杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施
杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施

地铁或轻轨一般采用直流电力牵引的供电方式,一般接触网(或第三轨)为正极,而走行轨兼作负回流线。由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨对地存在着电位差,回流线对道床、周围土壤介质、地下建筑物、埋设管线存在着一定的泄漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点附近重新归入钢轨,此泄漏电流即称迷流,又称地铁杂散电流。地铁迷流主要是对地铁周围的埋地金属管道、电缆金属铠装外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,它不仅能缩短金属管线的使用寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,甚至酿成灾难性的事故。如煤气管道的腐蚀穿孔造成煤气泄漏、隧道内水管腐蚀穿孔而被迫更换等。另外,地铁迷流同时也对地铁沿线城市公用管线和结构钢筋产生“杂散电流腐蚀”,影响地铁以外沿线公共设施的安全及寿命。本文结合我公司参与的多条地铁线施工和运营维护管理的经验,针对杂散电流腐蚀机理及防护措施方面浅谈管见。

1 杂散电流腐蚀机理

1.1 杂散电流腐蚀机理

地铁迷流对埋地金属管线和混凝土主体结构中钢筋的腐蚀在本质上是电化学腐蚀,属于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生的自然腐蚀一样,都是具有阳极过程和阴极过程的氧化还原反应。即电极电位较低的金属铁失去电子被氧化而变成金属离子,同时金属周围介质中电极电位较高的去极化剂,如金属离子或非金属离子得到电子被还原。地铁直流牵引供电方式形成的迷流及其腐蚀部位如图1所示。图中,I为牵引电流,Ix、Iy分别为走行轨回流和泄漏的迷流。

由图1可得地铁迷流所经过的路径可概括为两个串联的腐蚀电池,即

电池I:A钢轨(阳极区)+B道床、土壤+C金属管线(阴极区);

电池II:D金属管线(阳极区)+E土壤、道床+F钢轨(阴极区)。

当地铁迷流由图1中A、D(阳极区)的钢轨和金属管线部位流出时,该部位的金属铁便与其周围电解质发生阳极过程的电解作用,此处的金属随即遭到腐蚀。概括起来可将发生腐蚀的氧化还原反应分为两种:当金属铁周围的介质是酸性电解质,即pH<7时,发生的氧化还原反应是析氢腐蚀,以H+为去极化剂;当金属铁周围的介质是碱性电解质,即pH≥7时,发生的氧化还原反应是吸氧腐蚀,以O2为去极化剂。

1.2 杂散电流大小

当钢轨为悬浮系统时(指全线钢轨采取对地绝缘,在任何地点不直接接地或通过其它装置接地),虽然钢轨对地采取了一系列措施,但钢轨对地泄漏电阻在工程实施中不可能无限大,一般在5~100Ω·km范围内。同时随着地铁运营时间的推移,由于受到不可避免的污染、潮湿、渗水、漏水和高地应力作用等影响,使地铁车站以及区间隧道中的轨、地绝缘性能降低或先期防护措施失效,势必增大了由走行轨泄漏到土壤介质中的杂散电流。当列车在两牵引变电所间运行时,钢轨电位如图2所示,列车位置处为阳极区,钢轨电位为正,牵引变电所附近为阴极区,钢轨电位为负。钢轨电位产生的原因是牵引回流在钢轨上产生了纵向电压。研究表明,钢轨电位的大小与钢轨泄漏电阻的关系不大,当钢轨对地泄漏电阻在5~100Ω·km范围内变化时,受从牵引变电所至列车位置处的钢轨纵向电压钳制,钢轨对地电位基本不变。杂散电流的大小,就是图2中的阴影区段从钢轨泄漏至地下电流密度的积分,即

2 杂散电流防护措施

从公式(1)中可得出杂散电流的总量基本上只与全线钢轨正电位及钢轨对地泄漏电阻有关,因此降低钢轨电位及增大钢轨泄漏电阻是防护杂散电流的基础;为杂散电流提供至牵引变电所负极的畅通金属通路,尽量减少杂散电流流出金属构件的电流密度,阻止杂散电流对其腐蚀,是防护杂散电流的重要措施。

防护杂散电流一般采取“以防为主,以排为辅,防排结合,加强监测”的综合防护措施,即(1)防:减少回流轨纵向电阻,降低钢轨电位和提高回流轨对地过渡电阻,确保畅通的牵引回流系统,隔离和控制所有的杂散电流泄漏途径,减少杂散电流进入地铁的主体结构、设备及相关的设施;(2)排:在回流轨的整体道床中设置杂散电流收集网,通过杂散电流的收集和排流系统,提供杂散电流返回至变电所负极的金属通路,以减少杂散电流向外泄漏。(3)测:监视和测量杂散电流的大小,为运营维护提供依据,设计完备的杂散电流检测系统。限于篇幅有限,本文结合“防”和“排”两方面内容综合阐述防护杂散电流措施。

2.1降低钢轨电位方案或确保畅通的牵引回流系统措施

在列车运行密度和列车取流一定的情况下,钢轨电位由供电区间回流通路的电阻定。减小回流通路电阻的主要措施是减小牵引变电所间距,保证回流通路畅通,增设辅助回流线,减小牵引回流通路电阻,运营中正线牵引网尽量采用“双边”供电等。

在满足供电负荷、供电质量及工程投资控制要求前提下,可适当调整变电所数量和设置位置,尽量使牵引变电所布置均匀。

减少以钢轨纵向电阻为主的回流系统电阻的措施包括正线钢轨采用重轨,且焊接为无缝长钢轨,若短钢轨间采用螺栓连接,则两根钢轨之间必须加焊一根铜电缆,回流电缆应与钢轨可靠焊接,回流电缆根数留有一定裕量;走行轨间设均流线,平衡上、下行钢轨电流,降低走行轨电位;道岔与辙岔的连接部位通过铜连接引线可靠焊接。

对于车辆段和停车场,根据实际工程条件,通过设置多个回流点,使牵引电流就近回流,减小回流通路电阻,控制产生杂散电流总量。

2.2 增大钢轨泄漏电阻措施

钢轨泄漏电阻的大小与杂散电流成反比,可把保证钢轨有较高泄漏电阻作为轨道交通防护杂散电流根本的措施。

钢轨泄漏电阻主要由下述两方面因素确定:一是钢轨绝缘安装点的绝缘电阻,二是钢轨与道床表面的空隙距离及道床环境条件。当然泄漏电阻也受与钢轨连接电缆绝缘情况、电化区段与非电化区段钢轨隔离效果等影响。

钢轨绝缘安装一般是通过在钢轨与道床间设绝缘垫,紧固螺栓通过绝缘套管安装在道床上等措施实现的,并且钢轨底部与道床之间间隙不得小于《地铁杂散电流防护规程》中的规定。

由于粉尘、潮湿、油污、风沙雨雪(高架和地面区段)等影响,会降低泄漏电阻,使杂散电流增加。因此道床设计中应设计良好的排水方案,运营中应定期打扫,保持道床的清洁,以避免钢轨泄漏电阻降低。

另外与轨道专业配合,设计受外界污染影响少、绝缘水平较高的绝缘安装措施,如在安装点钢轨带绝缘靴套的绝缘安装方案,或整体带玻璃钢(或其他绝缘材料)衬套轨枕的绝缘性能好,便于运营清扫的绝缘安装措施等。

2.3 杂散电流的流通路径控制措施

杂散电流对金属结构的腐蚀主要有4个方面:即钢轨、道床结构钢筋、隧道结构钢筋、地网及地铁外部其他公共设施。杂散电流首先从钢轨泄漏至道床结构,再从道床结构向其他结构如隧道、车站结构泄漏。

利用整体道床内结构钢筋的纵向联通形成电气连续的杂散电流主收集网,为杂散电流提供第一个电气通路,杂散电流沿此通路流向牵引变电所方向,流出收集网后至钢轨,可减少杂散电流由道床向其它结构的泄漏量。

另外在工程条件许可情况下,地下区段道床与隧道(或其他结构间)设置素混凝土层,以增大道床与其他结构间泄漏电阻,减少杂散电流向其他结构泄漏量。

在回流轨下方穿越的金属管线也要进行绝缘处理,避免杂散电流经此泄漏至其他结构。

主收集网不可能收集所有的杂散电流,其它少量杂散电流继续泄漏至隧道或其他结构,利用隧道钢筋(内衬墙钢筋)纵向联通形成电气通路,则成为杂散电流遇到的第二个电气畅通通路(即辅助收集网),并沿此通路至牵引变电所方向,在牵引变电所区域(阴极区)流回至道床钢筋,并流回至钢轨,减少杂散电流向地铁以外泄漏。

由外界引入地铁内或由地铁内引出至地铁外的金属管线均应进行绝缘处理后,方可引入或引出,避免杂散电流经此向地铁外泄漏。

2.4 结构钢筋腐蚀防护措施

金属构件电化学腐蚀防护是控制金属体流出至电介质的电流密度在防护范围之内。主要措施是减少进入金属体的杂散电流量;为金属体提供至电源负极的金属通路,减少杂散电流流出金属表面的电流密度;确定合理的道床、隧道收集网(结构钢筋)表面积,控制杂散电流流出至电介质的密度。

p; 地铁杂散电流防腐蚀对结构钢筋的保护是分层次的,其重要性对地铁结构设施而言,其顺序是隧道钢筋、道床钢筋和钢轨。钢轨是可更换设备,道床钢筋从结构上讲可重修,而隧道钢筋应避免修复。从地铁结构层次上讲,利用腐蚀钝化原理防腐蚀的重点在道床收集网,隧道收集网是作为后备收集网而起作用。因为尽管靠近钢轨的道床收集网的截面积相对隧道收集网要小,在所收集的杂散电流较多而其截面较小的情况下,若能控制道床钢筋处于腐蚀钝化状态,则下层隧道收集网肯定也处于腐蚀钝化状态。即只要道床收集网达到了腐蚀防护要求,下层其他结构设施肯定也没有被杂散电流腐蚀的危险。

利用道床结构钢筋作为收集网的目的:一是减少杂散电流继续向下扩散至隧道、车站和大地等结构的数量;二是由于道床钢筋本身有一定的截面,从而使杂散电流密度较小,而使自身处于腐蚀的钝化状态。因为道床结构钢筋是杂散电流从钢轨上泄漏后遇到的第一道电阻较小的畅通电气通路,可将杂散电流尽量限制在本系统内部,可防止杂散电流继续向本系统以外泄漏。若将道床钢筋纵向焊接及连接形成一层纵向电气通路,并得到经计算确定的截面,使得自道床钢筋流出的电流密度控制在腐蚀钝化状态范围内时,尽管有一定数量杂散电流流出钢筋,但却不会使道床结构钢筋受到腐蚀。

同样的原理,通过对隧道结构钢筋进行焊接及连接形成纵向电气连续通路后,对于从道床钢筋中继续泄漏的杂散电流起到二次收集作用,由于隧道结构钢筋截面更宜做大,从而使其更宜达到腐蚀钝化状态。

2.5 排流柜设置方案

只有当杂散电流从钢筋流出时才对钢筋产生腐蚀,而杂散电流流出的区域集中在阴极区(即在牵引变电所附近),若在牵引变电所处将结构钢筋或其他可能受到杂散电流腐蚀的金属结构与钢轨或牵引变电所负母排相连,由于杂散电流总是走电阻最小的通路,而直接流至牵引变电所,从而在阳极区范围内大大减小了杂散电流从钢筋再扩散至混凝土的可能,减少了杂散电流流出钢筋导致的电化学反应,该方法称为排流法。

排流法一般有将金属结构与钢轨直接在牵引变电所附近相连的直接排流法、加二极管的单向导通排流、加直流电源的强制排流等。但排流法存在如下缺点:当采用排流法时钢轨系统称之为接地系统,当有电流从钢筋沿排流电缆(经二极管)流至负母排时,原来负母排的负

电位变为接近零电位,因钢轨纵向电压的钳制作用使得两牵引变电所间钢轨的最高对地电位增加了一倍,两牵引变电所间几乎成为阳极区,简单看杂散电流总量增加了近4倍。由于杂散电流的总量增加太多,除牵引变电所附近钢筋腐蚀减少外,在区间的钢轨腐蚀将上升。所以说排流法是一把双刃剑,既有其有利的一面,也有其不利的一面。

2.6 盾构区间防护杂散电流方案

盾构法区间隧道迷流设计原理是指将管片内钢筋全部电气联通,并通过铁垫圈将电气连接点良好引出。以后在隧道管片的拼装中通过铁螺栓和螺母将各隧道管片中钢筋全部电气联通,形成一个等电位的法拉第网,对地铁杂散电流进行电气屏蔽,以防止地铁杂散电流向外泄露和对地铁基础结构的腐蚀。但在实际施工过程中,混凝土灌浆于各螺栓之间,仅靠螺栓、螺母的机械连接实现电气上的完全导通连接是很难的,与管片采用绝缘隔离措施相比,反而更加大了杂散电流对盾构管片内部结构钢筋的腐蚀风险。

2.7 高架区段防护杂散电流方案

区间高架桥梁一般采用简支梁,桥梁与桥墩间有橡胶支座,起到了电气上的绝缘,表面上可避免杂散电流扩散,但若在个别区段采用其他桥梁结构,梁墩间没有绝缘支座,或高架车站采用“桥建合一”的结构,就必然形成某“点”的集中接地,成为防护杂散电流的薄弱环节。因此,高架区间要采用梁墩间设置橡胶支座的桥梁结构,且高架车站尽量采用“桥建分离”的结构型式。

2.8 车辆段及停车场杂散电流防护措施

车辆段和停车场均位于地面,经过出入线与正线连接。车辆段内线路主要包括停车列检库、月检库线路和库外线路。库外线路采用碎石道床,无法设置杂散电流收集网,检修库内线路较库外线路防护条件更差,加上车辆段建筑较多,并设有维修基地、生活及工作设备、各类管线较多,运营环境特殊,相对正线来讲,车辆段和停车场是防护杂散电流的薄弱环节。

但车辆段和停车场内车速较低,牵引电流较小,杂散电流泄漏水平较低,基于此特点,车辆段和停车场的防护杂散电流措施一般应从钢轨回流及降低钢轨电位考虑,一般采取措施如下:

(1)降低车辆段(停车场)杂散电流主要泄漏总量措施

车辆段(停车场)与正线间设置绝缘轨缝及单向导通装置,限制正线区段钢轨电流通过车辆段(停车场)内的钢轨回流,可降低车辆段(停车场)内部杂散电流泄漏水平;检修库、停车库内外线路间设置绝缘轨缝及单向导通装置,限制钢轨电流通过库内钢轨泄漏。

(2)就近回流措施

车辆段(停车场)范围较小、线路密集,根据实际工程条件,通过设置多个回流点,使牵引电流就近回流,可起到限制钢轨电流泄漏。

(3)均匀电流、降低钢轨电位的措施

根据车辆段(停车场)内线路密集的特点,可通过均流电缆的适当设置,使钢轨电流均匀分布,达到限制钢轨电流泄漏和降低钢轨电位的作用。

2.9杂散电流的日常维护

地铁运营后,每月应定期对全线轨道线路清扫,保持线路清洁干燥。如果全线钢轨泄漏阻抗普遍降低,简单清扫或维护不能解决问题,则应开启牵引变电所的排流柜,使杂散电流收集网与牵引变电所负极柜单向联通,避免结构钢筋受迷流腐蚀。

如果综合测试系统监测到排流柜电流出现异常增大,且持续时间较长,则是回流系统出现电气导通“断点”或“集中泄漏区段”所引起,应及时检查相应区段回流系统,将“断点”处连接至设计要求标准,或对“集中泄漏点”进行恢复处理,检查钢轨是否为积水、灰尘污染或钢轨安装绝缘设备损坏引起,并及时清扫或对绝缘设备进行维护。

3 结束语

随着我国城市地铁或轻轨交通快速发展,人们越来越重视地铁防护杂散电流,需要指出的是地铁防护杂散电流是个系统工程,需要多个专业在设计、施工和运营共同配合,一方面加强各自专业防护措施,一方面探索更加积极地预防方案。

油气管道的杂散电流腐蚀与防护

油气管道的杂散电流腐蚀与防护 随着我国能源和交通工业的发展,我国油气管道与电力线路、电气化铁路的里程迅速增加。由于地理位置的限制,在油气管道与电力线路、电气化铁路的设计和建设过程中不可避免地出现了并行敷设的情况。由电力线路、电气化铁路产生的杂散电流会对油气管道产生巨大的危害。辽河油田到鞍山化肥厂的天然气管道在投产14个月后就出现多起杂散电流引起的腐蚀穿孔事故,被迫长时间停产,开挖大修。郑州煤气公司在某电厂附近的一段输气管道受电厂杂散电流的影响,也多次出现穿孔泄漏,严重威胁管道和人身的安全。由此可见,杂散电流对油气管道会产生强烈腐蚀作用。因此,开展杂散电流引起的油气管道的腐蚀与防护研究,对保障油气管道的安全运行具有十分重要的意义。 1杂散电流的形成 杂散电流是指在规定电路或意图电路之外流动的电流,又称迷走电流[1]。杂散电流主要表现为直流电流、交流电流和大地中自然存在的地电流3种状态,且各自具有不同的特点。直流杂散电流主要来源于直流电解设备、电焊机、直流输电线路;交流杂散电流主要来源于交流电气化铁路、输配电线路系统,通过阻性、感性和容性耦合在相邻的管道或金属体中产生交流杂散电流,但交流杂散电流对铁腐蚀较轻微,一般为直流腐蚀量的1%;由于地磁场的变化感应出来的地杂散电流,一般情况下只有约2μA/m2,从腐蚀角度看并不重要。

以电气化铁路车辆直流供电牵引系统产生的直流杂散电流是造成油 气管道杂散电流腐蚀的主要原因。 在电气化铁路车辆直流供电牵引系统巾,列车所需要的电流由牵引变电所提供,通过架空线向列车供电,然后经行走轨回流至牵引变电所。理想情况下行走轨电阻为0,行走轨对大地的泄漏电阻无穷大,此时经行走轨回流的电流等于牵引电流,即所有的电流都经行走轨回流至牵引变电所。但实际上行走轨的电阻不为0,当有电流通过时就形成了电位差,并且行走轨对大地的泄漏电阻也不会为无穷大,这就不可避免地造成了部分电流不经行走轨回流,而是流入大地,然后通过大地回流至牵引变电所。若铁路附近有导电性能较好的埋地金属管道(燃气管道、输油管道、供水管道等),则部分电流会选择电阻率较低的埋地金属管道作为电流回流路径,从牵引变电所附近的管道中流出流回牵引变电所。杂散电流形成原理见图1,杂散电流形成原理等效电路见图2。

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施 地铁或轻轨一般采用直流电力牵引的供电方式,一般接触网(或第三轨)为正极,而走行 轨兼作负回流线。由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨 对地存在着电位差,回流线对道床、周围土壤介质、地下建筑物、埋设管线存在着一定的泄 漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点附近重新归入钢轨,此泄漏电流 即称迷流,又称地铁杂散电流。地铁迷流主要是对地铁周围的埋地金属管道、电缆金属铠装 外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,它不仅能缩短金属管线的使用 寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,甚至酿成灾难性的事故。如煤 气管道的腐蚀穿孔造成煤气泄漏、隧道内水管腐蚀穿孔而被迫更换等。另外,地铁迷流同时 也对地铁沿线城市公用管线和结构钢筋产生“杂散电流腐蚀”,影响地铁以外沿线公共设施的安全及寿命。本文结合我公司参与的多条地铁线施工和运营维护管理的经验,针对杂散电流 腐蚀机理及防护措施方面浅谈管见。 1杂散电流腐蚀机理 1.1杂散电流腐蚀机理 地铁迷流对埋地金属管线和混凝土主体结构中钢筋的腐蚀在本质上是电化学腐蚀,属 于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生的自然腐蚀一样,都 是具有阳极过程和阴极过程的氧化还原反应。即电极电位较低的金属铁失去电子被氧化而 变成金属离子,同时金属周围介质中电极电位较高的去极化剂,如金属离子或非金属离子得到 电子被还原。地铁直流牵引供电方式形成的迷流及其腐蚀部位如图1所示。图中,I为牵引 电流,Ix、Iy分别为走行轨回流和泄漏的迷流。 由图1可得地铁迷流所经过的路径可概括为两个串联的腐蚀电池,即 电池I:A钢轨(阳极区)+B道床、土壤+C金属管线(阴极区); 电池II:D金属管线(阳极区)+E土壤、道床+F钢轨(阴极区)。 当地铁迷流由图1中A、D(阳极区)的钢轨和金属管线部位流出时,该部位的金属铁便与其 周围电解质发生阳极过程的电解作用,此处的金属随即遭到腐蚀。概括起来可将发生腐蚀的 氧化还原反应分为两种:当金属铁周围的介质是酸性电解质,即pH<7时,发生的氧化还原反 应是析氢腐蚀,以H+为去极化剂;当金属铁周围的介质是碱性电解质,即pH≥7时,发生的氧化还原反应是吸氧腐蚀,以O2为去极化剂。 1.2杂散电流大小 当钢轨为悬浮系统时(指全线钢轨采取对地绝缘,在任何地点不直接接地或通过其它 装置接地),虽然钢轨对地采取了一系列措施,但钢轨对地泄漏电阻在工程实施中不可能无限大,一般在5~100Ω·km范围内。同时随着地铁运营时间的推移,由于受到不可避免的污染、潮湿、渗水、漏水和高地应力作用等影响,使地铁车站以及区间隧道中的轨、地绝缘性能降 低或先期防护措施失效,势必增大了由走行轨泄漏到土壤介质中的杂散电流。当列车在两牵 引变电所间运行时,钢轨电位如图2所示,列车位置处为阳极区,钢轨电位为正,牵引变电所附 近为阴极区,钢轨电位为负。钢轨电位产生的原因是牵引回流在钢轨上产生了纵向电压。研 究表明,钢轨电位的大小与钢轨泄漏电阻的关系不大,当钢轨对地泄漏电阻在5~100Ω·km范围内变化时,受从牵引变电所至列车位置处的钢轨纵向电压钳制,钢轨对地电位基本不变。杂

杂散电流施工方案

北京地铁15号线一期工程 杂散电流施工方案 编制: 复核: 审核: 中铁隧道集团有限公司 北京地铁15号线一期工程07标段项目经理部 2009年12月

目录 第一章编制说明....................................................... 错误!未定义书签。 编制依据.......................................................... 错误!未定义书签。 适用范围.......................................................... 错误!未定义书签。第二章工程概况....................................................... 错误!未定义书签。 工程范围........................................................... 错误!未定义书签。 杂散电流设计概况.................................................. 错误!未定义书签。第三章施工安排....................................................... 错误!未定义书签。 劳动组织及责任分工................................................. 错误!未定义书签。第四章施工准备....................................................... 错误!未定义书签。 劳动力准备......................................................... 错误!未定义书签。 材料准备........................................................... 错误!未定义书签。 机械准备........................................................... 错误!未定义书签。 技术准备........................................................... 错误!未定义书签。第五章主要施工工艺................................................... 错误!未定义书签。 杂散电流钢筋连接.................................................. 错误!未定义书签。 连接端子、测量端子及排流端子施工要求 .............................. 错误!未定义书签。 杂散电流钢筋焊接.................................................. 错误!未定义书签。第六章综合保证措施................................................... 错误!未定义书签。 建立、建全质量管理保证体系........................................ 错误!未定义书签。 加强思想教育、提高全员质量意识 .................................... 错误!未定义书签。 以制度保证工程质量................................................ 错误!未定义书签。 技术管理体系...................................................... 错误!未定义书签。 制订技术管理办法和制度............................................ 错误!未定义书签。 图纸审查.......................................................... 错误!未定义书签。 技术交底制度...................................................... 错误!未定义书签。 工程检查制度...................................................... 错误!未定义书签。第七章安全保证措施................................................... 错误!未定义书签。 综合保证措施....................................................... 错误!未定义书签。 现场安全施工措施................................................... 错误!未定义书签。第八章施工风险分析及预案............................................. 错误!未定义书签。 施工风险分析....................................................... 错误!未定义书签。 风险对策........................................................... 错误!未定义书签。 应急预案........................................................... 错误!未定义书签。

杂散电流的腐蚀及防护

一、杂散电流干扰方式 杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。其中,以城市和矿区电机车为最甚。它的干扰途径如图10-60 所示。从图中可以划分三种情况: 图10-60 杂散电流干扰示意图 1—供电所2 —架空线3 —轨道电流4 —阳极区5—腐蚀电流6 —交变区 7— 阴极区 1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成 杂散电流电解。 2.在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能 流出。当电流流出时,造成腐蚀。 3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种 程度的阴极保护作用。 以上是一般规律。实际上杂散电流干扰源是多中心的。如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。作用在

管道上的杂散电流干扰电位如图10-61 所示 图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。因属电解腐蚀,所以有时也称电蚀。这是管道腐蚀穿孔的主要原因之一。例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。 随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。其干扰形式如图10-62 和图10-63 所示。其干扰范围与阳极排放电流和阴极保护电流密度成正比。当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。 二、杂散电流腐蚀的特点 1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。大部分属腐蚀原电池型。腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几

拆解工程方案

1.1.拆解工程概述 拆解改造变电所安装工程包括新建安德门站牵引降压混合变电所和既有线3座牵引降压混合变电所、1座降压变电所、4座跟随式降压变电所的设备安装与接线、单体设备调试、所内调试、供电系统调试,以及系统总联调的配合等工作。 1.1.1.变电所拆解改造工程 (1)奥体中心站牵引降压混合变电所内新增40.5kV C-GIS开关柜、DC1500V直流开关柜等设备的运输、仓储、安装和试验调试等。 (2)奥体中心站、小行站变电所供电设备间连接电缆的敷设、接线与试验等。 (3)奥体中心站DC1500V直流电缆(上网电缆、回流电缆)的敷设、接线与试验等。 (4)既有安德门站215馈线回路重新敷设电缆由原212馈线端接出,原2151开关编号改为2121;原216馈线回路重新敷设电缆由原214馈线端接至2141(原2145开关另一端新加上网隔离开关编号为2141),原2145开关编号改为2124。 (5)将小行站进线柜、安德门主变电所向新建安德门站的馈出柜的既有差动保护装置更换为与新建安德门站差动保护装置型号一样的装置,进行安装、调试,换下的差动保护装置作为备品备件。 (6)既有安德门站处三边供电的联跳、闭锁的改造奥体中心站、中胜站双边联跳回路改造: ①拆除既有安德门站与中胜站的双边联跳、隔离开关闭锁回路以及之间的联跳电缆。 ②小行车辆段出入段线电动隔离开关的闭锁回路,也需要按新调整的双边供电关系进行调整和改造。 ③既有安德门站、三山街站、一号线南延段的宁丹路站的隔离开关闭锁回路也需要进行调整和改造。

(7)新建安德门站处的联跳:新建安德门站采用既有车站直流开关设备,双边联跳回路采用强电压常开回路方式,同时对中胜站、奥体中心站既有双边联跳回路由弱电流常闭回路改造为强电压常开回路,由此实现新建安德门站、中胜站、奥体中心的双边联跳。 (8)奥体中心站的联跳和闭锁 ①奥体中心新增直流馈线柜采用既有车站直流设备, 双边联跳回路采用强电压常开回路方式,由此实现奥体中心站与新建线路绿博园站的双边联跳。此处,对于有可能出现的两个不同厂家的情况,由于都是强电压常开回路方式,两厂家可在设计联络时进行接口配合实现。 ②奥体中心站端子柜内的隔离开关闭锁回路部分进行增加改造。 (9)保护整定值的重新调整与调试配合 ①交流系统 安德门主变电所至迈皋桥主变电所之间的车站变电所在“迈皋桥主变电所解列,安德门主变电所支援供电”和“安德门主变电所解列,迈皋桥主变电所支援供电”方式下的交流环网保护定值需重新进行校核、调整。 小行站至奥体中心站的交流环网保护整定需按纳入十号线供电系统内重新整定。 ②直流系统 既有一号线与南延线构成的“新一号线”的直流短路计算需重新计算,直流开关柜相关保护需重新校核并调整。 1.1. 2.环网电缆拆解改造工程 (1)将一号线中华门站35kV两路进线电缆及差动保护电缆由安德门主所拆解,拆解后电缆接至既有安德门站出线端; (2)既有安德门站35kV进线电缆换成型号为240mm2的电缆重新敷设至安德门主所,差动保护电缆不动; (3)安德门主所接中华门站两路进线重新敷设电缆及差动保护电缆接至新建安德门站,路径沿安德门主所至既有安德门站间电缆隧道敷设,再从既有安德门站敷设至新建安德门站,接新建安德门站进线端; (4)小行站原两路进线重新敷设电缆及差动保护电缆接至新建安德门站出

地铁杂散电流施工方案

一、工程概况 火车北站地铁车站为地下二层框架式结构,设计使用年限为100年。为保证结构及设备在使用年限内安全运营,必须对车站杂散电流采取相应措施进行处理,靠可靠电气连接,形成杂散电流主辅收集网,对结构钢筋及盾构管片进行防护。 二、编制依据 2.1 《地铁设计规范》GB50157-2003 2.2 《地铁杂散电流腐蚀防护技术规程》 CJJ49—92 2.3 《成都地铁1号线一期工程施工图设计-火车北站-主体结构与防水第一分册结构》220011-js 三、编制范围 车站结构范围内的杂散电流腐蚀防护工程。 四、总体施工方法 利用整体道床结构钢筋的可靠电气连接,形成杂散电流的主收集网。利用地下车站结构钢筋可靠电气连接,形成杂散电流辅助收集网。在地下车站的两个端头侧墙及道床各引出一测量端子,本车站共设8个测量端子。 五、施工工艺

1.车站结构钢筋焊接 为避免或尽量减少杂散电流对土建结构钢筋的腐蚀,须将车站结构钢筋可靠连接成为一体。具体要求如下: (1)站台层的每个横断面的底板、中板及侧墙内表层横向结构钢筋均应焊接成一闭合圈。 (2)站台层每个结构段的底板、中板及侧墙的内表层所有纵向结构钢筋应电气连续。 (3)底板、中板及侧墙内表层所有的纵向结构钢筋每隔5m(或不小于5m)应与横向结构钢筋圈焊接。 (4)在车站与盾构区间接口的端头井处,站台层侧墙的纵向钢筋应通过端头井的侧墙及端墙的水平筋与圆洞门的钢环(或钢环锚筋)焊接,顶板、中板中的纵向结构钢筋应通过端头井墙中竖向结构钢筋与圆洞门的钢环(或钢环锚筋)焊接,端头井端墙中的水平结构钢筋与竖向结构钢筋应焊接。 (6)车站底板、中板、风道、墙体开孔处的结构钢筋焊接:围绕孔洞的内层(或外层)纵向和横向结构钢筋在交叉点处应焊接,围绕孔洞形成钢筋环。与结构钢筋环相交的横向、纵向结构钢筋均应与结构钢筋环焊接。 (8)在上下行线路下方分别选两根底板表层纵向结构钢筋(垂直钢轨下方)与所有底板横向结构钢筋焊接,此纵向结构钢筋作为排流条。排流条靠端墙端,从人防门框内表面,沿线路纵向引出1.15m

土壤电阻率对埋地管道杂散电流腐蚀影响 的研究进展

Applied Physics 应用物理, 2015, 5(10), 123-130 Published Online October 2015 in Hans. https://www.360docs.net/doc/a213793867.html,/journal/app https://www.360docs.net/doc/a213793867.html,/10.12677/app.2015.510017 Research Progress on Soil Resistivity Affecting Stray Current Corrosion of Buried Pipeline Qiong Feng1, Yaping Zhang1*, Hao Yu1, Lianqing Yu1, Yan Li2 1College of Science, China University of Petroleum (East China), Qingdao Shandong 2College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao Shandong Email: *zhangyp@https://www.360docs.net/doc/a213793867.html, Received: Oct. 12th, 2015; accepted: Oct. 26th, 2015; published: Oct. 29th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/a213793867.html,/licenses/by/4.0/ Abstract Using four-electrode method to measure soil resistivity can decrease the influence caused by non- uniformity of soil compositions. Generally, soil resistivity is inversely proportional to the stray current corrosion. Factors which can affect soil resistivity may make differences to stray current corrosion, such as water content, salt content, porosity, temperature, PH value of soil and the types of salt. Within a certain range, as the water content, water saturation, salinity, temperature and porosity increase, soil resistivity decreases and then stray current corrosion aggravates. However, different types of salt have different influences on stray current corrosion. This paper analyzes how the acidic salt, alkaline salt and the salt containing Cl? affect stray current corrosion, and puts forward the outlook for the research of complex salt types. Keywords Buried Pipeline, Stray Current Corrosion, Soil Resistivity, Environmental Factors 土壤电阻率对埋地管道杂散电流腐蚀影响 的研究进展 封琼1,张亚萍1*,余豪1,于濂清1,李焰2 *通讯作者。

调试施工方案

调试施工方案 8.1调试概述 根据施工范围作业内容,对各个工序的电气和仪表进行调试工作。 其中,电气调试主要有:①仪表单体校验、测试监控;②回路模拟试验;③分系统组态、测试;④分系统开通、试运行;⑥系统联动试运行。 仪表调式主要有:①单体元件性能测试;②二次回路模拟试验;③分系统整组试验;④分系统带电试运行;⑤系统联动试运行。 8.2仪表及电气调试程序和方法 8.2.1仪表调试 8.2.1.1仪表调试基本流程 仪表、自控设备交接试验是自控系统投入运行前必须进行的一项工作,是对设计、产品和安装工作的综合检验,是确认自控系统能否达到设计要求,能否可靠投入运行的关键环节,应遵照以下流程进行。 8.2.1.2 仪表调试执行的技术标准 (见前面列出的施工及验收规范、质量规范。此处略) 8.2.1.3仪表基本调校项目 1)零点、量程调整、精度、变差校验; 2)定值整定、动作、保持、返回特性校验;

3)智能参数设置、功能组态; 4)I/O接口回路校验; 8.2.1.4仪表调试基本方法 1)准备工作 认真熟悉设计院提供的图纸和有关产品技术资料,了解设计要求;熟悉本项目调试工作所执行的规程、规范;对所有调试用仪器、仪表通电检查,保证能正常使用;准备好记录需要的各式试验报告。 2)外观检查 正式调校前,对仪表进行外观检查,应符合下列规定:仪表型号、规格、材质、外形尺寸、测量范围、工作电源符合设计要求;端子、接头、紧固件、附件、合格证、检定证书齐全;无变形、损伤、油漆脱落等缺陷。 3)仪表单体调试基本方法 仪表单体调校前认真阅读仪表说明书,检查智能仪表配置的编程器、专用电缆、附件是否满足使用要求,核定校验用的标准仪器基本误差不超过被校仪表基本误差的1/3。通电前检查电源线、接地线、信号线、通讯线是否连接无误,保险丝是否完好无损,智能仪表插卡位置是否正确,相关的DIP地址开关、跳线设置是否符合设计。仪表校验时,及时填写校验记录,注明校验日期,由校验人、质量检查员、技术负责人签字确认。经校验调整后的仪表应满足下列要求:仪表零位、量程正确;基本误差、变差不超过仪表精度允许的最大误差;指针在整个过程中无抖动、磨擦和跳动现象;电位器和可调节螺丝等可调部件在调校后留有再调整余地;数字显示仪表示值清晰、稳定,无闪烁现象。校验结束后,合格仪表贴上检定合格标记,不合格仪表报业主、监理确认后作退库处理。

地铁站综合接地及杂散电流施工方案

目录

×××站综合接地及杂散电流施工方案 一、编制依据 1、《地铁设计规范》GB50157-2013 2、《交流电气装置的接地设计规范》GB50065-2011 3、《电气装置安装工程接地装置施工及验收标准》GB50169-2006 4、《接地装置工频特性参数的测量导则》DL475-2006 5、《地铁杂散电流腐蚀防护技术规程》CJJ49-92 6、《轨道交通地面装置第2部分:直流牵引系统杂散电流防护措施》GB/ 7、×××站岩土工程勘察报告 8、建筑专业提供的车站附属用房建筑平面图 9、接地装置安装03D501-4标准图集 10、国家、郑州市现行技术标准、规程和规范,相关法规、政策,特别是环保、安全生产、文明施工方面的法规和政策。 二、工程概况 工程概况 ×××站为××城市轨道交通2号线与3号线同期施工T形换乘车站,位于长治路和×××交叉口,2号线车站沿长治路南北方向布置,3号线位于路口东侧沿×××东西向布置。2号线车站主体为明挖地下两层(换乘节点处地下三层)岛式车站,为双柱三跨箱型框架结构,总长m,标准段总宽,总高,顶板覆土约,底板埋深约;3号线车站主体为明挖地下三层岛式车站,为双柱三跨箱型框架结构,总长,标准段总宽,总高,顶板覆土约,底板埋深约。 工程地质和水文地质条件 工程地质 本站场地内钻孔揭露地层主要为第四系全新统、上更新统地层,共3个大层,10个亚层。现分述如下: 第四系全新统广泛分布于表层,主要有人工填土(杂填土、素填土)、粉质黏土、粉土(黏质粉土)及粉细砂、中砂等,该组总厚度17~35m。 (1)人工填土(Q4ml)(层号1):包括杂填土(1-1)和素填土(1-2)。 杂填土(1-1):杂色,干燥,松散,主要由建筑垃圾、沥青路面、碎石块等组成,含少量粘性土,欠压实~稍压实,均匀性差。层厚~。 素填土(1-2):褐黄色,杂色,主要成分为黏质粉土和粉质黏土,夹碎石、砖块,欠压

燃气管道杂散电流腐蚀及防护(新编版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 燃气管道杂散电流腐蚀及防护 (新编版)

燃气管道杂散电流腐蚀及防护(新编版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 一、杂散电流干扰方式 杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。其中,以城市和矿区电机车为最甚。它的干扰途径如图10-60所示。从图中可以划分三种情况:图10-60杂散电流干扰示意图 1—供电所2—架空线3—轨道电流4—阳极区5—腐蚀电流6—交变区7—阴极区 1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。 2.在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流出。当电流流出时,造成腐蚀。 3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。

以上是一般规律。实际上杂散电流干扰源是多中心的。如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。作用在管道上的杂散电流干扰电位如图10-61所示。 图10-61杂散电流干扰电位曲线 埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。因属电解腐蚀,所以有时也称电蚀。这是管道腐蚀穿孔的主要原因之一。例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。 随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。其干扰形式如图10-62和图10-63所示。其干扰范围与阳极排放电流和阴极保护电流密度成正比。当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。 二、杂散电流腐蚀的特点 1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。大部分属腐蚀原电池型。腐蚀电池的驱动电位只有几百毫伏,

地铁车站综合接地及杂散电流施工方案

目录 1.编制依据................................................ 错误!未指定书签。 2.工程概况................................................ 错误!未指定书签。 2.1地理位置........................................... 错误!未指定书签。 2.2设计概况........................................... 错误!未指定书签。 2.3主要工程数量 ....................................... 错误!未指定书签。 3.施工计划................................................ 错误!未指定书签。 3.1施工布置及分段划分.................................. 错误!未指定书签。 3.2机械设备计划 ....................................... 错误!未指定书签。 3.3人员设备配置 ....................................... 错误!未指定书签。 4.综合接地施工方案......................................... 错误!未指定书签。 4.1综合接地系统施工工艺................................ 错误!未指定书签。 4.2综合接地系统各组件相互关系........................... 错误!未指定书签。 4.3综合接地测量放线.................................... 错误!未指定书签。 4.4沟槽开挖........................................... 错误!未指定书签。 4.5垂直接地体打入...................................... 错误!未指定书签。 4.6水平接地体的敷设.................................... 错误!未指定书签。 4.7接地系统组件间焊接.................................. 错误!未指定书签。 4.8降阻剂的敷设及回填.................................. 错误!未指定书签。 4.9接地引上线施工 ..................................................................................... 错误!未指定书签。 4.10接地电阻测试 ....................................................................................... 错误!未指定书签。 4.11关于放热焊接常见问题及解决方案.................................................... 错误!未指定书签。 4.12质量控制注意事项 ............................................................................... 错误!未指定书签。 5.杂散电流施工方案 ............................................................................................ 错误!未指定书签。 5.1施工工艺 ................................................................................................. 错误!未指定书签。 5.2各端子的制作工艺 ................................................................................. 错误!未指定书签。 5.3焊接方式 ................................................................................................. 错误!未指定书签。 5.4车站范围内附属设施 ............................................................................. 错误!未指定书签。

地铁杂散电流腐蚀及其防护措施(通用版)

地铁杂散电流腐蚀及其防护措 施(通用版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0219

地铁杂散电流腐蚀及其防护措施(通用版) 摘要:地铁主体结构钢筋、电气设备、地铁附近的埋地管线经常遭受地铁杂散电流的电化学腐蚀。这种杂散电流腐蚀减少埋地管线使用寿命,降低地铁主体结构的耐久性和强度,有时甚至造成灾难性的事故;同时造成一定的经济损失。讨论了地铁杂散电流的危害,并给出了较为详细的减少杂散电流及其防护的方法。关键词:地铁;杂散电流;防护;监测 1概述 地铁具有运量大、安全舒适、运输成本低等优点,且与地面的交通工具互不干涉,因此成为解决城市交通拥挤紧张状态的有效途径。目前地铁列车牵引动力一般用直流电,由设置在沿线的牵引变电所通过架空线或第三轨向列车馈送电量,并利用走形轨作为回流线路。直流供电的地铁系统的走形轨本身具有电阻且走形轨对地做不到完

全绝缘,所以有一部分电流从走形轨泄漏到大地。这部分从走形轨漏出的电流被称为杂散电流又叫迷流。 杂散电流从走形轨漏出后,经过地铁的道床流入大地,然后从大地流回钢轨回流点。若地铁附近有导电性能较好的埋地金属管线(如自来水管、煤气管道、电缆等),则有一部分杂散电流选择电阻率较低的埋地金属管线作为流通路径,在变电所附近从金属管线中流出流回变电所。对于走形轨杂散电流是在远离变电所的地方流出,对于埋地金属管线杂散电流是从变电所附近的部位流出,由于土壤或其它介质的作用,金属体有电流流出的部位发生电解,使金属体遭受电化学腐蚀。这种电化学反应易腐蚀地铁钢轨、地铁主体结构钢筋、地铁线路附近的埋地金属管线,减少埋地管线使用寿命,降低地铁主体结构的耐久性和强度,有时甚至造成灾难性的事故。钢轨埋设在地表面,易于发现损坏状况,且便于更换,所以杂散电流腐蚀对其的危害不是很大;但由于地铁主体结构钢筋和埋地金属管线埋设在地下,其腐蚀情况不易察觉,所以杂散电流腐蚀对地铁主体结构钢筋和埋地金属管线的腐蚀危害是很大的。例如从20世纪70年代开始运行

接地施工方案

接地施工方案 一.工程概况 ×××××车站接地网施工面积达3986.5平方,主要为水平接地体(50*5紫铜排)、垂直接地体(Φ50*5 2.5m紫铜管)及非磁性接地引出装置构成.接地电阻值按设计要求必须小于0.5欧姆.在施工结束后,如果实测结构达不到要求,则必须采取相应的降阻方案予以补救,直至接地电阻值达到设计要求为止. 二.接地网施工原则 1.综合接地网施工在保证达到设计要求,设备安全运行可靠性基础上,应尽量减少投资,降低施工成本. 2.在综合接地系统施工时,应兼顾杂散电流腐蚀防护的要求.当接地施工与杂散电流腐蚀防护发生矛盾时,优先考虑接地设计要求. 3.综合接地系统施工后应同时满足变电所设备、弱电设备及其他需接地的车站设备对接地的要求. 4.本站单独设置1个接地网,接地电阻要求≦0.5Ω.本接地网面积为3986.5平方米,根据该站的地质资料,底版下岩土电阻率的平均值为40.42欧.米,经计算接地电阻值R=0.32欧姆,满足设计要求.若实测结构达不到要求,则必须采取相应的降阻方案予以补救,直至接地电阻值达到设计要求为止. 5.本站设变电所设备接地引出线两组,弱电设备接地引出线一组,每组引出线的距离满足沿接地导体的距离不小于20米的要求.

6.每组接地引出线为三根,其中一根为备用.接地引出线应妥善保护,不得丢失、断裂. 7.综合接地系统的施工应充分考虑接地引出线穿越地下车站结构地板时的防水问题.可以采用防水套管。 8.所有铜材均选用紫铜. 9.接地网施工应该在结构地板施工前进行,必须严格检查接地网各连接点,严防焊头脱焊、虚焊. 10.为配合车站施工,接地网敷设应分段进行.在阶段性施工结束后,应对完工部分接地网进行接地电阻值测量,以此演算出整体接地网的接地电阻值. 三、施工准备 1.工具及材料准备 1.模具 2.焊药 3.放热焊接专用工具箱 4.气焊 5.铁锹 6.接地电阻测试仪 7.洛阳铲 8.冲击钻 9. 切割机10.水钻11.石棉12.隔热手套 13.白灰14.铜排15.铜管16.非磁性接地引出装置 17.皮尺18 硅橡胶 所有材料必须进行报审,符合要求后方可使用 2.人员准备 在指挥部领导下,共需施工人员12名,其中土建人员10名,主要负责接地沟槽开挖,铜排、铜管敷设,接地沟槽回填等土建工作;另需2名放热焊接专业技术人员,主要负责铜排、铜管焊接、接地电阻检测

[浅谈,电流,腐蚀,其他论文文档]浅谈杂散电流腐蚀机理及防护措施

浅谈杂散电流腐蚀机理及防护措施 摘要详细阐述了地铁杂散电流的形成机理及主要的防护措施。 关键词杂散电流;腐蚀;直流供电;轻轨交通 地铁或轻轨一般采用直流电力牵引的供电方式,一般接触网(或第三轨)为正极,而走行轨兼作负回流线。由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨对地存在着电位差,回流线对道床、周围土壤介质、地下建筑物、埋设管线存在着一定的泄漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点附近重新归入钢轨,此泄漏电流即称迷流,又称地铁杂散电流。地铁迷流主要是对地铁周围的埋地金属管道、电缆金属铠装外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,它不仅能缩短金属管线的使用寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,甚至酿成灾难性的事故。如煤气管道的腐蚀穿孔造成煤气泄漏、隧道内水管腐蚀穿孔而被迫更换等。另外,地铁迷流同时也对地铁沿线城市公用管线和结构钢筋产生“杂散电流腐蚀”, 影响地铁以外沿线公共设施的安全及寿命。本文结合我公司参与的多条地铁线施工和运营维护管理的经验,针对杂散电流腐蚀机理及防护措施方面浅谈管见。 1 杂散电流腐蚀机理 1.1 杂散电流腐蚀机理 地铁迷流对埋地金属管线和混凝土主体结构中钢筋的腐蚀在本质上是电化学腐蚀,属于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生的自然腐蚀一样,都是具有阳极过程和阴极过程的氧化还原反应。即电极电位较低的金属铁失去电子被氧化而变成金属离子,同时金属周围介质中电极电位较高的去极化剂,如金属离子或非金属离子得到电子被还原。地铁直流牵引供电方式形成的迷流及其腐蚀部位如图1所示。图中,I为牵引电流,Ix、Iy分别为走行轨回流和泄漏的迷流。 由图1可得地铁迷流所经过的路径可概括为两个串联的腐蚀电池,即 电池I:A钢轨(阳极区)+B道床、土壤+C金属管线(阴极区); 电池II:D金属管线(阳极区)+E土壤、道床+F钢轨(阴极区)。1.2 杂散电流大小 2 杂散电流防护措施 从公式(1)中可得出杂散电流的总量基本上只与全线钢轨正电位及钢轨对地泄漏电阻有关,因此降低钢轨电位及增大钢轨泄漏电阻是防护杂散电流的基础;为杂散电流提供至牵引变电所负极的畅通金属通路,尽量减少杂散电流流出金属构件的电流密度,阻止杂散电流对其腐蚀,是防护杂散电流的重要措施。2.1降低钢轨电位方案或确保畅通的牵引回流系统措施

地铁杂散电流腐蚀及其防护措施(新编版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 地铁杂散电流腐蚀及其防护措 施(新编版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

地铁杂散电流腐蚀及其防护措施(新编版) 摘要:地铁主体结构钢筋、电气设备、地铁附近的埋地管线经常遭受地铁杂散电流的电化学腐蚀。这种杂散电流腐蚀减少埋地管线使用寿命,降低地铁主体结构的耐久性和强度,有时甚至造成灾难性的事故;同时造成一定的经济损失。讨论了地铁杂散电流的危害,并给出了较为详细的减少杂散电流及其防护的方法。关键词:地铁;杂散电流;防护;监测 1概述 地铁具有运量大、安全舒适、运输成本低等优点,且与地面的交通工具互不干涉,因此成为解决城市交通拥挤紧张状态的有效途径。目前地铁列车牵引动力一般用直流电,由设置在沿线的牵引变电所通过架空线或第三轨向列车馈送电量,并利用走形轨作为回流线路。直流供电的地铁系统的走形轨本身具有电阻且走形轨对地做不到完

全绝缘,所以有一部分电流从走形轨泄漏到大地。这部分从走形轨漏出的电流被称为杂散电流又叫迷流。 杂散电流从走形轨漏出后,经过地铁的道床流入大地,然后从大地流回钢轨回流点。若地铁附近有导电性能较好的埋地金属管线(如自来水管、煤气管道、电缆等),则有一部分杂散电流选择电阻率较低的埋地金属管线作为流通路径,在变电所附近从金属管线中流出流回变电所。对于走形轨杂散电流是在远离变电所的地方流出,对于埋地金属管线杂散电流是从变电所附近的部位流出,由于土壤或其它介质的作用,金属体有电流流出的部位发生电解,使金属体遭受电化学腐蚀。这种电化学反应易腐蚀地铁钢轨、地铁主体结构钢筋、地铁线路附近的埋地金属管线,减少埋地管线使用寿命,降低地铁主体结构的耐久性和强度,有时甚至造成灾难性的事故。钢轨埋设在地表面,易于发现损坏状况,且便于更换,所以杂散电流腐蚀对其的危害不是很大;但由于地铁主体结构钢筋和埋地金属管线埋设在地下,其腐蚀情况不易察觉,所以杂散电流腐蚀对地铁主体结构钢筋和埋地金属管线的腐蚀危害是很大的。例如从20世纪70年代开始运行

相关文档
最新文档