概率论习题解答(第5章)

概率论习题解答(第5章)
概率论习题解答(第5章)

第5章习题答案

三、解答题

1. 设随机变量X 1,X 2,…,X n 独立同分布,且X ~P (),∑==n

i i X n X 1

1,试利用契比

谢夫不等式估计}2|{|λλ<-X P 的下界。

解:因为X ~P (),∑∑===?===n i i n i i n n

X E n X n E X E 111

)(1)1()(λλ

λλn n n

X D n X n D X D n i i n i i 1

1)(1)1()(2121====∑∑==

由契比谢夫不等式可得

n

n X P 41

14/1}2|{|-

=-

≥<-λλλλ 2. 设E (X ) = – 1,E (Y ) = 1,D (X ) = 1,D (Y ) = 9, XY = – ,试根据契比谢夫

不等式估计P {|X + Y | 3}的上界。

解:由题知 ()()()Y X Y X E E E +=+=()11+-=0

Cov ()Y X ,=()()Y D X D xy ??ρ=()915.0??-=

()()()()()75.1291,2=-?++=++=+Y X Cov Y D X D Y X D

所以{}{}

9

7303≤

≥-+P =≥+)(Y X Y X P 3. 据以往经验,某种电器元件的寿命服从均值为100小时的指数分布.现随机地取16只,设它们的寿命是相互独立的.求这16只元件的寿命的总和大于1920小时的概率.

解:设i 个元件寿命为X i 小时,i = 1 ,2 , ...... , 16 , 则X 1 ,X 2 ,... ,X 16独立同分布,且 E (X i ) =100,D (X i ) =10000,i = 1 ,2 , ...... , 16 ,

416

1

161

106.1)(,1600)(?==∑∑==i i i i D E X X ,

由独立同分布的中心极限定理可知:

∑=16

1

i i

X

近似服从N ( 1600 , ?,所以

??????>∑=1920161i i X P =??????≤-∑=19201161i i X P ???

?

???

???????-≤?--=∑=1600001600192010000

6.116001161i i X P

()8.01Φ-==1- =

4. 某商店负责供应某地区1000人商品,某种商品在一段时间内每人需要用一件的概率

为,假定在这一时间段各人购买与否彼此无关,问商店应预备多少件这种商品,才能以%的概率保证不会脱销(假定该商品在某一时间段内每人最多可以买一件).

解:设商店应预备n 件这种商品,这一时间段内同时间购买此商品的人数为X , 则X ~ B (1000,),则E (X ) = 600,D (X ) = 240, 根据题意应确定最小的n ,使P {X ≤n }= %成立.

则P {X ≤n })75.2(997.0)240

600

(240600240

600ΦΦP ==-≈????

?

?-≤

-=n n X 所以6.64260024075.2=+?=n ,取n =643。

即商店应预备643件这种商品,才能以%的概率保证不会脱销。

5. 某种难度很大的手术成功率为,先对100个病人进行这种手术,用X 记手术成功的人数,求P {84 < X < 95}.

解:依题意, X ~ B (100,),则E (X ) = 90,D (X ) = 9,

}

390

9539039084{)9584{-<-<-=<

5

()2()35(=+-=+-=--≈ΦΦΦΦ

6. 在一零售商店中,其结帐柜台替顾客服务的时间(以分钟计)是相互独立的随机变

量,均值为,方差为1.求对100位顾客的总服务时间不多于2小时的概率.

解:设柜台替第i 位顾客服务的时间为X i ,i = 1,2,3.....100.

则X i ,i = 1,2,3.....100独立同分布,且E (X i )=,D (X i )=1,所以

???

?

??

?

???????-≤??-=??????≤∑∑==10015012011005.110012010011001i i i i x P x P

()()0013.09987.01313=-=-=-≈ΦΦ

即对100位顾客的服务时间不多于两个小时的概率为.

7. 已知笔记本电脑中某种配件的合格率仅为80%,某大型电脑厂商月生产笔记本电脑10000台,为了以%的把握保证出厂的电脑均能装上合格的配件,问:此生产厂商每月至少应购买该种配件多少件

解:设此生产厂商每月至少应购买n 件该种配件,其中合格品数为X ,则X ~ B (n ,, =P {X 10000}=)4.08.010000(1}4.08.01000016.08.0{n

n

n n n

n X P --=-≥

-Φ ,

解得 n =12655

即此生产厂商每月至少应购买12655件改种配件才能满足以的把握保证出厂的电脑均能装上合格的配件。

8. 已知一本300页的书中,每页的印刷错误的个数服从参数为的泊松分布,试求整书中的印刷错误总数不多于70个的概率.

解:记每页印刷错误个数为i X ,i =1,2,3,…300, 则它们独立同服从参数为的泊松分布,所以E (X i )=,D (X i )= 所以

()90147.029.160106060-700300.20300.2-703001i 3001i ==???? ??≈???

?

???

???????≤??=??????≤∑∑==ΦΦi i X P X P

9. 设车间有100台机床,假定每台机床是否开工是独立的,每台机器平均开工率为,

开工时需消耗电能a 千瓦,问发电机只需供给该车间多少千瓦的电能就能以概率保证车间正常生产

解:设发电机只需供给该车间m 千瓦的电能就能以概率保证车间正常生产, 记X 为100台机床中需开工的机床数,则X ~ B (100,, E (aX )=64a ,D (aX ) =100××

{})33.2(99.08.4640.360.6410064Φ=≥???

???-≤??-=≤a a m a a aX P m aX P

33.28.464≥-a

a

m ,所以a a a m 18.758.433.264=?+≥

10. 某保险公司的老年人寿保险有1万人参加,每人每年交200元.若老人在该年内死亡,公司付给家属1万元.设老年人死亡率为,试求保险公司在一年内的这项保险中亏本的概率.

解:设当年内投保老人的死亡数为X ,则X ~ B (10000,。 保险公司在一年内的保险亏本的概率为

{}{}{}20012002001000010000≤-=>=?>X P X P X P

??

?

??????

?-??--=)017.01(170017.010*******Φ

01.0)321.2(1≈-=Φ

所以保险公司在一年内的这项保险中亏本的概率是 四、应用题

1. 某餐厅每天接待400名顾客,设每位顾客的消费额(单位:元)服从区间(20,100)

上的均匀分布,且顾客的消费额是相互独立的,求该餐厅的日营业额在其平均营业额±760元内的概率.

解:设每位顾客的消费额为X i ,i =1,2,…400, 且 X i ~ U (20,100),则

()()()3

16001280801220100,60220

1002

=?=-==+=i i X D X E ,

由独立同分布的中心极限定理

??

? ??

?

?∑=3160060,400400~400

1

N X

i i

近似, 所以

()

()9505

.016454.1213760237603160040024000

3760316004007603

1600

40024000

316004007607602400076076060400400

1

400

1

40014001=-=-=???

???????

?

???≤?

-≤-=??

?

???????????

?

?

-≤

?

-=?

?

????≤-≤-=?

?????≤?-∑∑∑∑====ΦΦi i i i i i i i X P X P X P X P 2. 设某型号电子元件的寿命(单位:小时)服从指数分布,其平均寿命为20小时,具

体使用时当一元件损坏后立即更换另一新元件,已知每个元件进价为110元,试问在年计划中应为此元件作多少元的预算,才可以有95%的把握保证一年的供应(假定一年工作时间为2000小时).

解:设应为这种元件作m 元的预算,即需进m /110个元件, 记第i 件的寿命为X i 小时,i =1,2,3···, m /110,且X i ~ E (20), 所以E (X i )= 20 ,D (X i ) = 400,

?

??

???≥∑=110/12000m i i X P =)11011000(

1110/20110/202000110/400110/201m m m m m m X P n i i --=???

?

???

???????-≥??-∑=Φ= )645.1(95.0)11011000(

ΦΦ==-m

m ,所以

,645.111011000=-m

m 所以m =12980

即在年计划中应为此元件作12980元的预算,才可以有95%的把握保证一年的供应. 3. 据调查某村庄中一对夫妻无孩子、有1个孩子、有2个孩子的概率分别为,,.若该村共有400对夫妻,试求:(1) 400对夫妻的孩子总数超过450的概率;(2) 只有1个孩子的夫妻数不多于340的概率.

解:(1) 设第k 对夫妻 孩子数为X k ,则X k 的分布律为

则1.115.0280.0105.00)(=?+?+?=k X E ,19.0)()()(2

2=-=k k k X E X E X D

76

440

19

.04001

.1400400

1

400

1

-=

??-∑∑==k k

k k

X

X

1357.0)147.1(1)76

440

450(1)7644045076

440

()450(400

1

400

1

=-=--≈->

-=>∑∑==ΦΦk k

k k X

P X P 即

400对夫妻的孩子总数超过450的概率为

(2) 设Y 为只有一个孩子的夫妻对数,则Y ~ B (400,,

??

?

??????-≤???-=≤2.08.04008.04003402

.08.04008.0400}340{Y P Y P 9938.0)5.2()2

.08.04008

.0400340(

==???-≈ΦΦ

即只有1个孩子的夫妻数不多于340的概率为.

(B )

1. 设随机变量X 的概率密度为?????>=-其它,

00,!)(x e m x x f x

m ,m 为正整数,证明:1

)}1(20{+≥

+<

m X P (提示:利用Chebyshev 不等式). 证明:E (X )=

?

+∞

x f (x )d x =1120

1+=+=+Γ=-∞

++?

m m m m m dx e m x x m !

)!

(!)(!, ))((!

)

(!!)()()(12310

0130

22

2

++=+Γ====?

??

+∞+--+∞

+-+m m m m dx e x m dx e m x dx x f x X E x m x m []111222

2+=+-++=-=m m m m X E X E X D )())(()()()(

由切比雪夫不等式

{})(120+<

{}211111)()(++-

≥+<+-m m m m X P =1

+m m

2. 设}1:{≥n X n 为独立同分布的随机变量序列,其共同的分布如下表所示,证明

}{n X 服从Chebyshev 大数定律.

证明:()()

04

122

104

12=?+?+?-=i X E ,

()()()[]=-=22i i i X X X D E E ()

104

1

)2(210412222=-?+?+?-

又因为}1:{≥n X n 独立且同分布,所以{}n X 服从切比雪夫大数定律. 3.

}

1:{≥n X n 独立同分布,

)0()(,0)(22+∞<<==σσn n X D X E ,又)(4

n X E 存在(n =1,2,…),证明:

21

21σ?→?∑=P

n i i X n .(提示:利用Chebyshev 大数定律) 证明:因为随机变量序列}1:{≥n X n 独立同分布,所以}{2

i X 也独立同分布

22)()()(σ=+=i i i X E X D X E ,442242)()]([)()(σ-=-=i i i i X E X E X E X D 存在

由Chebyshev 大数定律,

21

21σ?→?∑=P

n i i X n

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率论试题及答案

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、, 则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B)取到1只白球 (C)没有取到白球(D)至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A)随机事件(B)必然事件 (C)不可能事件(D)样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B)与不互斥 (C)(D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C)(D) 6. 设相互独立,则()。 (A) (B) (C)(D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D)0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3(B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D) 10. 设事件A与B同时发生时,事件C一定发生,则()。

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分

概率统计试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =U ________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===L 则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X L 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件 是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 , 03()2,342 0, kx x x f x x ≤

概率论与数理统计习题及答案__第一章

《概率论与数理统计》习题及答案 第 一 章 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, A =‘甲盒中至少有一球’ ; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’, B =‘通过的汽车不少于3台’ 。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率论与数理统计期末考试试题库及答案

概率论与数理统计

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2) (1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为 8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论模拟试题(附答案)

模拟试题(一) 一.单项选择题(每小题2分,共16分) 1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立 (C) 0)(0)(==B P A P 或 (D) AB 未必是不可能事件 2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( ) (A) )1(3p - (B) 3)1(p - (C) 31p - (D) 21 3 )1(p p C - 3.若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立 的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续 4.若随机变量ξ的概率密度为)( 21)(4 )3(2 +∞<<-∞=+- x e x f x π , 则=η( ))1,0(~N (A) 2 3 +ξ (B) 2 3 +ξ(C) 2 3-ξ(D) 2 3 -ξ 5.若随机变量ηξ ,不相关,则下列等式中不成立的是( ) (A) 0),(=ηξCov (B) ηξηξD D D +=+)( (C) ηξξηD D D ?= (D) ηξξηE E E ?= 6.设样本n X X X ,,,21???取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X (B) )1,0(~N X n (C) ) (~21 2n X n i i χ∑= (D) )1(~-n t S X 7.样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量

概率统计试题及答案(本科完整版)

一、 填空题(每题2分,共20分) 1、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 . 2、匣中有2个白球,3个红球。 现一个接一个地从中随机地取出所有的球。那么,白球比红球早出现的概率是 2/5 。 3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时, 06505P(A B )_.__,P(B |A )_.__?==。 4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。 5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >, 必有概率{}P c x c e <<+ =?+?-?e ,c e b b a b c ,c e b b a 6、设X 服从正态分布2 (,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) . 7、设1128363 X B EX DX ~n,p ),n __,p __==(且= ,=,则 8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。则X 的数学期望=)(X E 4.5 。 9、设随机变量(,)X Y 的分布律为 则条件概率 ===}2|3{Y X P 2/5 . 10、设121,,X X Λ来自正态总体)1 ,0(N , 2 129285241?? ? ??+??? ??+??? ??=∑∑∑===i i i i i i X X X Y ,当常数 k = 1/4 时,kY 服从2χ分布。 二、计算题(每小题10分,共70分) 1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率 (2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率 解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则: ABC ABC ABC U U

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

《概率论与数理统计》考试题(含答案)

《概率论与数理统计》考试题 一、填空题(每小题2分,共计60分) 1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则 a )、若B A ,互斥,则=)B -A (p ; b )若B A ,独立,则 =)B A (p ; c )、若2.0)(=?B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只, (1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。 (2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。 (3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 . 4、设随机变量X 服从B (2,0. 8)的 二项分布,则{}==2X p , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- ,=+)(Y X E 8 。 5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 ,成绩超过85分的学生占比}85{≥X P 为 。 其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a ,X 的数学期望=)(X E , Y X 与的相关系数=xy ρ。 体) 16,8(N 7、设161,...,X X 及81,...,Y Y 分别是总的容 量为16,8的两个独立样本,Y X ,分别为样本均值,2 221,S S 分别为样本方

概率论与数理统计试题及答案

一.选择题(18分,每题3分) 1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ) )(A 独立; )(B 不独立; )(C 相容; )(D 不相容. 2. 已知人的血型为 O 、A 、B 、AB 的概率分别是; ;;。现任选4人,则4人血 型全不相同的概率为: ( ) )(A ; )(B 40024.0; )(C 0. 24; )(D 224.0. 3. 设~),(Y X ???<+=., 0, 1,/1),(22他其y x y x f π 则X 与Y 为 ( ) )(A 独立同分布的随机变量; )(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量; )(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为. 则射击次数的数 学期望与方差分别为 ( ) 、 )(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ) )(A 32112110351?X X X ++=μ ; )(B 32129 4 9231?X X X ++=μ ; )(C 321321 6131?X X X ++=μ ; )(D 32141254131?X X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10 )(22 2 12n X i n i χμχ-= ∑=,其 拒域为(1.0=α) ( ) )(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(2 05.02n χχ≥. 二. 填空题(15分,每题3分) 1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则 =?)(B A P . 2. 设随机变量X 的分布律为??? ? ??-+c b a 4.01.02.043 21 ,则常数c b a ,,应满足的条件 ) 为 . 3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率

概率论考题(答案)

2010~2011第一学期《概率论与数理统计》答案 经管类本科 一、选择题(每小题3分,共18分) 1.对于事件B A ,,下列命题正确的是( D ) )(A 如果B A ,互不相容,则B A ,也互不相容 )(B 如果B A ?,则B A ? )(C 如果B A ?,则B A ? )(D 如果B A ,对立,则B A ,也对立 2.设B A ,为随机事件,且()()0, 1P B P A B >=,则必有( A ) ()()()A P A B P A ?= ()()()B P A B P B ?= ()()()C P A B P A ?> ()()()D P A B P B ?> 3.若随机变量X 的分布函数为)(x F ,则=≤≤)(b X a P ( B ) )()()(a F b F A - )()()()(a X P a F b F B =+- )()()()(a X P a F b F C =-- )()()() (b X P a F b F D =+- 4.设随机变量X 服从参数为3的泊松分布,)3 1,8(~B Y ,且X ,Y 相互独立, 则=--)43(Y X D ( C ) 13)(-A 15)(B 19)(C 23)(D 5. 总体2 ~(,)X N μσ, 123,,X X X 为取自总体X 的简单随机样本,在以下总体均值μ的四个无偏估计量中,最有效的是( D ) 1123111 ()236 A X X X μ∧=++ 21311()22 B X X μ∧=+ 3123131()555C X X X μ∧ =++ 4123111 ()424 D X X X μ∧=++ 6. 设12,, ,n X X X ()2n ≥为来自总体()0,1N 的简单随机样本,2S 为样本方差,则下面结论正 确的是( A )

《概率论与数理统计》期末考试试题与答案

《概率论与数理统计》期末考试试题(A ) 专业、班级:姓名:学号: 题号一二三四五六七八九十十一十二总成绩得分 一、单项选择题 (每题 3 分 1.D 2.A 3.B 共 18分) 4.A 5.A6.B 若事件A、B适合P(AB)0 ,则以下说法正确的是(). (A) A 与B 互斥(互不相容); (B) P( A)0 或P(B)0 ; (C) A 与 B 同时出现是不可能事件 ; (1) (D) P(A) 0 , 则 P (B A)0. ( 2)设随机变量X其概率分布为X -1012 P0.20.30.10.4则 P{ X 1.5}()。 (A)0.6(B) 1(C) 0(D)1 2 ( 3) 设事件 A1与 A2同时发生必导致事件A发生,则下列结论正确的是() ( A ) P ( )() (B)P(A) P(A1) P( A2) 1 A P A1A2 ( C) ( )()( D) PA PA1A2P(A)P(A1) P(A2) 1 ( 4) 设随机变量X~N(3, 1),Y ~ N(2,1),且X与Y相互独 立,令Z X2Y 7, 则 Z~(). (A) N (0, 5);(B) N (0,3);(C) N (0, 46);(D) N (0, 54).

(5)设X1,X2,, X n为正态总体 N ( ,2 ) 的一个简单随机样本,其中2, 未知,则()是一个统计量。 (A) n 22(B) n ) 2 X i( X i i1i1 (C) X(D) X (6)设样本X1, X2,, X n来自总体 X ~ N ( ,2 ), 2 未知。统计假设 为 H0:(已知):。 则所用统计量为()00 H 10 (A) U X0 (B) T X0 n S n (C)2( n 1)S2 (D)2 1n2 ( X i) 22 i 1 二、填空题 (每空 3分共15分) 1. P(B) 2. f (x)xe x x0,3e 2 3.1 4.t(9) 0x0 (1)如果P( A) 0, P( B)0, P(A B)P(A),则 P(B A). ( 2)设随机变量X的分布函数为 0,x0, F ( x) (1 x)e x ,x0. 1 则 X 的密度函数 f ( x), P(X2).( 3) 设? 1 , ? 2 , ? 3是总体分布中参数的无偏估计量 , ? a ? 1 2 ? 2 3 ? 3, 当 a ________时, ? 也是的无偏估计量 . ( 4)设总体X和Y相互独立,且都服从N (0,1), X1,X2,X9是来自总体X的 样本, Y1 ,Y2 , Y9是来自总体Y 的样本,则统计量 X 1X 9 U Y92 Y12 服从分布(要求给出自由度)。

相关文档
最新文档