复合材料的分层缺陷

复合材料的分层缺陷
复合材料的分层缺陷

复合材料的分层缺陷

引言

目前被广泛用于飞机承力构件的纤维增强树脂基复合材料(CFRP)主要是层合板与层合结构。在层合板的制造过程中,常由于许多不确定的因素,使复合材料结构发生分层、孔隙、气孔等等不同形式的缺陷;同时,复合材料层合板在装配与服役过程中所受到低能冲击很容易引发各种形式的损伤。由于增强纤维铺设方向的不一致常导致铺层间刚度的不匹配,引发较高的层间应力,而层间应力的主要传递介质是较弱的树脂基体,因此对于复合材料层合板,分层是其主要的损伤形式。有报导统计,复合材料层合板在加工、装配和使用过程中产生的分层损伤,占缺陷件的 50%以上[1]。

分层常存在于结构内部,无法根据表面状态检测出来,并且分层的存在极大地降低了结构的刚度,特别在压缩载荷作用下,由于发生局部屈曲而导致分层扩展,使结构在低于其压缩强度时发生破坏。在飞机研制与制造过程中,复合材料层合板的分层损伤问题一直是难以解决的结构问题之一,也是影响 CFRP 在结构组分中应用的主要限制因素。因此,如何充分地结合试验测试,利用数值模拟的方法评估分层的许和容限,成为决定飞机结构综合性能的亟待解决的关键问题。

1.1 分层产生的原因

Pagano 和 Schoeppner[2]根据复合材料构件的形状,将分层产生的原因分为

两类。第一类为曲率构件,工程中常见的曲率构件包括扇形体、管状结构、圆柱形结构、球形结构和压力容器等;第二类为变厚度截面,工程中常见于薄层板与

补强件连接区域、自由边界处、粘合连接处及螺栓接合处等。在上述结构件中,临近的两铺层极易在法向和剪切向应力作用下发生脱胶和形成层间裂纹。

以外,温湿效应、层板制备和服役状态等亦是分层产生的原因。由于纤维与树脂的热膨胀系数以及吸湿率均存在差异,因此,不同铺层易在固化过程产生不同程度的收缩并在吸收湿气后产生不同程度的膨胀,不同程度的收缩与膨胀所产生的剩余压力是导致分层的源头之一[3, 4]。在层合板的制备过程中,由于手工铺设质量具有分散性,极易形成富树脂区,进而引发树脂固化时铺层间的收缩程

度差异,使层间具有较低的力学特性,极易形成分层 [5,6]。在服役过程中,低 速冲击所产生的横向集中力是层合板结构形成分层的重要原因之一。 冲击引发的 临近铺层间的内部损伤、层合板制造过程中工具的掉落、复合材料部件的组装及 维修以及军用飞机及结构的弹道冲击等均会引发层间分层。

1.2分层的种类

[5, 6]将分层分为内部分层(Internal delaminations)和浅表分层

(Near-surface delaminationS 两类。其中,内部分层源自层合板的内部铺层,由 于树脂裂纹和铺层界面间相互作用而形成,它的存在会降低结构件的承载能力。

特别是在压缩载荷作用下,层合板的弯曲行为受到严重影响(如图 1)。虽然分 层将层合板分为两个部分,但是由于两个子层板变形间的相互作用, 层合板呈现 相似的偏转状态,发生整体屈曲。

浅表分层产生于层合板接近表面的浅层位置, 呈现出比内部分层更为复杂的 分层行为。分层区域的变形受到厚子板的影响相对更小,浅表处的分层部分并不 定受较厚的子板的牵制而变形,因此对于浅表分层,不仅需要考虑浅表分层的 扩展,还需要考虑分层子板的局部稳定性。根据载荷形式及分层状态可将浅表分 层分为如图2所示的种类。 Bolotin a)

hl

图1内部分层及对结构稳定性的影响

图2浅表分层的种类

在分层产生后,内部分层和浅表分层在静承载和疲劳载荷作用下可能发生分 层扩

展,层合板的强度和稳定性明显下降。确定分层缺陷的形式对复合材料结构 的完整性是十分层重要的。

1.3分层的微观结构

在微观尺度下,层间裂纹扩展后将在裂纹前缘形成损伤区域。 根据树脂的韧

性和应力水平(I 型,II 型,山 型和混合型,如图3所示),损伤区域的尺寸 和形状呈现不同的状态。剪切载荷下裂纹尖端应力场的衰减较缓慢,因此 和III 型裂纹尖端

的损伤区域比I 型区域广。此外,受树脂基体的影响,脆性 与韧性树脂基体的损伤状态具有明显的区别。

在脆性树脂体系下,I 型裂纹尖端的损伤区域会发生微裂纹的合并和生长以 及纤维

一树脂间的脱胶现象,上述现象都会诱发裂纹前进,其中,脱胶行为的发

生常伴随着纤维桥接和纤维断裂现象的发生。而对于剪切模式的

II 型和III 型 分层,裂纹前缘处的微裂纹发生合并的现象,并与铺层角度呈 45°方向扩展, 直至到达富树脂区域。界面处微裂纹的合并在纤维间的树脂区域呈现锯齿状, 如 图4所示。而对于韧性材料体系,裂纹前缘的塑性变形推进裂纹扩展,呈现出 韧性断裂并伴随层间脱层现象的发生[7]

f) n Liigc hucklcii iivith ^ccoiidtify trick

II 型 张开型分空 fl > Open in tension A

2厂7 bl 张幵的屈曲型分星 b'l Open buck led

17》Ckiscti in

lunsion 2仆.

2h r 计边第庸曲型命层 ei F4gc buckled 二

A-

11)阖^^的叩曲乜专打』 出 Closed bu^kkd 2k 7 :次裂紋的边嫌砺曲刮分层

mi. j

图3 I型、II型和III型裂纹拓展模式

a)____________

b)

图4层间II型分层的扩展模式:(a)裂纹尖端处微裂纹的形成;(b)微裂

纹的生长及张开;(C)微裂纹的合并及剪切尖端的形成

2准静态下分层行为预测方法

分层力学由前苏联的固体物理学家Obreimoff (1894-1981)最先着手研究,

1930年,他在题名“The Splitting Strength of Mica”⑹ 的论文中详细讨论了层

间断裂韧性并研究了在剪切力作用下云母试样的分层现象。时至今日,分层的力学问题在吸引重多科研工作者兴趣的同时,已取得了突出的成果,分层行为的预测方法发展成为强度理论方法、断裂力学方法和损伤力学方法等三类。

2.1强度理论方法

强度理论方法是研究分层问题的传统方法,是以结构或材料抵抗损伤发生的

能力为基础,通过将材料内部的节点应力与界面强度的大小进行比较来判断界面是否发生分层。该预测分层损伤的方法由Whitney等[9]首先提出;在进一步

应用平均应力准则的基础上,Kim等[11]对受拉、压载荷作用下的层合板的分层产生时的临界载荷值进行了预测。但是由于不连续铺层端部易出现应力奇异, 应力准则方法高度依赖网格尺寸;且由于平均应力准则或点应力准则都引入了特征长度的概念,而特征长度并没有很强的理论基础,使该方法不能够准确地预测

分层扩展行为[12] 0

2.2线弹性断裂力学方法

断裂力学方法通过计算裂纹尖端应力场与裂纹尖端张开位移来评价界面的损伤状态。在忽略材料非线性的前提下,可以采用线弹性断裂力学方法(LEFM)有效地预测分层扩展状态,该方法的核心内容为裂纹尖端能量释放率的计算。计

算应变能释放率的常用方法包括虚裂纹扩展技术(VCCT)、J积分、虚裂纹扩张和刚度微分方法等,通过比较应变能释放率分量的组合式与某临界值间的关系, 可以对分层的状态进行预测。

2.3损伤力学方法

损伤力学方法是通过引入微缺陷 /微裂纹的面积等形式的损伤变量来预测界面处分层状态,相比断裂力学方法,该方法不仅可以预测已存在裂纹的扩展状态,更重要的是,可以预测新裂纹的产生。以内聚力理论为基础,该方法考虑了

复合材料基体与增强相间以化学反应的形式生成的一层界面物质层,以界面参数的形式,充分地反映了界面物质层的模量、强度和韧性等材料参数。

内聚力裂纹模型由Dugdale [13]和Barenblatt [14]首次提出:材料在屈服应

力的作用下,会在裂纹前缘形成薄的塑性区域,在该区域范围内的裂纹表面有应力作用,此作用力为“内聚力”;而与之相对的裂纹表面不受任何应力作用

的区域为断裂区(如图 5所示)。

虽然内聚力模型属于局部损伤模型[15],对网格具有依赖性,但由于其支

持网格间的相互独立,因此可以方便地实现网格的充分细化,达到准确计算的目

的。采用内聚力模型方法可以同时预测分层的产生和扩展,可以同时完成损伤容

限和强度分析。

参考文献:

1王雪明 , 谢富原 , 李敏 , 王菲 , 张佐光 . 热压罐成型复合材料构件分层缺陷

影响因素分析

. 第十五届全国复合材料学术会议 . 2008

2N. J. Pagano, G. A.

Schoeppner. Delamination of polymer matrix composites:problems and

assessment,(Ed.) Anonymous Kelly, A.; Zweben, D., Oxford (UK).2000

3T. E. Tay, F. Shen. Analysis of delamination growth in laminated composites withconsideration for residual thermal stress effects. Journal of Composite Materials.2002, 36(11):1299~1320

4 A. S. Crasto, R. Y. Kim. Hygrothermal influence on the free -edge delamination

of composites under compressive loading, In: Composite Materials: Fatigue and Fracture 6, (Ed.) Anonymous Armanios, E.A., Philadelphia. 1997:381~393

5V. V. Bolotin. Delaminations in composite structures: Its origin, buckling, growth and stability. Composites Part B-Engineering. 1996, 27(2):29~145

6V. V. Bolotin. Mechanics of delaminations in laminate composite structures.Mechanics of Composite Materials. 2001, 37(-56):367~380 7W. L. Bradley, C. R. Corleto, D. P. Goetz. Fracture physics of delamination of composite materials. AFOSR-TR-88-0020. 1987

8N. Blanco. Variable mixed-mode delamination in composite laminates under fatigue conditions: testing and analysis. PhD Thesis, University of Girona.

2005

9I. W. Obreimoff. The splitting strength of mica. Proceedings of the Royal Society of London A. 1930, 127:290-297

10J. M. Whitney, R. J. Nuismer. Stress Fracture Criteria for Laminated Composite Containing Stress Concentrations. Journal of Composite Materials. 1974, 8: 253-265

11R. Y. Kim, S. R. Soni. Experimental and Analytical Studies on the Onset of Delamination in Laminated Composites. Journal of Composite Materials. 1984,18: 70-80

12Z. Petrossian, M. R. Wisnom. Prediction of delamination initiation and growth from discontinuous plies using interface elements. Composites Part A. 1998, 29A:503-515

13D. S. Dugdale. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids. 1960, 8:100-104

14G. Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture.Advances in Applied Mechanics. 1962, 7:55-129

15Z. P. Ba?ant, M. Jir d seNonlocal integral formulations of plasticity and damage:survey of progress. J. Engineering Mechanics. 2002, 128:11-19149

复合材料界面与设计

先进聚合物复合材料界面设计与表征进展 姓名:卢刚班级:材研1005 学号:104972100244 摘要:本文简述了界面的形成与作用机理,着重介绍了聚合物基复合材料界面改进的几种方法。 关键词:聚合物;复合材料;界面 Abstract:This paper briefly describes the formation of the interface and the mechanism of action,mainly introduces some methods about the UI improvement of the polymer-based composites. 1引言 聚合物基复合材料是由纤维和基体结合为一个整体,使复合材料具备了原组成材料所没有的性能,并且由于界面的存在,纤维和基体所发挥的作用,是各自独立而又相互存在的。 界面是复合材料组成的重要组成成分,它的结构与性能,以及粘合强度等因素,直接关系到复合材料的性能。所以,复合材料界面问题的研究有着十分重要的意义。 现代科学的发展为复合材料界面的分析表征提供了强有力的手段。扫描电镜、红外光谱、紫外光谱、光电子能谱、动态力学分析、原子粒显微镜等,在复合材料界面分析表征中得到充分利用,为揭示界面的本质、丰富界面的理论做出了重要贡献。 2界面的形成与作用机理 2.1界面的形成 复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段:第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。

复合材料的界面改性

界面及界面改性方法 界面结合强度低,则增强纤维与基体很容易分离,在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象,起不到增强作用;但界面结合强度太高,则增强纤维与基体之间应力无法松弛,形成脆性断裂。 在研究和设计界面时,不应只追求界面粘结而应考虑到最优化和最佳综合性能。 1、聚合物基复合材料界面 界面结合有机械粘接与润湿吸附、化学键结合等。 大多数界面为物理粘结,结合强度较低,结合力主要来自如色散力、偶极力、氢键等物理粘结力。 偶联剂与纤维的结合(化学反应或氢键)也不稳定,可能被环境(水、化学介质等)破坏。一般在较低温度下使用,其界面可保持相对稳定。增强剂本身一般不与基体材料反应。 聚合物基复合材料界面改性原则: 1)在聚合物基复合材料的设计中,首先应考虑如何改善增强材料与基体间的浸润性。一般可采取延长浸渍时间,增大体系压力、降低熔体粘度以及改变增强体织物结构等措施。2)适度的界面结合强度 3)减少复合材料中产生的残余应力 4)调节界面内应力和减缓应力集中 聚合物基体复合材料改性方法 1、颗粒增强体在热塑性聚合物基体加入两性相溶剂(增容剂),则能使液晶微纤与基体间形成结合良好的界面 2、纤维增强体复合材料界面改善 a)纤维表面偶联剂 b)涂覆界面层 c)增强体表面改性 2、金属基复合材料界面 金属基体在高温下容易与增强体发生不同程度的界面反应,金属基体多为合金材料,在冷却凝固热处理过程中还会发生元素偏聚、扩散、固溶、相变等。 金属基复合材料界面结合方式有化学结合、物理结合、扩散结合、机械结合。总的来讲,金属基体复合材料界面以化学结合为主,有时也会出现几种界面结合方式共存。 金属基体复合材料的界面有3种类型:第一类界面平整、组分纯净,无中间相。第二类界面不平直,由原始组分构成的凸凹的溶解扩散型界面。第三类界面中含有尺寸在亚微米级的界面反应物。多数金属基复合材料在制备过程中发生不同程度的界面反应。 金属基复合材料的界面控制研究方法: 1)对增强材料进行表面涂层处理在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应的阻挡层作用。 2)选择金属元素改变基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应。尽量避免选择易参与界面反应生成脆硬界面相、造成强界面结合的合金元素 3)优化制备工艺和参数金属基体复合材料界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应的有效途径。 3、陶瓷基复合材料的界面 陶瓷基体复合材料指基体为陶瓷材料的复合材料。增强体包括金属和陶瓷材料。界面结合方式与金属基体复合材料基本相同,有化学结合、物理结合、机械结合和扩散结合,其中以化学结合为主,有时几种结合方式同时存在。 陶瓷基体复合材料界面控制方法

碳纤维增强复合材料分层缺陷的检测研究

碳纤维增强型复合材料分层缺陷的检测研究 贾继红【1】,许爱芬【1】,路学成【2】,谢霞【2】 摘要:碳纤维增强型复合材料由于其高温下仍保持高硬度、高强度,质量轻等 性能被广泛应用于军事工业,但复杂的制造过程使得缺陷不可避免并影响使用。本 文采用正交小波对碳纤维复合材料的探伤信号进行多尺度分析,通过对小波基、分 解层数地选取以及对细节信息地处理和分析,总结出判定分层缺陷的损伤程度的方 法,使得材料在失效前被提早发现。实验表明该方法有效。 关键词:碳纤维;复合材料;小波分析;无损检测 Tisting Study On Lamination Of Carbon fibrerein forced composite material Jia Ji Hong[1],Xu Ai Fen[1],Lu Xue Cheng[2],Xie Xia[2] Abstract: Carbon fibrerein Composite materials was widely used in war industry for keeping high-hardness、high-strength,and light weight etc,but the defect could not be helped after complicated manufacturing,and influenced use. Applied the orthogonal wavelet to explore carbon fibre reinforced composite material for the multiple-dimensioned analysis, put forward a method for estimating damaging degree by selecting basic wavelet、decomposing layer-number and detail signal processing. It’s advantage is that prevent the materal from invalidating,,and this method was proved effective. Key words:Carbon fibrerein ;Composite materials;Wavelet analys;nondestructive test 1.引言 近年来,碳纤维增强型复合材料在工业甚至国防建设中有了长足发展,特别是在飞机制造上,机体结构的复合材料化程度是衡量飞机先进性的一个重要指标。然而,碳纤维复合材料是复杂的各项异性多相体系,其质量存在离散性,成型过程与服役条件极其复杂,环境控制、制造工艺、运输以及操作等都可能造成材料缺陷【2】,使得结构失效。因此,结构材料的无损检测(NDT)无论是在制造上还是在实时应用上都显得尤为重要。 分层缺陷是碳纤维复合材料中最常见的缺陷形式,复合材料层合板在压缩载荷作用下将依次发生脱粘分层、分层扩展、再屈曲、最后压缩破坏。含分层损伤的复合材料层合板在面内压缩载荷作用下,其圆形分层缺陷上下端点的局部区域内材料受横向拉应力作用为主;分层缺陷大小对复合材料层合板的抗压强度和屈曲临界载荷影响显著;分层缺陷大小对复合材料层合板的压缩弹性模量影响不显著;对于4.40 mm厚复合材料层合板,当分层缺陷尺寸达到孔隙30 %就要考虑修补【3】。 超声检测是目前无损检测中应用最广泛的一种。在超声缺陷检测中,回波信号通常是一种被探头中心频率调制的宽带信号,该信号是属于时频有限的非平稳信号,因此选用具有时频局部放大能力的小波变换技术对信号进行处理和分析非常适宜。

Abaqus中复合材料地累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。

图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19.1.1-1 中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。 网格依赖性 在连续介质力学中,通常是根据应力-应变关系建立材料本构模型。当材料表现出导致应变局部化的应变软化行为时,有限元分析的结果带有强烈的网格依赖性,能量的耗散程度取决于网格的精简程度。在Abaqus中所有可使用损伤演化模型都使用减轻网格依赖性的公式。这是通过在公式中引入特征长度来实现的,特征长度作为一个应力-位移关系可以表达本构关系中软化部分,它与单元尺寸有关系。在此情况下,损伤过程中耗散的能量不是由每个单位体积衡量,而是由每个单位面积衡量。这个能量值作为另外一个材料参数,用来计算材料发生完全损伤时的位移。这是与材料断裂力学中临界能量释放率的概念一致的。此公式确保了合适能量的耗散以及最大程度减轻网格的依赖。

木塑复合材料界面改性

木塑复合材料界面改性 摘要:介绍了聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯制备的木塑复合材料界面改性的研究进展,阐述了界面改性对木塑复合材料性能的影响,并对木塑复合材料的应用前景进行了展望。 木塑复合材料是近年来兴起的环保型复合材料,由聚合物基体和木纤维(木粉、竹粉、稻壳、秸秆等)按一定比例加工而成。制备木塑复合材料的聚合物基体有热固性聚合物和热塑性聚合物,而热塑性聚合物可回收利用、连续生产,是制备木塑复合材料的主要聚合物基体。常用的热塑性聚合物有聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)等。由于热塑性木塑复合材料中木纤维的填充量较高,聚合物基体与木纤维之间的界面相容性较差,影响了木塑复合材料的力学性能;此外,氢键的作用也导致木纤维之间的作用力增强,从而影响木纤维在聚合物基体中的分散。因此如何改善聚合物基体与木纤维之间的界面相容性是制备性能优良的木塑复合材料的关键。木塑复合材料的界面改性主要通过改性木纤维或添加界面改性剂的方法进行。木纤维的改性包括物理改性和化学改性。物理改性(如干燥、交联)的主要作用是增强纤维素表面与聚合物基体的啮合;化学改性主要是将纤维素表面的羟基反应掉,形成化学键,如将木纤维表面的羟基进行乙酰化以降低木纤维的表面活化能,或利用相容剂的羧基或酰基与纤维素中的羟基发生酯化反应[1],如马来酸酐接枝PP(PP-g-MAH)、异氰酸酯、氯化苯甲酰等。从改性效果来看,化学改性方法明显优于物理改性方法。添加界面改性剂改善木塑复合材料界面相容性是使用较多的方法。界面改性剂通常一端含有极性基团,另一端含有非极性基团。极性基团能与木纤维的极性部分亲和,而非极性基团则和极性较弱的聚合物基体亲和。界面改性剂主要是起桥梁的作用,通过降低两相间的界面能,促进木纤维在树脂相中的分散,降低木纤维之间的凝聚力,提高聚合物基体的分散能力;并且加强了高分子链与木纤维间的机械缠结以增强两者的界面亲和力,从而提高复合材料的力学性能。常用的界面改性剂有马来酸酐接枝聚烯烃、硅烷偶联剂、钛酸酯、铝酸酯等[2]。木塑复合材料的界面改性方法多种多样。木纤维的改性或界面改性剂的合成可以在加工木塑复合材料之前独立进行,也可以在加工过程中原位进行,从工业化生产的角度来看,越简单的界面改性方法越有利于降低成本和推广应用。 1热塑性木塑复合材料界面改性的研究进展 1.1PP基木塑复合材料的界面改性 PP是常用的制备木塑复合材料的聚合物之一,但它是非极性聚合物,与木纤维的界面相容性较差。PP-g-MAH是常见的PP基木塑复合材料的界面改性剂[3-5],因为马来酸酐价格便宜,界面改性效果良好,而且PP-g-MAH可采用反应性挤出,生产效率高。PP-g-MAH能降低木纤维的表面自由能并降低纤维之间的吸附力,增强聚合物基体的渗透能力,改善纤维的分散和取向,通过机械啮合提高界面黏合力。PP-g-MAH与木纤维表面的羟基在碱性催化剂作用下能发生酯化反应,在聚合物与木纤维之间形成桥梁,从而提高界面黏合力[6]。此外,采用马来酸酐对木纤维进行接枝改性也是改善木塑复合材料界面相容性的重要方法。Nenkova等[7]在含有10%马来酸酐的丙酮溶液中采用过氧化二苯甲酰(BPO)和过氧化二异丙苯(DCP)引发马来酸酐对木纤维进行表面改性,木纤维和马来酸酐发生化学反应,增加了界面黏合力,制得的PP基木塑复合材料的力学性能有了较大的提高。Demir等[8]分别采用3-氨基丙基三乙氧基硅烷(AS)、三甲氧基甲硅烷基丙硫醇(MS)和PP-g-MAH作为PP/丝瓜纤维复合材料的界面改性剂,改善了聚合物与丝瓜纤维的相容性,提高了其力学性能和抗吸湿性。AS和MS改性后的复合材料界面黏合力增强,其中MS改性的复合材料力学性能较高。近年来也有研究者采用固相接枝法[9]或熔融接枝法[10]开发出多种单体的PP接枝共聚物,其具有接枝率高、界面改性效果好等优点,是木塑复合材料优良的界面改性剂。

复合材料的分层研究(谷风文书)

复合材料的分层缺陷 引言 目前被广泛用于飞机承力构件的纤维增强树脂基复合材料(CFRP)主要是层合板与层合结构。在层合板的制造过程中,常由于许多不确定的因素,使复合材料结构发生分层、孔隙、气孔等等不同形式的缺陷;同时,复合材料层合板在装配与服役过程中所受到低能冲击很容易引发各种形式的损伤。由于增强纤维铺设方向的不一致常导致铺层间刚度的不匹配,引发较高的层间应力,而层间应力的主要传递介质是较弱的树脂基体,因此对于复合材料层合板,分层是其主要的损伤形式。有报导统计,复合材料层合板在加工、装配和使用过程中产生的分层损伤,占缺陷件的50%以上[1]。 分层常存在于结构内部,无法根据表面状态检测出来,并且分层的存在极大地降低了结构的刚度,特别在压缩载荷作用下,由于发生局部屈曲而导致分层扩展,使结构在低于其压缩强度时发生破坏。在飞机研制与制造过程中,复合材料层合板的分层损伤问题一直是难以解决的结构问题之一,也是影响CFRP 在结构组分中应用的主要限制因素。因此,如何充分地结合试验测试,利用数值模拟的方法评估分层的许和容限,成为决定飞机结构综合性能的亟待解决的关键问题。 1.1分层产生的原因 Pagano 和Schoeppner [2] 根据复合材料构件的形状,将分层产生的原因分为两类。第一类为曲率构件,工程中常见的曲率构件包括扇形体、管状结构、圆柱形结构、球形结构和压力容器等;第二类为变厚度截面,工程中常见于薄层板与补强件连接区域、自由边界处、粘合连接处及螺栓接合处等。在上述结构件中,临近的两铺层极易在法向和剪切向应力作用下发生脱胶和形成层间裂纹。 以外,温湿效应、层板制备和服役状态等亦是分层产生的原因。由于纤维与树脂的热膨胀系数以及吸湿率均存在差异,因此,不同铺层易在固化过程产生不同程度的收缩并在吸收湿气后产生不同程度的膨胀,不同程度的收缩与膨胀所产

复合材料损伤研究现状

复合材料损伤研究现状 复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。 结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。 结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。 结构损伤诊断技术方面的工作在国外大体分为三个发展阶段: (1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

聚合物基复合材料的界面研究进展

大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.360docs.net/doc/a215096100.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

复合材料可靠性

?湿热条件下,水分子在树脂基体中的扩散,并沿纤维-基体界面通过毛细作用以及在孔隙、 微裂纹和界面脱粘等缺陷中聚集。 ?吸湿的水分使基体大分子结构间距增大,刚性基团的活性增加,基体发生溶胀,进而产 生增塑。 ?水进一步向基体扩散,由此产生渗透压使基体内部产生裂纹、微小裂缝或其他类型的形 态变化,使吸湿量增加。 ?水助长裂纹的扩展,使基体破裂,基体水解导致断链和解交联,造成材料的永久性破坏。 ?碳纤维的抗湿热性好,玻璃纤维次之,芳纶较差。 ?湿热老化对复合材料存在两方面影响:1)水分对基体化学键有一定的作用;2)热的作 用包括加速水分子扩散和提高基体的固化度。 ?湿、热两种作用对复合材料结构有促进和抵消两种效果,使复合材料性能变化较单纯热 或湿作用更为复杂。 ?湿热环境不仅会降低纤维的抗腐蚀阻力,在比较高的环境温度下还会使基体的玻璃化转 变温度降低,并降低其强度和刚度。 ?常温下复合材料的吸湿较慢,因此需要采用一定的手段加速吸湿过程。升温加速老化是 湿热老化中常用的一种方法。 ?湿热环境对复合材料的影响是湿度和温度协同作用的结果。升高温度可以加快水的吸收, 增加材料的平衡吸湿量并缩短平衡时间。 ?同时,高温下水对基体、界面等的影响也更为显著。因此,升高温度是加速老化的途径 之一。 腐蚀性介质 ?在腐蚀环境作用下,可能会引起下列影响:树脂基体的腐蚀;增强材料的腐蚀、界面的 腐蚀和应力腐蚀及腐蚀疲劳。 对力学性能的影响 ?1)复合材料对腐蚀性流体(燃油、液压油、防冻液等)不敏感,可以不考虑。 ?2)紫外线辐射引起损伤是一个非常缓慢的过程,只要结构表面的防护涂层完好,可以不 计此类损伤。 ?3)风化、砂蚀和雨蚀引起损伤是一个很缓慢的过程,只要在结构表面喷涂防雨防护漆, 就可克服它们的影响。 控制环境介质对复合材料的腐蚀,主要有两条原则: ?一是要提高材料自身的耐蚀性。如提高结晶度、取向度、交联密度等措施,提高基体的 紧密性,使介质的扩散系数、渗透系数下降;或使用表面处理剂,增强树脂与纤维的粘接强度,减少界面间隙,提高抗渗透能力。 ?二是要使用防护层。在复合材料表面进行防护整饰,避免受到环境的直接作用以达到提 高抗蚀性能的目的。

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第47卷,第7期2019年7月 V ol.47,No.7Jul. 2019 141 doi:10.3969/j.issn.1001-3539.2019.07.026 碳纤维表面改性及其在尼龙复合材料中的应用研究进展 张顶顶1,张福华1,杨吉祥1,李晓峰1,李彦希2,曾骥1 (1.上海海事大学海洋科学与工程学院,上海 201306; 2.浙江四兄绳业有限公司,浙江台州 317016) 摘要:对近几年碳纤维(CF)表面改性及其在CF 增强尼龙(CFRPA)复合材料中的应用研究情况进行了综述,将CF 表面改性方法划分为干法改性、湿法改性和纳米材料多尺度改性三大类。其中干法改性包括气相氧化法、等离子体氧化法和辐照处理;湿法改性包括液相氧化法、阳极电解氧化法和上浆处理法;纳米材料多尺度改性包括石墨烯、碳纳米管等纳米材料改性。比较了各种表面改性方法的优缺点,并对CFRPA 复合材料中CF 表面改性技术的发展进行了展望。 关键词: 碳纤维;尼龙;复合材料;界面结合;表面改性中图分类号:TQ327.3 文献标识码:A 文章编号:1001-3539(2019)07-0141-06 Research Progress on Surface Modification of Carbon Fiber and Its Application in Polyamide Composites Zhang Dingding 1, Zhang Fuhua 1, Yang Jixiang 1, Li Xiaofeng 1, Li Yanxi 2, Zeng Ji 1 (1. College of Ocean Science and Engineering , Shanghai Maritime University , Shanghai 201306, China ; 2. Zhejiang Four Brothers Rope Co. Ltd., Taizhou 317016, China) Abstract :Research situations of surface modification of carbon fiber (CF) and its application in CF reinforced polyamide (CFRPA) composites in recent years were reviewed. Accordingly ,the surface modi ?cation of CF can be classi ?ed into dry modi ?ca-tion methods ,wet modi ?cation methods and nanomaterials multi-scale modi ?cation methods. The dry modi ?cation methods include gas phase oxidation ,plasma oxidation and irradiation treatment ,the wet modi ?cation methods include liquid phase oxidation ,anodic electrolytic oxidation and sizing treatment , the nanomaterials multi-scale modi ?cation methods include graphene modi ?cation and carbon nanotube modi ?cation. The advantages and disadvantages of various surface modi ?cation methods were compared ,and the development of CF surface modi ?cation technology in CFRPA composites was prospected. Keywords :carbon ?ber ;polyamide ;composite ;interfacial bonding ;surface modi ?cation 碳纤维(CF)增强热塑性树脂复合材料具有轻质高强,耐腐蚀和出色的热稳定性等优点,已广泛应用于航空航天、汽车、建筑等行业[1–6]。尼龙(PA)作为一类典型的热塑性树脂与CF 形成的复合材料具有优异的综合性能。CF 增强PA (CFRPA)复合材料与热固性复合材料相比具有可回收性、易于加工、成型时间短、抗冲击性好等优点[7–9]。CFRPA 复合材料的力学性能首先取决于CF 和PA 树脂基体自身性质。同时,纤维与基体之间的界面粘结性很大程度上决定了复合材料的最终力学性能。 然而,未经任何处理CF 表面是非极性的[10–11],表面活性官能团极少、化学惰性较强,但PA 树脂基体因含有大量的 酰胺键通常表现为极性,造成了CF 与PA 树脂基体之间浸润性较差,界面粘结力较弱,限制了CFRPA 复合材料在更多领域的应用。因此,要想扩大CFRPA 复合材料应用范围,获得力学性能更为优异的CFRPA 复合材料就必须对CF 表面进行改性。通过对CF 表面改性可以有效增大CF 表面的粗糙度,同时在其表面引进大量的活性官能团,改善纤维与基体之间的浸润性,进而提高纤维表面与基体之间的机械嵌锁力和化学键合力,使得所受应力在纤维与基体界面之间得到有效传递。 基于PA 复合材料的CF 表面改性方法可以分为以下三大类:干法改性、湿法改性和纳米材料多尺度改性。干法 基金项目:上海市自然科学基金项目(15ZR1420500) 通讯作者:张福华,博士,副教授,主要从事复合材料应用基础研究 E-mail :fhzhang@https://www.360docs.net/doc/a215096100.html, 收稿日期:2019-03-12 引用格式:张顶顶,张福华,杨吉祥,等.碳纤维表面改性及其在尼龙复合材料中的应用研究进展[J].工程塑料应用,2019,47(7):141–146. Zhang Dingding ,Zhang Fuhua ,Yang Jixiang ,et al. Research progress on surface modification of carbon fiber and its application in polyamide composites[J]. Engineering Plastics Application ,2019,47(7):141–146.

复合材料修复资料

玻璃纤维材料的修复 -----------------------------------------------------------------------------------------其他行业的玻璃纤维修复 1.汽车保险杠是玻璃钢的,损坏了只能用玻璃纤维和树脂来修补,首先你需要买树脂和玻璃纤维毡,这些卖玻璃钢产品的门市都有的,树脂论公斤卖的,叫他们给你配好了,因为其实它有三种材料:树脂、催干剂和固化剂,问清楚怎么用?因为都是化学材料,三者放在一起会起化学反应,放热的,量大的话还会爆炸的,所以要注意安全,不要被烫到了,不要被溅到眼睛里;玻璃纤维布注意最好买毡,因为毡是丝状的,可以一根根抽出来,便于修复修平汽车保险杠表面。两者都买好了,开始修理了:拿个容器另外装树脂,少装些,别一次倒完了,然后再放几滴固化剂,注意搅拌均匀,固化剂可以少放,因为他起固化作用,少放固化慢一些就是了,放多了几分钟就完全固化了,你还没来的及修补呢!用个毛刷刷到到损坏的地方,然后贴些玻璃纤维毡,再刷些树脂上去,刷一次贴一次就可以了!干了以后打磨表面,最后喷漆就可以了!做玻璃这行看起来简单,其实也是技术活,要熟练才刷的平,没有空隙才行!液体是不饱和聚酯树脂【型号一般时191和196】但是要加固化剂和促进剂【俗称红水和白水】比例根据温度而不同,调和后要在规定时间内糊完,否则就会固化 2.买玻璃丝布,环氧树脂,固化剂和柔软剂,先把破口处理一下,再刷环氧树脂混合液,后铺玻璃丝布,这样做三脂两布,固化后,打磨平整。 玻璃钢(FRP)亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢,注意与钢化玻璃区别开来。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,性能稳定.机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。 3.树脂和纤维都是玻璃钢的原材料,在混合固化剂和促进剂、在一定温度作用下,粘有树脂的玻璃纤维,因树脂的固化而被粘合在一起,就形成了玻璃钢材质。玻璃钢具有高强、轻质、耐腐蚀的特点,属于复合材料,也就是集合了多种材料的优点而制作出的一种材料。玻璃钢有狭义范畴和广义范畴的说法,狭义就是指玻璃纤维和树脂制作而成的,而广义的玻璃钢,还包括树脂和其它纤维制作成的复合材料,比如碳纤维玻璃钢(比如多数钓鱼竿)、涤纶纤维玻璃钢等等。 4.玻璃钢开裂怎么办 沿着裂缝周围用粗砂纸磨成粗糙,后用树脂和玻璃钢纤维补上 那如果非要修的话,也不是没有办法。树脂选用好点的,一般的也行,还有促进剂、固化剂、优质玻璃纤维布。粉子就不要放了。现在是秋季,温度低,所以固化剂要比夏天时多放,至于精确的比例,我随便估摸一下应该是:固化剂、促进剂、树脂;1:1.5:8 配合玻璃纤维缠在管道上,要让配好的玻璃钢迅速的涂在玻璃纤维布上,要让玻璃钢把玻璃纤维布充分浸透,等待玻璃钢充分固化后,再反复做上几层。就会结实了 航空复合材料结构修理方法 --------------------------------------------------------------------------------------适用于整流罩和玻璃纤维蒙皮1. 1复合材料的缺陷/ 损伤与修理容限

第十五章-复合材料的界面及界面优化设计

复合材料
第三部分 复合材料的增强材料
第十五章 复合材料的界面及界面优化设计
教学目的:通过本章的学习,掌握复合材料的界面及 作用,聚合物基复合材料的界面及改性方法,几种聚 合物基复合材料的形成和改善界面的途径,界面表征 的方式。 重点内容: 1、复合材料的界面及界面改性方法。 2、复合材料改善界面的途径。 难点:复合材料界面与性能的关系。 熟悉内容:复合材料界面的研究内容及方法。
1
2
主要英文词汇:
Composite material---复合材料 Composite interface---复合材料界面 Residual stress of composite interface---复合材料界面 残余应力 Reaction of composite interface---复合材料界面反应 Modification of composite interface---复合材料的界 面改性 Mechanics of composite interface---复合材料界面力学
3
Bonding strength of composite interface---复合材料界面 黏结强度 Optimum design of composite interface---复合材料界面 优化设计 Compatibility of composite interface---复合材料界面相 容性 Mechanics of composite---复合材料力学 Micromechanics of composite---复合材料细观力学
4
参考教材或资料:
1、复合材料学----周祖福 (武汉理工大学出版社,2004年) 2、现代复合材料----陈华辉 邓海金 李 明 (中国物质出版社,1998) 3、复合材料概论----王荣国 武卫莉 (哈尔滨工业大学出版社,1999) 4、复合材料--------吴人洁(天津大学出版社,2000) 5、复合材料科学与工程---倪礼忠,陈麒(科学出版社,2002) 6、复合材料及其应用—尹洪峰,任耘(陕西科学技术出版社,2003) 7、高性能复合材料学---郝元恺,肖加余 (化学工业出版社,2004) 8、新材料概论--- 谭毅, 李敬锋(冶金工业出版社,2004) 9、先进复合材料----鲁 云 朱世杰 马鸣图 (机械工业已出版社,2004) 10、复合材料--------周曦亚(化学工业出版社,2005)
5
15、复合材料的界面及界面优化设计
21世纪对材料要求多样化,复合材料开发有很大发 展,复合材料整体性能的优劣与界面结构和性能关系密 切。
15.1复合材料的界面概念
复合材料的界面是指基体与增强相之间化学成分有显 著变化的、构成彼此结合的、能起载荷传递作用的微小区 域。 复合材料的界面是一个多层结构的过渡区域,约几个 纳米到几个微米。大量事实证明,复合材料的界面 复合材料的界面实质上 界面相 是纳米级以上厚度的界面层(Interlayer)或称界面相 (Interphase)。
6
1

复合材料层合板分层疲劳性能研究进展

复合材料层合板分层疲劳性能研究进展 发表时间:2019-03-13T16:03:02.393Z 来源:《中国西部科技》2019年第2期作者:陈春露单鹏宇[导读] 介绍了近年来复合材料层合板分层疲劳模型、数值模拟、以及Ⅰ型Ⅱ型和混合型分层疲劳性能试验的研究进展,并对复合材料层合板分层疲劳性能进一步的研究进行了展望。哈尔滨玻璃钢研究院有限公司复合材料层合板具有比强度高、比刚度大、抗疲劳性能好等一系列优点,能满足飞机结构重量轻、寿命长和可靠性高等特殊技术要求,已广泛应用于各航天航空领域。与此同时,许多和复合材料有关的问题逐渐凸显出来,如疲劳和耐久性,以及疲劳下的裂纹扩展及由 此引起的分层现象。由于复合材料层合板在工作中经常受到交变载荷的作用,所以对于层合板的疲劳研究,人们给予越来越多的关注[1],层合板的疲劳性能对复合材料的损伤容限设计、耐久性设计等有重要的意义。1传统疲劳模型 传统的疲劳模型,如剩余刚度模型[2、3、5]、剩余强度模型[3、4]和疲劳寿命模型[6-11],是通过建立材料结构的S-N曲线来估算材料结构的疲劳可靠性。这类宏观模型作为设计工具,已广泛应用于工程结构。但是,宏观模型的估算结果通常是保守的,并且不能够建立损伤和循环数间的关系。 2分层疲劳模型 研究疲劳损伤扩展问题最著名的,也是最为广泛应用的是Paris法则。该法则将疲劳裂纹扩展速率与能量释放率和模式比联系起来。 3 模拟 F.Shen[12]等采用虚拟裂纹闭合技术使用三维有限元模型模拟了含不同厚度圆形分层的编织和非编织复合材料的分层,计算了分层前缘应变能量释放率分布和分层前缘随循环次数的增长,并讨论了对称和非对称边界的情况,结果显示:纤维排布方向对局部应变能释放率分布有很大的影响;为节省计算时间普遍采用的四分之一模型由于边界作用会带来一定的误差。S.C.Pradhan和T.E.Tay[13]采用三维有限元单元用ABAQUS软件模拟了中间带圆孔的聚四氟乙烯分层对碳纤维编织复合材料在压缩疲劳载荷下应变能释放率随分层前缘的变化,并用超声C扫描仪确定分层的扩展状态。模拟与实验结果显示良好的吻合。4三种不同类型试验研究4.1Ⅰ型和Ⅱ型

复合材料界面层材料的研究

复合材料界面层材料的研究* 卢国锋1,2 ,乔生儒1,许 艳3 (1 西北工业大学,超高温结构复合材料国家重点实验室,西安710072;2 渭南师范学院装备工程技术中心, 渭南714000;3 渭南师范学院图书馆,渭南714000)摘要 界面层是复合材料中的关键组成部分,因对复合材料的各项性能都有重要影响,而成为复合材料研究的重点之一。在叙述界面层功能的基础上,分别对层状结构界面层材料(包括层状晶体结构材料和多层陶瓷界面相)和非层状结构界面层材料进行了讨论,分析了研究中存在的问题,指出了未来研究的方向和重点。 关键词 界面层 复合材料 力学性能 抗氧化性能中图分类号:TB332 文献标识码:A Studies on the Interphase of the Comp ositesLU Guofeng1, 2,QIAO Sheng ru1,XU Yan3 (1 National Key Laboratory  of Thermostructure Composite Materials,Northwestern Polytechnical University,Xi’an 710072;2 Center for Armament Engineering  Technology,Weinan Normal University,Weinan 714000;3 Library  of Weinan Normal University,Weinan 714000)Abstract The interlayer is a key component of the composites,and has important influence on the properties ofthe materials.Based on the description of the functionality of interphase,the research status of the interphase mate-rials with layer structure,including layered crystal structure and multilayer ceramic interphase,and the interphase ma-terials without layered structure is introduced.The problems in the research work are analyzed,the direction and fo-cus of future research are p ointed out.Key  words interphase,composites,mechanical property,oxidation resistance *国家自然科学基金( 50772089);渭南师范学院科研项目(13YKS003) 卢国锋:男,1975年生,博士,副教授,主要研究方向为陶瓷基复合材料和功能材料 E-mail:lug uof75@163.com0 引言 界面层是复合材料中处于增强体和基体之间的一个局部微小区域。它将增强体和基体彼此良好地结合在一起,起着传递载荷,阻止裂纹越过增强体表面进行扩展,缓解残余热应力,阻挡基体和纤维间元素的相互扩散、溶解和有害化 学反应, 阻止纤维在高温环境下发生氧化的作用[1] 。界面层在复合材料中所占的体积分数虽不足10%,但却是影响陶瓷基复合材料力学性能、抗环境侵蚀能力等的关键因素之一。特别是对于脆性纤维增强脆性基体复合材料来说,纤维与基体间的界面层是决定复合材料强度和韧性的重要因素。因此,对界面层材料及其结构的研究一直是复合材料研究的热点之一。本文对近年来在复合材料界面层领域的研究进行了综述。 1 复合材料界面层的功能 一般来讲,界面层的功能主要有4个:传递、阻止裂纹扩展、缓解和阻挡。传递作用是指界面层作为一个“桥梁”将作用于基体的载荷充分传递至复合材料的主要承载者———纤维增强体上。阻止裂纹扩展是指当基体裂纹扩展到界面层 区域时, 基体和纤维沿它们之间的界面发生分离,并使裂纹的扩展方向发生改变,即裂纹偏转,阻止裂纹直接越过纤维表面进行扩展。缓解作用是指界面层通过过渡作用和界面滑移减少残余热应力。阻挡作用是指阻挡基体和纤维间元素的相互扩散、 溶解和有害化学反应,阻止外界环境对纤维增强体的侵害[ 1,2] 。以上只是一般意义上的界面层功能,但不同功用的复合材料对界面层的要求不同。例如:以承受载荷为主要目的的复合材料对前3种功能有更为苛刻的要求, 而以抗氧化为主要目的的复合材料则对阻挡功能要求更严。一种界面层所具有的功能主要取决于界面层的材质、结构、厚度以及界面层与纤维或基体间的相互作用等因素。为了满足不同复合材料功能的需求, 不同功用的复合材料应具有不同的界面层。复合材料界面层的研究正是在这种需求下不断进行的。目前常被研究的界面层材料有很多,大致可分为两类:层状结构材料和非层状结构材料,其中层状结构材料又包括层状晶体结构材料和多层陶瓷界面相。 2 层状晶体结构界面层材料 具有层状晶体结构的材料由于其层间结合力较弱,当外 ·04·材料导报A:综述篇 2 013年11月(上)第27卷第11期

相关文档
最新文档