锂离子电池碳负极材料研究进展

锂离子电池碳负极材料研究进展
锂离子电池碳负极材料研究进展

锂离子电池碳负极材料的研究进展

赵永胜

(河北工业大学化工学院应用化学系,天津 300130)

摘要综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。

关键词锂离子电池负极材料碳材料

Research progress of carbon anode materials for

lithium ion batteries

Zhao Yongsheng

(Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130)Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected.

Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-x CoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。本文着重对锂离子电池碳负极材料方面的研究进展进行评述。

1.碳基负极材料的分类

炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,

非晶体的过渡形式则不胜枚举。对炭素材料有各种不同的分类方法。按照锂离子电池负极材料的发展方向,本文将碳材料分为石墨化碳和无定型碳[3]。

2.石墨化碳的电极性能

石墨类碳材料的嵌锂行为时目前研究的比较透彻并且已得到大家的公认。石墨中的碳原子为sp2杂化并形成片层结构,层与层之间通过范德华力结合,层内原子间是共价键结合。在电化学嵌入反应过程中,部分溶剂化的锂离子嵌入时会同时带入溶剂分子,造成溶剂共嵌入,会使石墨片层结构逐渐被剥离。这在以PC为溶剂的电解液体系中特别明显。

2.1天然石墨

天然石墨是石墨化程度高、结晶完整、嵌入位置多、容量大。锂的可逆插入容量在合适的电解质中可达372mAh/g,即为理论水平[2]。其电位曲线变化如图1所示,具有明显的放电平台,且平台电位很低,一般不超过0.3V,故电池的端电压高,有高的比容量[4]。但由于墨片面容易发生剥离,因此循环性能不是很理想。通过改性,可以有效防止。对于普通的天然石墨而言,由于自然进化过程中石墨化过程不彻底,一般容量低于300mAh/g。第一次循环的充放电效率低于80%,而且循环性能也不理想。天然石墨作为负极材料在低温(例如-20℃)下的电化学行为也不理想,认为主要是锂离子在石墨中的扩散慢造成的。因此在改性时,锂离子在石墨中的动力学扩散是关键[5]。

图1石墨的锂电位和容量的关系[4]

2.2中间相微珠碳

产业化的锂离子电池的负极材料均为碳材料,包括天然石墨、MCMB、焦炭等,在这些材料中,MCMB被认为是最具有发展潜力的一种碳材料,这不仅

是因为它的比容量可以达300mAh/g。更重要的原因在于,与其他碳材料相比,MCMB的直径为5~40μm,呈球形片层结构且表面光滑,这赋予其以下独特优点:球状结构有利于实现紧密堆积,从而可制备高密度电极;MCMB的表面光滑和低的比表面积可以减少在充电过程中电极表面副反应的发生,从而降低第一次充电过程中的库仑损失,球形片层结构使Li+可以在球的各个方面插入和放出,解决了石墨类材料由于各向异性过高引起的石墨片层溶胀、塌陷和不能快速大电流充放电的问题[6]。

MCMB是焦油沥青在400~500℃加热成熔融状态时沉淀出的微球,再在700~1000℃热处理后可用作电池的负极材料[7]。但MCMB在微观结构仍为乱层无序状,若再进一步提高热处理温度到2000℃以上,MCMB微晶尺寸变大,呈现出明显的层状结构,得到石墨化程度高的MCMB[8]。

图2各向异性炭的片层结构随温度变化模型和最终形成的规整石墨片层结构[9] 2.3石墨化碳材料的改性

石墨化碳材料具有较高的比容量、较低而平稳的放电平台、充放电过程中体积变化小等优点,但是石墨化碳材料对电解液的组成非常敏感,不适合含有PC 的电解液,耐过充能力差,在充放电过程中石墨结果易于遭到破坏等。所以对各种碳材料进行各种掺杂改性,以提高其电化学性能成了研究的热点。碳材料的改性主要包括表面处理;引入金属或非金属元素进行掺杂;机械研磨和其他方法等。

表面处理目的在于改善材料表面结构,提高电化学性能。主要方法有:表面

卤化、表面氧化、表面包覆(碳包覆、金属包覆、聚合物包覆等)。在表面包覆方向,研究者采用沥青、羧甲基纤维素等热解炭包覆天然石墨[10,11],包覆后天然石墨的充电容量提升,不可逆容量降低至7%左右,振实密度增大。研究认为热解炭包覆石墨形成一种核壳结构,及微晶石墨内核,热解炭外壳[12]。

其他改性方面, 人们采用Ni、Ag、Cu、Fe、Co等金属包覆掺杂处理天然石墨,这些材料均能不同程度的提高电极的嵌脱锂性能,对电极可逆容量、循环性能等提高有所贡献[13]。张永刚[14]首次采用氯化钴浸渍MCMB,然后700℃和1000℃低温处理样品,有效改善了电池的循环性能。汤东,侯全会等[15]采用TiC 掺杂MCMB改善了MCMB的石墨化程度以及微观结构。

3.无定形碳的电极性能

无定形碳材料,它们也是由石墨微晶构成的,碳原子之间以sp2杂化方式结合,只是它们的结晶度低,同时石墨片层的组织结构不像石墨那样规整有序,所以宏观上不呈现晶体的性质。无定形碳材料按其石墨化难易程度,可分为易石墨化炭和难石墨化炭两种。易石墨化炭又称为软炭,是指在2500℃以上的高温下能石墨化的无定形炭;难石墨化炭也称为硬炭,它们在2500℃以上的高温也难石墨化。这种区别主要是由于组成它们的石墨片层的排列方式不同[6](图3)。

图3 软炭和硬炭的结构模型

总体上而言,无定形碳材料的可逆容量较高,甚至可高达900mAh/g以上。例如:Wang Q等[16]由晶体生长热水法制备的含微孔的硬碳球(HCS1)具有极佳的球形形貌、可控的单分散粒子粒径和光滑的表面。其可逆容量高达430mAh/g,首次库仑效率为73%;Hu J等[17]利用微乳液做媒介的晶体生长水热法制备的含微孔的硬碳球(HCS2)嵌锂容量高达566mAh/g,首次库仑效率为83.2%;而Fey G T K等[18]用稻壳热裂解也制得了硬碳负极,其可逆容量为1055mAh/g,是现在已报道的锂离子电池硬碳负极中容量最高的。

但是多数无定形碳材料的循环性能不理想,可逆储锂容量一般随循环的进行衰减的比较快。另外,电压存在滞后现象。锂插入时,主要是在0.3V以下进行;而在拖出时,则有相当大的一部分在0.8V以上。且低温无定形碳材料第1次的充放电效率比较低,组装成电池后,实际容量不如高温石墨化碳材料。因此,提高无定形碳材料的充放电效率。特别是第一次充放电效率的大小是改进低温无定形碳材料性能的重要方向。向碳材料中掺杂非金属B、Si、P、N、S等均可使碳材料嵌锂特性发生明显改变[19]。尹鸽平[20,21]通过向酚醛树脂热解炭中掺杂B、P 可使材料可逆容量获得明显的提高。宁林坚,王玲治等[22]采用分散聚合的方法制备的锡基颗粒在碳基体中均匀分散的锡/碳复合材料。CVD法包覆硬碳是另一种有效的无定形碳改性方法。龚金保,汪继强[23]采用CVD的处理典型竹炭样品,可逆容量达到554mAh/g,首次循环效率为85.9%,经10次循环后基本没有容量衰减,有望获得实际应用。

4.碳纳米材料的电极性能

碳纳米材料主要是指碳纳米管、具有纳米空结构的无定形碳材料和天然石墨以及碳材料的纳米掺杂。

4.1碳纳米管(CNTs)

碳纳米管的种类多种多样,根据壁(石墨片层)的多少可分为单壁碳纳米管和多壁纳米管;根据石墨化程度的不同可分为无定形碳纳米管和石墨化碳纳米管。碳纳米管用作锂离子电池的负极材料具有嵌入深度小、过程短、嵌入位置多(管内和层间的缝隙、空穴),储锂量大(可达CLi2水平)等,同时碳纳米管导电性好,这些都有利于碳纳米管的充放电性能。但是,不可逆容量过高,电压滞后和放电平台不明显等缺点制约了碳纳米管在锂电中的应用。例如:李昌明等 [24]使用CNTs作锂离子电池负极,首次放电容量达560mAh/g,但首次不可逆容量损失达430mAh/g。对碳纳米管进行改性处理,可明显改善了碳纳米管的电化学性能。王振旭等[25]采用氧化改性处理使非晶碳纳米管的首次放电容量533mAh/g,可逆容量在400mAh/g左右趋于稳定。采用合适的纳米金属离子对碳纳米管进行表面包覆,如纳米Sn,即可提高电极比能量,又能显著降低碳纳米管的不可逆容量[26]。

4.2碳材料的纳米掺杂

碳材料的纳米掺杂是指在碳材料结构中掺杂其他原子,这些原子以纳米尺寸存在于碳结构中。其中最典型的是硅原子在碳材料中的纳米掺杂。由于硅与碳的化学性质相近,所以能很好的与周围的碳原子紧密结合。硅原子在碳材料中呈纳米分散,Li+不仅可以嵌入到碳材料本身所具有的结构中,还可以嵌入到呈纳米分散的硅原子的空隙中,为锂离子提供大量的纳米通道,增加了锂离子的嵌入位置。Chen Libao等[27]用喷雾干燥技术制备Si/C复合碳负极材料,其可逆容量达635mAh/g,且循环性能比较稳定。碳材料的掺杂原子除硅外,还有B、P、Al、Ga、Ni等[28],用作锂离子电池负极材料的碳有多种,如石墨、MCMB、碳纤维、热解炭等,这些碳材料都可以通过掺入杂原子改善性能。

5.结束语

综上所述,近些年来,锂离子二次电池的碳负极材料的研究和开发所取得得进展是有目共睹的。其研究重点也一直在朝着更高的比容量、循环性能和首次充放电效率以及低成本方向发展。目前对碳负极的研究主要是采用各种手段对其表面经行改性,但是对人造石墨进行表面处理将进一步增加制造成本,因此今后研究的重点仍将是怎样更好的利用廉价的天然石墨和开发有价值的无定形碳材料;MCMB因其合理的球形结构有望在商业化生产中大规模使用。碳纳米材料用于提高锂离子电池负极材料的电化学性能具有明显的效果,但目前研究大多处于实验室阶段,因此应深入研究CNTs改性和碳纳米掺杂对碳材料微观结构和电子状态的影响及其与嵌入行为的关系,寻找具有高可逆容量的碳纳米材料。

参考文献:

[1]郭炳焜,李海新,杨松青,等.化学电源-电池原理及制造技术[M].长沙:中南工

业大学出版社,2000

[2]吴宇平,戴晓兵,马军旗,等.锂离子电池-应用与实践[M].北京:化学工业出版

社,2004

[3]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].北京:化学工业出版社,2002

[4]殷雪峰,刘贵昌.锂离子电池炭负极材料的研究现状与发展[J].炭素技术,2004,23

(3):37~41

[5]Zhang S S,Xu K,Jow T R.Low temperature performance of graphite electriode in Li-ion

cells[J].Electrochimica Acta,2002,48(3):241~246

[6]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,

2008

[7]H BUQA,P GOLOB,M WINTER,et al.Modified carbons for improved anodes in lithium

ion cells[J].J Power Sources,2001,(97~98):122~125

[8]Li T Q,Wang C Y,Liu X J,et al.SEM analysis of the changes of carbon layer structure of

mesocarbon microbeads heat-treated at different temperatures[J].Chinese Science Bulletin,2004,49(11):1105~1110

[9]胡伟,张永刚,王成扬,等.中间相炭微球热处理用作锂离子电池负极材料[J].材料

导报,2008,22(05):19~21

[10]周友元,李新海,郭华军,等.沥青包覆天然石墨性能的研究[J].功能材料,2007,

38(06):955~957

[11]陈猛,肖斌,杨闯,等.羧甲基纤维素包覆天然石墨性能的研究[J].化学工程师,

2006,03:61~63

[12]王勇,杨绍斌.热解炭包覆石墨材料的研究进展[J].电池工业,2007,12(05):357~360

[13]何永祥,赵海鹏.锂离子二次电池碳负极材料的研究进展[J].平顶山工学院学报,

2007,16(03):40~43

[14]张永刚,王成扬,闫裴.低温CoCl2催化热处理中间相炭微球用作锂离子电池负极材

料[J].新型炭材料,2007,22(1):35~39

[15]汤东,侯全会,倪红军,等.TiC掺杂对MCMB烧结体组织和性能的影响[J].江苏

大学学报,2009,30(4):366~369

[16]Qing Wang,Hong Li,Liquan Chen et al.Novel spherical microporous carbon as anode

material for Li-ion batteries [J],Solid State Ionics,2002,152-153:43~50

[17]Jin Hu,Li Hong,Xuejie Huang.Influence of micropore structure on Li-storage capacity in

hard carbon spherules [J],Solid State Ionics,2005,176:1151~1159

[18]George Ting-kuo Fey,Chung-Lai Chen.High-capacity carbons for lithium-ion batteries

prepared from rice husk [J],J Power Sources,2001,97~98:47~51

[19]孙颢,蒲薇华,何向明,等.锂离子电池硬碳负极材料研究进展[J].化工新型材料,

2005,33(11):7~10

[20]尹鸽平,周德瑞,程新群,等.掺硼酚醛树脂热解碳的制备及嵌锂性能研究[J].高

新技术通讯,2001(3):98~100

[21]尹鸽平,程新群,高云智,等.掺磷对硬碳及软碳嵌锂性能的影响研究[J]材料科学

与工艺,2003,11(2):159~163

[22]宁林坚,王玲治,方世璧.用于锂离子电池负极材料的锡/碳复合材料研究[J].高分

子学报,2008(9):915~919

[23]龚金保,汪继强.锂离子电池用炭负极材料的研究[J].复旦学报(自然科学版),2004,

43(4):500~506

[24]李昌明,赵灵智,刘志平,等.锂离子电池碳纳米管负极材料储锂性能研究[J].化

工新型材料,2009,37(6):28~29

[25]王振旭,魏学东,赵廷凯,等.非晶碳纳米管新型锂离子电池负极材料[J].材料研

究学报,2008,22(3):312~316

[26]周德凤,赵艳玲,郝婕,等.锂离子电池纳米级负极材料的研究[J].化学进展,2003,

15(6):445~450

[27]Chen LIbao,Xie Xiaohua,Wang Baofeng et al.Spherical nanostructured Si/C composite

prepared by spray drying technique for lithium ion batterys anode[J].Materials science and Engineering B,2006,131(1-3):186~190

[28]饶睦敏,黄启明,李伟善.锂离子电池纳米负极材料的研究进展[J].电池工业,2008,

13(2):132~136

纳米硅碳负极材料研究报告

纳米硅碳负极材料研究报告 0引言 自1991年SONY公司以石油焦炭为负极材料将锂离子电池推向商业化以来,因其出色的循环寿命、较高工作电压、高能量密度等特性,锂离子电池一经推出就受到人们的广泛关注,迅速成为能源储存装置中的明星。近年来,随着新能源交通工具(如EV和HEV)的发展,对锂离子电池提出了更高的要求。作为锂离子电池关键部分的负极材料需要具备在Ii 的嵌入过程中自由能变化小,反应高度可逆;在负极材料的固态结构中有高的扩散率;具有良好的电导率;优良的热力学稳定性以及与电解质良好的相容胜等。研究者们通过开发具有新颖纳米结构的碳材料和非碳材料,来提高作为锂离子电池负极的嵌铿性能。然而,这些新颖的材料,如Sn, Si, Fe、石墨烯、碳纳米管,等,虽然其理论嵌铿容量较高(Sn和Si的理论嵌铿容量分别为994mAh/g和4 200 mAh/g ,但由于制备工艺相当复杂,成本较高,而且在充放电过程中存在较大的体积变化和不可逆容量。因此,若将其进行商业化应用还需要解决许多问题。 锂离子电池具有高电压、高能量、循环寿命长、无记忆效应等众多优点,已经在消费电子、电动土具、医疗电子等领域获得了少’一泛应用。在纯电动汽车、混合动力汽车、电动自行车、轨道交通、航空航天、船舶舰艇等交通领域逐步获得推少’一。同时,锉离子电池在大规模可再生能源接入、电网调峰调频、分布式储能、家庭储能、数据中心备用电 源、通讯基站、土业节能、绿色建筑等能源领域也显示了较好的应用前景 1不同负极材料的特点评述 天然石墨有六方和菱形两种层状品体结构同,具有储量大、成本低、安全无毒等优点。在锉离子电池中,天然石墨粉末的颗粒外表面反应活性不均匀,品粒粒度较大,在充放电过程中表面品体结构容易被破坏,存在表面SEI膜覆盖不均匀,导致初始库仑效率低、倍率性能不好等缺点。为了解决这些问题,可以采用颗粒球形化、表面氧化、表面氟化、表面包覆软碳、硬碳材料以及其它方式的表面修饰和微结构调整等技术对天然石墨进行改性处理。从成本和性能的综合考虑,目前土业界石墨改性主要使用碳包覆土艺处理。商业化应用的改性天然石墨比容量为340~ 370 mA·h/g,首周库仑效率90%~93%,100% DOD循环寿命可达到1000次以上,基本可以满足消费类电子产品对小型电池的性能要求。 2硅碳负极材料应用前景 近年来,我国锂离子电池产业发展迅速,全球市场份额不断攀升,在大规模的锂离子电池产业投资的带动下,锂离子电池负极材料的需求不断上升。硅负极相比石墨负极具有更高的质量能量密度和体积能量密度,采用硅负极材料的锉离子电池的质量能量密度可以提升8%以上,体积能量密度可以提升10%以上,同时每千瓦时电池的成本可以下降至少3%,因此硅负极材料将具有非常广阔的应用前景。新能源汽车产业是全球汽车产业的发展方向,也是我国重要的新兴战略产业之一,未来10年将迎来全球汽车产业向新能源汽车转型和升级的战略机遇。新能源汽车主要包括纯电动汽车、插电式混合动力汽车及燃料电池汽车。其中,纯电动汽车完全使用动力电池驱动,对电池容量需求最大,要求锉离子电池容量平均为30 kW /h。自2010年起,动力类锉离子电池受益于技术提升和成本降低,逐渐替代镍锅,镍氢电池,成为新能源汽车广泛使用的动力电池。根据中国汽车工业协会统计,我国新能源汽车产量由2011年的8000辆左右增至2015年的34万辆,而销量则由2011年的8000辆左右增至2015年的33万辆,年均复合增长率均超过150% o在各种利好政策的影响下,2014

硅负极材料在锂离子电池中的应用

新型硅负极材料在锂离子电池中的应用研究 吴孟涛 天津巴莫科技股份有限公司 当今社会便携式可移动电子设备的高速发展极大的刺激了市场对重量轻体积小容量和能量密度更高的锂离子电池的需求。目前商业化锂离子电池都是以碳基材料作为负极的,但由于石墨负极的可逆容量只有372mAh/g (LiC6),严重限制了未来锂离子电池的发展,所以研发下一代锂离子电池负极材料成为新的热点。人们发现在Li22Si5中硅的恒流理论容量达到了4200mAh/g,是极具开发潜力的锂离子负极材料。但这种材料的缺点也很突出:在嵌锂和脱锂过程中材料体积会发生膨胀,微观结构发生改变而导致在嵌锂脱嵌过程中电极的断裂和损耗[1]。虽然不少文献提出了很多改进方法但由于制备出的硅薄膜材料厚度较薄,不适宜商业化生产。为了使硅负极可以应用于实际生产,我公司以无定形硅薄膜溅射在铜箔上成功制备出了厚度大于1μ的硅薄膜负极材料并与市场上的LiCoO2制成电池进行了一系列循环和倍率性能测试。 1 实验: 硅薄膜是以物理溅射的方法在表面粗糙的铜箔上的[2]。表面形貌分析应用的是HRTEM(FEI Tecnai20).制备出的硅薄膜材料在80℃下真空干燥24h,与市场上销售的LiCoO2在手套箱中组成2025扣式全电池。电解液为1M LiPF6/EC+DMC(体积比1:1);隔膜使用的是Celgard-2300。所有倍率试验和循环性能试验都是在电脑控制的25±1℃恒温系统中进行的。 2结果与讨论: 图1是循环前硅薄膜材料的HRTEM图和SAED图,从图中可以清楚看出涂在铜箔上的硅薄膜是无定形状态的。 图1 硅薄膜材料的HRTEM图和SAED图

锂电池负极材料大体分为以下几种

锂电池负极材料大体分为以下几种: 第一种是碳负极材料: 目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。 第二种是锡基负极材料: 锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。目前没有商业化产品。 第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。 第四种是合金类负极材料: 包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金,目前也没有商业化产品。 第五种是纳米级负极材料:纳米碳管、纳米合金材料。 第六种纳米材料是纳米氧化物材料:目前合肥翔正化学科技有限公司根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂电池的冲放电量和充放电次数。 锂金属电池 锂-二氧化锰电池是一种以锂为阳极(负极)、以二氧化锰为阴极(正极),并采用有机电解液的一次性电池。该电池的主要特点是电池电压高,额定电压为3V(是一般碱性电池的2倍);终止放电电压为2V;比能量大(金属锂的理论克容量为3074mAh);放电电压稳定可靠;有较好的储存性能(储存时间3年以上)、自放电率低(年自放电率≤10%);工作温度范围-20℃~+60℃。 该电池可以做成不同的外形以满足不同要求,它有长方形、圆柱形及纽扣形(扣式)。 锂离子电池 可充电锂离子电池是目前手机、笔记本电脑等现代数码产品中应用最广泛的电池,但它较为“娇气”,在使用中不可过充、过放(会损坏电池或使之报废)。因此,在电池上有保护元器件或保护电路以防止昂贵的电池损坏。锂离子电池充电要求很高,要保证终止电压精度在±1%之内,目前各大半导体器件厂已开发出多种锂离子电池充电的IC,以保证安全、可靠、快速地充电。 现在手机已十分普遍,基本上都是使用锂离子电池。正确地使用锂离子电池对延长电池寿命是十分重要的。它根据不同的电子产品的要求可以做成扁平长方形、圆柱形、长方形及扣式,并且有由几个电池串联并联在一起组成的电池组。锂离子电池的额定电压,因为近年材料的变化,一般为3.7V,磷酸铁锂(以下称磷铁)正极的则为3.2V。充满电时的终止充电电压一般是4.2V,磷铁3.65V。锂离子电池的终止放电电压为2.75V~3.0V(电池厂给出工作电压范围或给出终止放电电压,各参数略有不同,一般为3.0V,磷铁为2.5V)。低于2.5V(磷铁2.0V)继续放电称为过放,过放对电池会有损害。

硅碳材料是最有潜力的锂电池负极讲课教案

硅碳材料是最有潜力的锂电池负极

新能源汽车领域的日趋火爆,吸引着国内外大量企业前赴后继奔赴“战场”,并不新鲜的锰酸锂技术却似乎又开始绽放出引人注目的色彩。技术创新固然可喜,但寻找性价比更高、储藏量更大、具有更多定价话语权的新原材料,才是提升行业终端降本增效能力的治本之法。 硅是目前人类至今为止发现的比容量(4200mAh/g)最高的锂离子电池负极材料,是一种最有潜力的负极材料,但硅作为锂电池负极应用也有一些瓶颈,第一个问题是硅在反应中会出现体积膨胀的问题。通过理论计算和实验可以证明嵌锂和脱锂都会引起体积变化,这个体积变化是320%。 所以不论做成什么样的材料,微观上,在硅的原子尺度或者纳米尺度,它的膨胀是300%。在材料设计时必需要考虑大的体积变化问题。高体积容量的材料在局部会产生力学上的问题,通过一系列的基础研究证明,它会裂开,形成严重的脱落。 硅体积膨胀会导致一系列结果 1.颗粒粉化,循环性能差 2. 活性物质与导电剂粘结剂接触差

第二个问题就是在硅表面的SEI膜是比较厚且不均匀的,受温度和添加剂的影响很大,会影响锂离子电池中整个比能量的发挥。 石墨表面因为导电性特别好,相对来说SEI膜比较均匀,它的组成跟硅负极不一样。为了研究这个问题,中科院相关科学家做了模型材料,通过微加工做成硅纳米柱。观察这种材料在充放电过程中SEI膜的生长,我们发现随着循环次数的增加,SEI膜逐渐把硅柱中间的空隙填上,覆盖完后还会继续生长大概4.5μm,在硅表面如果不加任何处理,SEI膜可以长得很厚。 这说明它是多孔的,溶剂始终能够接触到浸到硅的表面,这样在全电池设计时是不行的。怎么样解决这个问题,中科院科相关学家做了一些尝试在硅上做了碳包覆,为了做对比,我们硅上只做了部分的石墨烯包覆,其他地方空出来。最终看到包覆和不包覆SEI膜的生长情况不一样,碳包覆的SEI膜就明显减少,没有包覆的SEI膜就有很多。

锂离子电池负极材料的研究现状

锂离子电池负极材料的研究现状 (米庆芳 14111700401) 摘要:本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料作为锂离子电池负极材料的研究及开发应用现状。指出了今后锂离子二次电池负极材料的发展方向。 关键词:锂离子电池负极材料碳素材料硅基材料 The research status of anode materials in lithium ion batteries Abstract:this paper expounds the basic characteristic of the lithium ion anode materials, carbon materials, silicon materials is reviewed as lithium ion battery cathode materials research and development and application status. Points out the future development direction of lithium ion secondary battery cathode materials. Key words: lithium-ion battery cathode material carbon silicon-based materials 0 前言 被称为锂离子二次电池,由于高电压,高能量,质量轻,体积小,内阻小,自放电率低,循环寿命长,无记忆效应的“21世纪最具竞争力的动力源”等[1-2]。随着科技的进步,锂离子电池将广泛应用于电动汽车,航空航天,生物医学工程等领域,因此,研究和发展的动力及其与锂离子电池材料相关的具有重大意义。对于功率的锂离子电池,关键是提高功率密度和能量密度,能量密度和功率密度和改进的基本是电极材料,负极材料的特别的改善。 1 锂离子负极材料的基本特性 锂离子电池正极材料的锂离子电池的性能起着至关重要的作用。锂离子电池正极材料应满足下列条件: (1)应是层状或隧道结构,以促进脱锂离子的嵌入和在锂离子的嵌入和出现时没有结构变化,以使在充电和放电的电极具有良好的可逆性和循环寿命; (2)在嵌入和出锂离子应该尽可能地,使该电极具有高的可逆容量。在嵌入式上脱下的锂离子电池的过程中具有稳定的充电和放电电压; (3)首次不可逆放电比容量小; (4)安全性能好: (5)它具有与电解质溶剂相容性好; (6)资源丰富,价格低廉, (7)安全性,不会污染环境。 现有的阳极材料是很难满足的同时上述要求。因此,研究和开发新的电化学

硅碳负极材料复合方式

硅碳负极材料复合方式 锂离子电池具有能量密度高、开路电压高、循环寿命长等优点,被广泛应用于计算机、手机、EV以及其它便携式电子设备中。目前锂电池的商业化程度较高,作为锂电池的四大主材(正极材料、负极材料、隔膜、电解液)之一,负极材料的性能对电池性能具有关键影响,负极材料种类如图1所示。目前市场上锂电厂商主要选择石墨材料作为锂电池的负极材料,石墨属于碳负极材料中的一种,包括人造石墨和天然石墨。 图1.锂电池负极材料种类 石墨是较为理想的负极材料,由于其具有良好的循环稳定性、优异的导电性且层状结构具有良好的嵌锂空间,被广泛用于锂电池中。随着国家对于锂电

池性能要求的不断提高,石墨作为负极材料的不足也逐渐显露出来,例如克容量低(372mAh/g)、循环次数较多时层状结构容易剥离脱落等,限制了锂电池比能量和性能的进一步提升。科研工作者致力于寻找一种可以替代碳负极材料的材料。 由于硅可以和锂形成二元合金,且具有很高的理论容量(4200mAh/g)而备受关注。另外,硅还具有低的脱嵌锂电压平台(低于0.5VvsLi/Li+),与电解液反应活性低,在地壳中储量丰富、价格低廉等优点,是一种非常具有前景的锂电池负极材料。 图2.石墨与硅的结构比较 但是硅作为锂电池负极具有致命的缺陷,充电时锂离子从正极材料脱出嵌入硅晶体内部晶格间,造成了很大的膨胀(约300%),形成硅锂合金。放电时锂离子从晶格间脱出,又形成成了很大的间隙。单独使用硅晶体作为负极材料容易产生以下问题:

第一、在脱嵌这个过程中,硅晶体体积出现了明显的变化,这样的体积效应极易造成硅负极材料从集流体上剥离下来,导致极片露箔引起电化学腐蚀和短路等现象,影响电池的安全性和使用寿命。 第二、硅碳为同一主族元素,在首次充放电时同样也会形成SEI包覆在硅表面,但是由于硅体积效应造成的剥落情况会引起SEI的反复破坏与重建,从而加大了锂离子的消耗,最终影响电池的容量。 结合碳材料和硅材料的优缺点,经常将两者复合来使用,以最大化提高其实用性。通常根据碳材料的种类可以将复合材料分为两类:硅碳传统复合材料和硅碳新型复合材料。其中传统复合材料是指硅与石墨、MCMB、炭黑等复合,新型硅碳复合材料是指硅与碳纳米管、石墨烯等新型碳纳米材料复合。不同材料之间会形成不同的结合方式,硅碳材料的复合方式/结构主要有以下几种: 一、核桃结构 图3.核桃结构硅碳复合材料

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

硅碳负极研究发展现状

硅碳负极研究发展现状 (姜玉珍山东青岛青岛华世洁环保科技有限公司) 锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。 负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。 然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。 1、硅碳负极目前存在的主要问题 在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。造成首次放电效率低。随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。 2、硅碳负极制备方法 2.1、静电纺丝 吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。其过程为:将PVP溶于乙醇制备0.5KG/L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。材料首次0.1C 放电容量为1156.8mAh/g,库伦效率74.5%,第20次循环时材料的放电容量仍能够维持在783.2 mAh/g。 图1、Si/C 复合负极材料在0.1C 倍率下的充放电曲线

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 摘要:随着时代的进步,能源与人类社会的生存和发展密切相关,持续发展是全人类的、共同愿望与奋斗目标。矿物能源会很快枯竭,解决日益短缺的能源问题和日益严重的环境污染是对国家经济和安全的挑战也是对科学技术界地挑战。电池行业作为新能源领域的重要组成部分,已经成为全球经济发展的一个新热点本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料以及这两种材料形成的复合材料作为锂离子电池负极材料的研究及开发应用现状。 关键词:锂离子电池负极材料碳/硅复合材料 引言:电极是电池的核心,由活性物质和导电骨架组成正负极活性物质是产生电能的源泉,是决定电池基本特性的重要组成部分。本文就锂离子电池的负极材料进行研究。锂离子电池是目前世界上最为理想的可充电电池。它不仅具有能量密度大、无记忆效应、循环寿命长等特点,而且污染小,符合环保要求。随着技术的进步,锂离子电池将广泛应用于电动汽车、航空航天、生物医学工程等领域,因此,研究与开发动力用锂离子电池及其相关材料有重大意义。对于动力用锂离子电池而言,关键是提高功率密度和能量密度,而功率密度和能量密度提高的根本是电极材料,特别是负极材料的改善。 1、锂离子负极材料的基本特性 锂离子电池负极材料对锂离子电池性能的提高起着至关重要的作用。锂离子电池负极材料应具备以下几个条件: (1) 应为层状或隧道结构,以利于锂离子的脱嵌且在锂离子嵌入和脱出时无结构上的变化,以使电极具有良好的充放电可逆性和循环寿命; (2) 锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量。在锂离子的脱嵌过程中,电池有较平稳的充放电电压; (3) 首次不可逆放电比容量较小; (4) 安全性能好; (5) 与电解质溶剂相容性好; (6) 资源丰富、价格低廉; (7) 安全、不会污染环境。 现有的负极材料很难同时满足上述要求。因此,研究和开发新的电化学性能更好的负极材料成为锂离子电池研究领域的热门课题。 2、选材要求 一般来说,锂离子电池负极材料的选择主要要遵循以下原则:1、插锂时的氧化还原电位应尽可能低,接近金属锂的电位,从而使电池的输出电压高;2、锂能够尽可能多地在主体材料中可逆的脱嵌,比容量值大;3、在锂的脱嵌过程中,主体结构没有或很少发生变化,以确保好的循环性能;4、氧化还原电位随插锂数目的变化应尽可能的少,这样电池的电压不会发生显著变化,可以保持较平稳的充放电:5、插入化合物应有较好的电子电导率和离子电导率,这样可以减少极化并能进行大电池充放电;6、具有良好的表面结构,能够与液体电解质形成良好的固体电解质界面膜;7、锂离子在主体材料有较大的扩散系数,便于快速的充放电;8、价格便宜,资源丰富对环境无污染 3、负极材料的主要类型用作锂离子电池负极材料的种类繁多,根据主体相

四种锂电池负极材料的PK

四种锂电池负极材料的PK 作者:中国储能网新闻中心来源:电池中国网发布时间:2016-8-8 18:46:00 中国储能网讯:负极材料作为锂电池四大组成材料之一,在提高电池 的容量以及循环性能方面起到了重要作用,处于锂电池产业中游的核心环节。调研显示,2015年中国负极材料产量7.28万吨,同比增长42.7%,国内产值为38.8亿元,同比增长35.2%。这标志着锂电池负极材料市场 迎来了发展的春天。 负极材料分类众多,其中石墨类碳材料一直处于负极材料的主流地位。编辑总结发现,近日受到追捧的石墨烯概念、业内使用较为普遍的人工石墨、性能稳定的中间相碳微球以及有“新大陆”之称的硅碳复合材料,在 负极材料领域形成了“四方争霸”的局面。下面就让编辑带大家了解一下 这“四方霸主”的厉害吧。 独占一方的石墨烯 石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,因为质地薄、硬度大且电子移动速度快而被科学家广泛推崇,并冠以“新材料之王”的

美誉。尽管这位“王者”优异的化学性能被新能源市场所看好,但是至今 为止依然停留在“概念化”的阶段。 如果将石墨烯用作锂电负极材料的话,需要独立的上下游产业链、昂 贵的价格还有复杂的工艺,这让众多负极材料厂商望而却步。尽管如此, 国内依然有一些企业砥砺前行,目前中国安宝、大富科技以及贝特瑞等知 名企业已经开始布局石墨烯产业。 但是,行业内关于石墨烯用作负极材料的质疑也在不断发酵,有人认 为石墨烯的振实和压实密度都非常低,又加之成本昂贵,作为电池负极材 料前景十分渺茫。但是鉴于它的热潮还在持续,说它是“一方霸主”也不 为过。 控制“主场”的人工石墨 目前负极材料主要以天然石墨和人造石墨为主,这两种石墨各有优劣。湖州创亚总经理胡博表示:“天然石墨克容量较高、工艺简单、价格便宜,但吸液及循环性能差一些;人造石墨工艺复杂些、价格贵些,但循环及安 全性能较好。通过各种手段的技术改进,这两种石墨负极材料都可以‘扬 长避短’,但就目前来看,人造石墨用于动力电池上占据一定的优势”。 而这一说法也在市场中得到了印证。相关媒体调研数据显示,今年第 一季度中国天然石墨产量4770吨,同比增长16.3%;人造石墨出货15160吨,同比增长110.5%。从以上数据来看,人造石墨出货量远高于天然石墨,而造成这一现象的重要原因,是今年以来市场对动力电池的强 劲需求。 性能稳定的中间相碳微球 中间相碳微球具有高度有序的层面堆积结构,是典型的软碳,石墨化 程度较高,结构稳定,电化学性能优异。据中咨网研究部统计数据显示,2012年中国负极材料出货量为27650吨,其中天然石墨出货量占比59%,人造石墨30%,石墨化中间碳微球8%。就此说来,中间相碳微球是仅次于天然石墨和人工石墨的第三大主流碳类负极材料。

硅碳负极研究发展现状

(姜玉珍山东青岛青岛华世洁环保科技有限公司) 锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。 负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。 然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。 1、硅碳负极目前存在的主要问题 在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。造成首次放电效率低。随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。 2、硅碳负极制备方法 、静电纺丝 吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。其过程为:将PVP溶于乙醇制备L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。材料首次放电容量为g,库伦效率%,第20次循环时材料的放电容量仍能够维持在 mAh/g。 图1、Si/C 复合负极材料在倍率下的充放电曲线但是,该材料的倍率特性较差,将放电倍率提高到到,材料的放电容量为 mAh/g。再次变换充放电倍率至时,材料的放电容量仅为mAh/g。 、高温裂解沥青 西安建筑科技大学的栾振星等人通过高温裂解沥青的方式制备出了硅/碳/碳纳米管复合材料。该方法是将碳纳米管浸入H 2 SO 4 /HNO 3 溶液中震荡搅拌12H,空气中高温处理4H,将纳米硅、碳纳米管放入甲苯超声分散,然后将其按比例倒入溶于甲苯的沥青溶液中,搅拌均匀后真空

锂离子电池碳负极材料研究进展

锂离子电池碳负极材料的研究进展 赵永胜 (河北工业大学化工学院应用化学系,天津 300130) 摘要综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。 关键词锂离子电池负极材料碳材料 Research progress of carbon anode materials for lithium ion batteries Zhao Yongsheng (Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130)Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected. Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-x CoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。本文着重对锂离子电池碳负极材料方面的研究进展进行评述。 1.碳基负极材料的分类 炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,

负极材料综述

锂电负极材料综述 1、概述 锂电负极材料需具备可逆地脱/嵌锂离子,这类材料要求具有以下要求: ①正负极的电化学位差大,从而可获得高功率电池; ②锂离子的嵌入反应自由能变化小; ③锂离子的可逆容量大,理离子嵌入量的多少对电极电位影响不大,这样可以保证电池稳定的工作电压; ④高度可逆嵌入反应,良好的电导率,热力学稳定的同时还不与电解质发生反应; ⑤循环性好,具有较长循环寿命; ⑥锂离子在负极的固态结构中具有高扩散速率; ⑦材料的结构稳定、制作工艺简单、成本低。 2、负极材料介绍 目前锂离子二次电池的负极材料主要有两大类:碳负极材料和非碳(金属氧化物)材料。 2.1 碳负极材料 碳材料对锂的电位比较低,一般小于1V,是较理想的负极材料,也是人们探索研究最多的一种材料,目前己商业化的锂离子电池所用的负极材料几乎均是碳材料。

锂电池中具实用价值和应用前景的碳主要有三种:(1)高度石墨化的碳;(2)软碳和硬碳;(3)碳纳米材料。 2.1.1石墨类碳负极材料 石墨类碳负极材料具有以下特点:导电性好,结晶度较高,具有良好的层状结构,适合锂的嵌入脱嵌;充放电比容量可达300 mAh/g 以上,充放电效率在90%以上,不可逆容量低于50 mAh/g;锂在石墨中脱嵌反应发生在0~0.25V左右(Vs.Li+/Li),具有良好的充放电电位平台。它分为人造石墨和天然石墨。 石墨类负极材料具体分类图 人造石墨是将易石墨化炭(如沥青焦炭)在N2气氛中于1900~2800℃经高温石墨化处理制得。常见人造石墨有中间相碳微球(MCMB)、石墨化碳纤维。MCMB的优点:球状颗粒,便于紧密堆积可制成高密度电极;光滑的表面,低比表面积,可逆容量高;球形片层结构,便于锂离子在球的各个方向迁出,可以大倍率充放电。应用

锂离子电池硅_碳复合负极材料的研究进展_张瑛洁

第34卷第4期 硅酸盐通报Vol.34No.42015年4月BULLETIN OF THE CHINESE CERAMIC SOCIETY April ,2015 锂离子电池硅/碳复合负极材料的研究进展 张瑛洁,刘洪兵 (东北电力大学化学工程学院,吉林132012) 摘要:负极材料是制约锂离子电池发展的重要因素之一。硅/碳复合材料储锂容量高、循环稳定性好,是目前制备 新型锂离子电池负极材料的研究热点。介绍了硅/碳复合材料的不同制备方法和复合结构以及优良的电化学性 能,综述了硅/碳复合材料的研究进展,并对未来的发展方向进行了展望。 关键词:锂离子电池;硅/碳复合材料;制备方法;复合结构;电化学性能 中图分类号:TQ152文献标识码:A 文章编号:1001- 1625(2015)04-0989-06Research Progress on Si /C Composite Anode Materials for Lithium-ion Battery ZHANG Ying-jie ,LIU Hong-bing (School of Chemical Engineering ,Northeast Dianli University ,Jilin 132012,China ) Abstract :Anode materials is a major factor that restricts the development of lithium-ion batteries.Si /C composite materials ,which possesses high capacity and cycling stability ,becomes the hot spot to preparation of new type lithium-ion battery anode materials at present.Different preparation methods of Si /C composite materials ,composite structures ,and excellent electrochemical performance were introduced.And the research progress of Si /C composites was summarized.Subsequently ,the future development direction of Si /C composite materials was prospected as well. Key words :lithium ion battery ;Si /C composite materials ;preparation method ;complex structure ; electrochemical performance 基金项目:吉林省科技厅产业技术创新战略联盟项目(20130305017GX );吉林省教育厅吉教科合字[ 2014]第103号作者简介:张瑛洁(1969-),女,教授, 博士.主要从事水的深度处理方面的研究.1引言 负极材料储锂容量是制约锂离子电池应用范围的关键因素,硅/碳复合材料作为一类应用潜力巨大的负 极材料, 成为近年来研究的热点。碳与硅相近似的化学性质,为两者的紧密结合提供了理论依据,所以碳常用作与硅复合的首选基质。硅通常与石墨、石墨烯、无定型碳和碳纳米管等不同的碳基质制备复合材料,在硅碳复合的体系中硅主要作为活性物质,提供容量 [1-3];碳材料一般作为分散基质,限制硅颗粒的体积变化,并作为导电网络维持电极内部良好的电接触[4-6]。理论上,硅/碳复合材料储锂容量高,导电性能好,但要成为可商用的锂离子电池负极材料,面临着两个基本的挑战:循环稳定性差和可逆循环容量保持率低。不同的制备方法以及复合结构都会对复合材料的电化学性能产生影响,开发强附着性、紧密电接触、耐用的新型硅碳复合材料,对促进硅/碳复合材料实际应用的进程具有重大意义。本文着重从制备方法、复合结构及电化学性能等方面综述了硅/碳复合材料近年来的研究进展,以期对后续的研究人员的相关实验提供理论依据。DOI:10.16552/https://www.360docs.net/doc/a14932738.html,ki.issn1001-1625.2015.04.018

一文让你明白什么是负极材料

随着新能源技术的发展,锂电行业成为新能源领域发展的潮流,负极材料作为锂电池重要的组成部分,其材料的选择对锂电池性能起着至关重要的作用。下面就让我们一起了解锂电池石墨负极材料: 一、负极材料分类 负极材料是由负极活性物质碳材料或非碳材料、粘合剂和添加剂混合后均匀涂布在铜箔两侧后经干燥、滚压而成。负极材料主要包括碳类材料和非碳类材料,其中碳类材料主要分为石墨和无定形碳,主要包括天然石墨、人造石墨、中间相碳微球(硬碳)、软碳等,其他非碳负极材料主要包括硅基材料、锡基材料、钛基材料以及氮化物等。

二、负极材料行业现状 性能优异的负极材料应该具备较高的比能量,相对锂电极的电极电势低,充放电反应的可逆性能好,同时与电解液兼容性好。天然石墨容量较高且工艺简单成本较低,但循环性能较差,而人造石墨工艺复杂成本稍高,但具备较好的循环以及安全性能,中间相碳微球石墨在倍率性能上高出天然石墨与人造石墨,因此具备较好的热稳定性与化学稳定性,但其制作工艺复杂导致成本较高。硅碳类复合材料容量比远高于石墨类负极,同时环境友好并且国内储量丰富,但由于在反应过程中锂容易嵌入硅晶胞导致材料膨胀容量迅速下降,因此循环寿命较低。综合成本与性能,在动力电池领域当前天然石墨仍然占据主流地位。 从2016年全球负极材料的出货量占比来看天然石墨占比达到55%,人造石墨占比达到35%,中间相碳微球占比7.4%,整体而言碳类材料是负极材料的主流,累计占比高达90%以上,由于碳类负极材料在比容量、循环寿命以及成本方面综合性能最佳,同时我国也是世界上碳 资源最丰富的国家(占全球70%),因此碳类负极材料当下具备最高的综合性能。

锂离子电池硅碳负极材料研究进展

第45卷第10期2017年10月 硅酸盐学报Vol. 45,No. 10 October,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.360docs.net/doc/a14932738.html, DOI:10.14062/j.issn.0454-5648.2017.10.21 锂离子电池硅碳负极材料研究进展 沈晓辉,范瑞娟,田占元,张大鹏,曹国林,邵乐 (陕西煤业化工技术研究院有限责任公司,西安 710100) 摘要:硅基材料作为锂离子电池负极具有容量高、来源广泛以及环境友好等优势,有望替代目前应用广泛的石墨负极成为下一代锂离子电池的主要负极材料。硅和碳复合构成的锂离子电池复合负极,不但解决了充放电过程中硅体积效应大和碳容量低的问题,而且综合了碳循环性好和硅容量高的特点。从材料选择、结构设计以及电极优化方面简要介绍了硅/碳复合材料的最新研究进展,并对硅碳复合负极未来发展方向进行了展望。 关键词:锂离子电池;硅/碳复合材料;复合结构 中图分类号:O646 文献标志码:A 文章编号:0454–5648(2017)10–1530–09 网络出版时间:2017–07–14 11:38:49 网络出版地址:https://www.360docs.net/doc/a14932738.html,/kcms/detail/11.2310.TQ.20170714.1138.009.html Development on Silicon/Carbon Composite Anode Materials for Lithium-ion Battery SHEN Xiaohui, FAN Ruijuan, TIAN Zhanyuan, ZHANG Dapeng, CAO Guolin, SHAO Le (Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi’an 710100, China) Abstract: Silicon is considered as one of the most promising materials for the next generation Li-ion batteries to replace widely-used graphite anode materials due to its high capacity, abundant source and environmental friendly. Si/C composite anode materials construct from silicon and carbon for Li-ion batteries, and can not only solve the big volume varaition of silicon and the low capacity of carbon in charge-discharge process, but also integrate the good cycle performance of carbon with the high capacity of silicon. This review summarized recent developments on novel Si/C composites based on the material selection, complex structure and electrode optimization. In addition, the future aspects of developing Si/C composite materials were also prospected. Keywords: lithium ion battery; silicon/carbon composite materials; complex structure 随着时代的需求飞速发展,锂离子电池的能量密度以每年7%~10%的速率提升。然而,现有的以石墨为负极的锂离子电池技术已经接近极限。2016年,我国发布了动力电池能量密度硬性指标,根据《节能与新能源汽车技术路线图》,2020年纯电动汽车动力电池的能量密度目标为350 W·h/kg。为满足新一代能源需求,开发新型锂电负极技术迫在眉睫。 硅在常温下可与锂合金化,生成Li15Si4相,理论比容量高达3 572 mA·h/g,远高于商业化石墨理论比容量(372 mA·h/g),在地壳元素中储量丰富(26.4%,第2位),成本低、环境友好,因而硅负极材料一直备受科研人员关注,是最具潜力的下一代锂离子电池负极材料之一。 然而,硅在充放电过程中存在严重的体积膨胀(~300%),巨大的体积效应及较低的电导率限制了硅负极技术的商业化应用。为克服这些缺陷,研究者进行了大量的尝试,采用复合化技术,利用“缓冲骨架”补偿材料膨胀。碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。在Si/C 复合体系中,Si 颗粒作为活性物质,提供储锂容量;C既能缓冲充放电过程中硅负极的体积变化,又能改善Si质材料 收稿日期:2016–11–18。修订日期:2017–04–02。第一作者:沈晓辉(1988—),女,硕士生。 通信作者:邵乐(1985—),男,博士生。Received date:2016–11–18. Revised date: 2017–04–02. First author: SHEN Xiaohui(1988–), female, Master candidate E-mail: shenhui06@https://www.360docs.net/doc/a14932738.html, Correspondent author: SHAO Le(1985–), male, Ph.D. candidate. E-mail: shaole@https://www.360docs.net/doc/a14932738.html,

相关文档
最新文档