数性质的具体的直观的反应。在高中阶段函数图象的变化方式主要有以下三种: 一 、平移变换 函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 1、 沿水平方向左右平行移动 比如函数)(x f y =与函数)0)((>-=a a x f y ,由于两函数的对应法则相同,x a x 与-取值范围一样,函数的值域一样。以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数)(x f y =的图象水平移动才能得到函数)0)((>-=a a x f y 的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)(a x f y -=上对应的点为),(11y a x +,因此若将)(x f y =沿水平方向向右平移a 个单位即可得到)0)((>-=a a x f y 的图象。同样,将)(x f y =沿水平方向向左平移a 个单位即可得到)0)((>+=a a x f y 的图象。 2、沿竖直方向上下平行移动 比如函数)(x f y =与函数)0()(>+=b b x f y ,由于函数)(x f y =函数)0)((>=-b x f b y 中函数y 与b y -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数)(x f y =的图象上下移动得到函数)(x f b y =-的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)0)((>=-b x f b y 上对应的点为),(11b y x +,因此若将)(x f y =沿竖直方向向上平移a 个单位即可得到)0)((>=-b x f b y 的图象。同样,将)(x f y =沿竖直方向向下平移a 个单位即可得到)0)((>=+b x f b y 的图象。 函数图象的平移变化可以概括地总结为: (1)函数)(x f y =的图象变为)0,0)((>>-=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (2)函数)(x f y =的图象变为)0,0)((>>+=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 (3)函数)(x f y =的图象变为)0,0)((>>+=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (4)函数)(x f y =的图象变为)0,0)((>>-=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 函数图象的平移的实质是有变量本身变化情况所决定的。 3、例题讲解 例1. 为了得到函数的图象,只需把函数的图象上所有的点( ) A. 向右平移3个单位长度,再向下平移1个单位长度 B. 向左平移3个单位长度,再向下平移1个单位长度 C. 向右平移3个单位长度,再向上平移1个单位长度 D. 向左平移3个单位长度,再向上平移1个单位长度 分析 把函数 x y 2=的图象向右平移3个单位,然后再向下平移1个单位,就得到函数123-=-x y 的图象。 故,本题选A 例2 把函数的图象向右平移1单位,再向下平移1个单位后,所得图象对应的函数解析式是( ). (A ) (B ) (C ) (D ) 分析 把已知函数图象向右平移1个单位, 即把其中自变量换成,得.

(完整版)高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1 a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1x y -= (2)x y )2 1(-= (3)x y 2log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

关于函数图像对称性问题

关于函数图像对称性的问题 胡春林 指导老师:刘荣玄 【摘要】函数图象的对称性反映了函数的特性,是研究函数性质的一个重要方面,函数图象的对称性包括一个函数图象自身的对称性与两个函数图象之间的对称性。 【关键词】函数图像对称性轴对称中心对称 一、函数自身的对称性的问题 函数是中学数学教学的主线,是中学数学的核心内容,也是一个高中数学的基础。函数的性质是高考的重点与热点,函数的对称性是函数的一个基本性质,也是难点,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质的一些思考。 例题1. 函数y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P ‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。例题2 ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对 (a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数, 且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明:

高一数学函数的对称性知识点总结

高一数学《函数的对称性》知识点总结 高一数学《函数的对称性》知识点总结 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4 a-b是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, ∴f (x) + f (2a-x) =2c,用2b-x代x得:

2017最新函数图像的对称问题(小结)

解填空题常用到的几个公式 1. AB 和平面M 所成的角为α,AC 在平面M 内,AC 和AB 在平面M 内的射影AB 1所成的角是β,设∠BAC=θ,则βαθcos cos cos = 2. 在二面角N l M --的面M 内,有直角三角形ABC,斜边BC 在棱上,若A 在平面内N 的射影为D,且∠ACD=1θ,∠ABD=2θ,二面角为θ,则22 122sin sin sin θθθ+= 3. 设F 1,F 2为椭圆122 22=+b y a x (a>b>0)的焦点,M 是椭圆上一点,若∠F 1MF 2=θ

则21MF F S ?=2tan 2θ b , 21e a b -= . 4. 设F 1,F 2为双曲线122 22=-b y a x (a>b>0)的焦点,M 是双曲线上一点,若∠F 1MF 2=θ,则21MF F S ?=2cot 2θ b , 12-=e a b . 5.已知椭圆122 22=+b y a x (a>b>0)上一点,F 1,F 2为左右两焦点,∠PF 1F 2=α, ∠P F 2F 1=β,则2 cos 2cos βαβα-+==a c e . 6.设直线b kx y +=与椭圆12222=+b y a x (双曲线122 22=-b y a x )相交于不同的两点A ),(11y x ,B ),(22y x ,AB 的中点为M ),(00y x ,则0202y a x b k -=(0 202y a x b k =). 7.过抛物线两点,的直线交抛物线于作倾斜角为的焦点B A F p px y ,)0(22θ>= θ2sin 2P AB =则线段 函数图像的对称问题(小结) 函数问题的对称性问题是函数性质的一个重要方面,也是历年高考热点问题之一,除了常见的自身对称(奇偶函数的对称性),两函数图像对称(原函数与反函数的对称性)以外,函数图象的对称性还有一些图像关于点对称和关于直线对称的两类问题,在这里,两函..数图象关于某直线对称或关于某点...............成.中心对称....与函数自身的对称轴或对称中心............. 是有本质区别的,注意不要把它们相混淆。造成解题失误,下面就这些问题给出一般结论,希望对同学们有帮助。 一、 同一个函数图象关于直线的对称

函数图象的三种变换(可编辑修改word版)

函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下 3 种: 一、平移变换 例1 设f(x)=x2,在同一坐标系中画出: (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1 和y=f(x)-1 的图象,并观察三个函数图象的关 系.解(1)如图 (2)如图 点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移 1 个单位长度得到; y=f(x-1)的图象可由y=f(x)的图象向右平移1 个单位长度得到; y=f(x)+1 的图象可由y=f(x)的图象向上平移1 个单位长度得到; y=f(x)-1 的图象可由y=f(x)的图象向下平移1 个单位长度得到. 小结: 二、对称变换 例2 设f(x)=x+1,在同一坐标系中画出y=f(x)和y=f(-x)的图象,并观察两个函数图象的关系. 解画出y=f(x)=x+1 与y=f(-x)=-x+1 的图象如图所示. 由图象可得函数y=x+1 与y=-x+1 的图象关于y 轴对 称.点评函数y=f(x)的图象与y=f(-x)的图象关于y 轴 对称;函数y=f(x)的图象与y=-f(x)的图象关于x 轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例 3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数

将x 轴下方图象翻折上去 并作其关于y 轴对称的图象 图象的关系. 解 y =f (x )的图象如图 1 所示,y =|f (x )|的图象如图 2 所示. 点评 要得到 y =|f (x )|的图象,把 y =f (x )的图象中 x 轴下方图象翻折到 x 轴上方,其余部分不变. 例 4 设 f (x )=x +1,在不同的坐标系中画出 y =f (x )和 y =f (|x |)的图象,并观察两个函数图象的关系. 解 如下图所示. 点评 要得到 y =f (|x |)的图象,先把 y =f (x )图象在 y 轴左方的部分去掉,然后把 y 轴右边的对称图象补到左方即可. 小结: y = f (x ) ??保?留x ?轴上?方图?象?→ y =|f (x )|. y = f (x ) ???保留?y 轴右?侧?图象??→ y =f (|x |). 如图: 四 函数图象自身的对称性 1. 函数 y = f (x ) 的图象关于直 x = a + b 对称? f (a + x ) = f (b - x ) ? f (a + b - x ) = f (x ) 2 2. 函数 y = f (x ) 的图象关于点(a , b ) 对称? 2b - f (x ) = f (2a - x ) ? f (x ) = 2b - f (2a - x ) ? f (a + x ) + f (a - x ) = 2b 3.若 f (x ) = - f (-x ) ,则 f (x ) 的图象关于原点对称,若 f (x ) = f (-x ) ,则 f (x ) 的图象 关于 y 轴对称。 基础训练 1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)当 x ∈(0,+∞)时,函数 y =|f (x )|与 y =f (|x |)的图象相同. ( × ) y y=f(|x|) a o b c x y y=|f(x)| a o b c x y y=f(x) a o b c x

北京正弦函数图象对称性(檀晋轩)CASIO

课题:正弦函数、余弦函数的图象和性质(五)——正弦函数图象的对称性 教材:人教版全日制普通高级中学数学教科书(必修)第一册(下) 授课教师: 北京市第十九中学 檀晋轩 【教学目标】 1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式 x x sin )sin(=-π(∈x R )与x x sin )2sin(-=-π(∈x R )的几何意义,体会正 弦函数的对称性. 2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力. 3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识. 【教学重点】 正弦函数图象的对称性及其代数表示形式. 【教学难点】 用等式表示正弦函数图象关于直线2 π =x 对称和关于点)0,(π对称. 【教学方法】 教师启发引导与学生自主探究相结合. 【教学手段】 计算机、图形计算器(学生人手一台). 【教学过程】 一、复习引入 1.展示生活实例 对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图). 2.复习对称概念 初中我们已经学习过轴对称图形和中心对称图形的有关概念: 轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合; 中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合. 3.作图观察

请同学们用图形计算器画出正弦函数的图象(见右图),仔细观察正弦曲线是否是对称图形?是轴对称图形还是中心对称图形? 4.猜想图形性质 经过简单交流后,能够发现正弦曲线既是轴对称图形也是中心对称图形,并能够猜想出一部分对称轴和对称中心.(教师点评并板书) 如何检验猜想是否正确? 我们知道, 诱导公式x x sin )sin(-=-(∈x R ),刻画了正弦曲线关于原点对称,而x x cos )cos(=-(∈x R ),刻画了余弦曲线关于y 轴对称. 从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明. 今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题) 二、探究新知 分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质. (一)对于正弦曲线轴对称性的研究 第一阶段,实例分析——对正弦曲线关于直线2 π=x 对称的研究. 1.直观探索——利用图形计算器的绘图功能进行探索 请同学们在同一坐标系中画出正弦曲线和直线 2 π = x 的图象,选择恰当窗口并充分利用画图功能对问 题进行探索研究(见右图),在直线2 π = x 两侧正弦函 数值有什么变化规律? 给学生一定的时间操作、观察、归纳、交流,最后得出猜想:当自变量在2 π =x 左右对称取值时,正 弦函数值相等. 从直观上得到的猜想,需要从数值上进一步精确检验. 2.数值检验——利用图形计算器的计算功能进行探索 请同学们思考,对于上述猜想如何取值进行检验呢? 教师组织学生通过合作的方式,对称地在2 π = x 左右自主选取适当的自变量,并计算函数值,对结果进行列表比较归纳.同时为没有思路的学生准备参考表格如下:

函数图象关于点对称性

函数图象关于点对称性函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是高考的重点与热点,函数的对称性是函数的一个基本性质之一,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷的是问题得到解决,对称关系还充分体现了数学的之美。对称性,在几何中研究的较多,在代数中研究的较少。本文只探讨函数的关于点对称性。 I.函数自身关于点对称性 命题1:函数的图像关于点对称的充要条件是 (或者) 证明:(必要性)设是图像上任一点,∵点关于点 的对称点也在图像上,∴,即故,必要性得证。 (充分性)设点是图像上任一点,则,∵ ,∴,即,故点 也在图像上,而点与点关于点对称,充分性得证。 推论1:奇函数的图像关于原点对称。 证明:设函数是奇函数,则奇函数定义有0 +x f - f,由命题1可得 x ) (= ( ) 函数图像关于源点对称。 推论2:如果函数满足,则函数图象关于点对称。(证明略) 推论3:函数的图像关于点。 证明:∵,, ∴

由命题1有函数的图像关于点对称。 例 1 已知定义域为的函数满足且函数在区间上单调递增,如果且,则的值()A.恒小于0 B. 恒大于0 C. 可能为零 D. 可正可负 分析:先代替,使变形为,它的特征就是推论2,因此函数的图像关于点对称。在区间上单调递增,在区间上也单调递增。我们可以把该函数想象成是奇函数的图象向右平移了两个单位。 解:∵且在区间上单调递增, ∴,∵∴函数的图像关于点对称,∴∴.所以选A 例2 如果函数满足,求该函数的对称中心。(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心) 如果为奇函数,并且,求该函数的所有对称中心和对称轴。(由周期性定义知周期为4,又,从而,按上例知x=-1为对称轴,所以为对称轴,为对称中心其中k∈Z) 例3 定义在上的函数满足, 则 解:由命题1可得函数关于点对称,所以点关于点的对

相关文档
最新文档