高二数学:立体几何垂直的证明练习题

高二数学:立体几何垂直的证明练习题
高二数学:立体几何垂直的证明练习题

高二数学:立体几何垂直的证明练习题

主编:贾海琴老师

1、如图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点

(I)求证:BC PAC ⊥平面;

(II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面

2、如图,在在四棱锥P-ABCD 中,PA ⊥面ABCD,AB=BC=2,AD=CD=

7,PA=3,∠

ABC=120°,G 为线段PC 上的点.证明:BD ⊥面PAC ;

3、如图.在直菱柱ABC-A 1B 1C 1中,,AB=AC,D 是BC 的中点,点E 在棱BB 1上运动.证明:AD ⊥C 1E;

4、如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面

ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:

(1)PA ⊥底面ABCD ;

(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

5、如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=.证明:1

AB AC ⊥; C 1

B 1

A

A 1

B

C 6、如图,四棱锥P ABC

D -中,,AB AC AB PA ⊥⊥,,2AB CD AB CD =∥,,,,,

E

F

G M N 分别为

,,,,PB AB BC PD PC 的中点

(1)求证:CE PAD

∥平面

;

(2)求证:EFG EMN ⊥平面平面

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

2015年高二数学学业水平考试复习学案(1318)立体几何

俯视图侧视图 正视图高二学考必修二学案 第1课 空间几何体的结构、三视图和直观图 一、要点知识:1、棱(圆)柱、棱(圆)锥、棱(圆)台的结构特征: (1)___________________________________,_______________________________________, _______________________________________,由这些面所围成的多面体叫做棱柱。 (2)___________________________________,____________________________由这些面所围成的多面体叫做棱锥。 (3)______________________________________________________这样的多面体叫做棱台。 (4)______________________________________________________叫做圆柱,旋转轴叫做_______,垂直与轴的边旋转而成的圆面叫做_______,平行与轴的边旋转而成的曲面叫做______,无论旋转到什么位置,不垂直于轴的边都叫做___________ (5) _____________________________________________________所围成的旋转体叫做圆锥。 (6) _____________________________________________________叫做圆台。 (7) _____________________________________________________叫做球体,简称球。 2、中心投影、平行投影及空间几何体的三视图、直观图 (1)光由一点向外散射形成的投影,叫做______________ (2)在一束平行光线照射下形成的投影,叫做__________,投影线正对着投影面时,叫做正投影,否则叫斜投影。 3、正视图:光线从物体的_______投影所得的投影图,它能反映物体的_______和长度。 侧视图:光线从物体的________投影所得的投影图,它能反映物体的高度和宽度。 俯视图:光线从物体的________投影所得的投影图,它能反映物体的长度和宽度。 学业水平考试怎么考 1. 下列几何体中,正视图、侧视图和俯视图都相同的是( ). A .圆柱 B.圆锥 C.球 D.三菱柱 2、如图是一个几何体的三视图,则该几何体为( ) A 、球 B 、圆柱 C 、圆台 D 、圆锥 3.如图是一个几何体的三视图,则该几何体为( ) A.球 B.圆锥 C.圆柱 D.圆台 二、课前小练: 1、有一个几何体的三视图如下图所示,这个几何体应是一个( ) A 、棱台 B 、棱锥 C 、棱柱 D 、都不对 2、下列结论中 (1).有两个面互相平行,其余各面都是平面四边形的几何体叫棱柱 ; (2).有两个面互相平行,其余各面都是平行四边形的几何体叫棱柱; (3).用一个平面去截棱锥,棱锥的底面和截面之间的部分叫棱台; (4).以直角三角形的一条直角边所在直线为旋转轴将直角三角形旋转一周而形成的曲面所围成的几何体叫 圆锥。其中正确的结论是( ) A.3 B.2 C.1 D.0 3、将图1所示的三角形绕直线l 旋转一周,可以得到如图2所示的几何体的是哪一个三角 形( ) 4、下面多面体是五面体的是( ) C ′ A ′ Y ′ D ′

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

(完整版)高中立体几何证明垂直的专题训练

高中立体几何证明垂直的专题训练 深圳龙岗区东升学校—— 罗虎胜 立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用三角形全等或三角行相似。 (5) 利用直径所对的圆周角是直角,等等。 (1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC 2.如图,四棱锥P -ABCD ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 分析:取PC 的中点G ,易证EG//AF ,又易证A F 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD (第2题图)

3、如图所示,在四棱锥P ABCD -中, AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且 1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. 分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PAB 4.如图所示, 四棱锥P -ABCD 底面是直角梯形 ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, P A =AD 。 证明: BE PDC ⊥平面; 分析:取PD 的中点F ,易证AF//BE, 易证A F ⊥平面PDC (2)利用等腰三角形底边上的中线的性质 5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o ,AP BP AB ==, PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; A C B P

高二立体几何大全

立体几何习题 1. 如图,四棱锥P-ABCD 的底面是正方形, ,,//,PA ABCD AE PD EF CD AM EF ⊥⊥=底面 (1) 证明MF 是异面直线AB 与PC 的公垂线; (2) 若3PA AB =,求直线AC 与平面EAM 所成角的正弦值 2. 已知三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均为a ,侧面A 1ACC 1⊥底面ABC ,A 1B =2 6a , (Ⅰ)求异面直线AC 与BC 1所成角的余弦值; (Ⅱ)求证:A 1B ⊥面AB 1C . 3. 如图,四棱锥S ABCD -的底面是边长为1的正方形,SD 垂直于底面 ABCD ,SB = 3 1.求证BC SC ⊥; 2.求面ASD 与面BSC 所成二面角的大小; 3.设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小 B C D A P M F E

4. 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=23,M 、N 分别为AB 、SB 的中点. (Ⅰ)证明:AC ⊥SB ; (Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离. 5. 如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值. 6. 如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (I )证明PA ⊥平面ABCD ; (II )求以AC 为棱,EAC 与DAC 为面的二面角 的大小; (Ⅲ)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论. 1 B 1D B A 1E F B C D A P E

(word完整版)初中数学几何证明题技巧

初中数学几何证明题技巧 几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ , DP AQ AB 2 1 ==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6 . (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为 6 π ,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==, F , G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

立体几何中垂直地证明

全方位教学辅导教案

5、如图,在底面为平行四边形的四棱锥P ABCD -中,,AB AC PA ABCD ⊥⊥平面,且 PA AB =,点E 是PD 的中点。 ⑴求证:AC PB ⊥; ⑵求证:PB AEC ∥平面; 6、 如图,在四棱锥P -ABCD 中, PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA = AB =BC ,E 是PC 的中点. (1)求证:CD ⊥AE ;(2)求证:PD ⊥面ABE. 题型二、面面垂直的判定与性质 1、如图AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A 、B 的任意一点,求证:平面PAC 垂直平面PBC 。 2、如图,棱柱 111 ABC A B C -的侧面 11 BCC B 是菱形,11B C A B ⊥ 证明:平面1AB C ⊥平面11A BC ; 3、已知:如图,将矩形ABCD 沿对角线BD 将BCD 折起,使点C 移到点1C ,且

1C ABD O AB 在平面上的射影恰好在上。 11(2). BDC ⊥⊥1 1()求证:AD BC 求证:面ADC 面 4、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 5、已知四面体ABCD 中,CD BD AC AB ==,,平面⊥ABC 平面BCD ,E 为棱BC 的中点。 (1)求证:⊥AE 平面BCD ; (2)求证:BC AD ⊥; 6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC. O B C 1 A D C

初三数学几何证明题(经典)

如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O 交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE 证明:连接CD ∵AC是直径 ∴∠ADC=90° ∵∠ACB=90°,ED是切线 ∴CE=DE ∴∠ECD=∠EDC ∵∠ECD+∠B=90°,∠EDC+∠BDE=90° ∴∠B=∠BDE ∴BE=DE ∴BE=CE 如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O 以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; (2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。 (1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; 相切分两种情况,如图, ①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm 则:t=4/2=2s; --------------- ②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC ==>O与B重合,此时圆移动的长即为OB的长,即9cm ==>t=9/2; =========

(2)如右图:由②得:∠AOE=90 ==>S阴=(90*π*5^2)/360=6.25π 不明之处请指出~~

立体几何垂直证明题常见模型与方法

立体几何垂直证明题常见模型及方法 证明空间线面垂直需注意以下几点: ①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 ②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 ③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。 垂直转化:线线垂直 线面垂直 面面垂直; 基础篇 类型一:线线垂直证明(共面垂直、异面垂直) (1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模 型) ○1 等腰(等边)三角形中的中线 ○ 2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。 例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥ (2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥ 变式 1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知 60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于' A . 求证:'A D EF ⊥; 变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 o证明:AB ⊥PC 类型二:线面垂直证明 方法○1 利用线面垂直的判断定理 例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证: 1A O BDE ⊥平面 变式1:在正方体1111ABCD A B C D -中,,求证:1 1AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90?.E 为BB 1 的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1; B E 'A D F G

高二文科数学立体几何平行与垂直部分练习题

高二文科数学立体几何平行与垂直部分练习题 1.如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE ; (3)求直线BE 与平面1A AC 所成角的正弦值. 2.如图,正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F.求证:EF ∥平面ABCD. 3.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明:PB //平面AEC ; (2)设1,3AP AD ==三棱锥P ABD -的体积34 V =求A 到平面PBC 的距离.

A D B C P E 4.如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点. (1)求证:MN∥平面PAD; (2)求证:MN⊥DC; 5.已知四棱锥P ABCD -的底面为直角梯形,// AB DC,⊥ = ∠PA DAB, 90ο底面ABCD,且1 PA AD DC ===,2 AB=,M是PB的中点. (1)求证:CM PAD P面; (2)证明:面PAD⊥面PCD; (3)求AC与PB所成的角的余弦值; (4)求棱锥M PAC -的体积。 6.已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点 A B C D P N

(1)求证:AN∥平面MBD; (2)求异面直线AN与PD所成角的余弦值; (3)求二面角M-BD-C的余弦值. 7.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点。 求证:(1)PA∥平面BDE (2)平面PAC⊥平面BDE 8.在四棱锥ABCD P-中,底面ABCD为矩形,ABCD PD底面 ⊥,1 = AB,2 = BC,3 = PD,F G、分别为CD AP、的中点. (1) 求证:// FG平面BCP; (2) 求证:PC AD⊥; F G P D C B A 9.如图,已知在侧棱垂直于底面的三棱柱111 ABC A B C -中,3 AC=,5 AB=,4 BC=,P M D C B A N

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

高二数学立体几何试题及答案(完整资料).doc

【最新整理,下载后即可编辑】 【模拟试题】 一. 选择题(每小题5分,共60分) 1. 给出四个命题: ①各侧面都是正方形的棱柱一定是正棱柱; ②各对角面是全等矩形的平行六面体一定是长方体; ③有两个侧面垂直于底面的棱柱一定是直棱柱; ④长方体一定是正四棱柱。 其中正确命题的个数是() A. 0 B. 1 C. 2 D. 3 2. 下列四个命题: ①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的所有面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形。 正确的命题有________个 A. 1 B. 2 C. 3 D. 4 3. 长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为() A. 12 B. 24 C. 214 D. 414 4. 湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm,深为8cm的空穴,则该球的半径是() A. 8cm B. 12cm C. 13cm D. 82cm 5. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积为侧面积的比是() A. 12 2 +π π B. 14 4 +π π C. 12 +π π D. 14 2 +π π 6. 已知直线l m ⊥? 平面,直线平面 αβ,有下面四个命题: ①αβ//?⊥l m;②αβ⊥?l m //;③l m //?⊥ αβ;④l m⊥?αβ//。 其中正确的两个命题是() A. ①② B. ③④ C. ②④ D. ①③

7. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A. 63cm B. 6cm C. 2182 D. 3123 8. 设正方体的全面积为242cm ,一个球内切于该正方体,那么这个球的体积是( ) A. 63πcm B. 32 3 3 πcm C. 8 3 3 πcm D. 4 3 3 πcm 9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是( ) A. m n m n ⊥,,////αβ B. m n m n ⊥=?,,αβα C. m n n m //,,⊥?βα D. m n m n //,,⊥⊥αβ 10. 如果直线l 、m 与平面αβγ、、满足: l l m m =?⊥βγααγ ,,,//,那么必有( ) A. αγ⊥⊥和l m B. αγβ////,和m C. m l m //β,且⊥ D. αγαβ⊥⊥且 11. 已知正方体的八个顶点中,有四个点恰好为正四面体的顶点,则该正四面体的体积与正方体的体积之比为( ) A. 13: B. 12: C. 2:3 D. 1:3 12. 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( ) 二. 填空题(每小题4分,共16分) 13. 正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是__________。 14. 正四棱台的斜高与上、下底面边长之比为5:2:8,体积为143cm ,则棱台的高为____________。 15. 正三棱柱的底面边长为a ,过它的一条侧棱上相距为b 的

立体几何垂直证明(基础)

立体几何垂直的证明 类型一:线线垂直证明(共面垂直、异面垂直) (1)共面垂直:掌握几种模型 ①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形 ⑤利用相似或全等证明直角。 【例1】在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面 (2)异面垂直(利用线面垂直来证明) 【例2】在正四面体ABCD 中, 求证:AC BD ⊥ 【变式1】如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知 ο60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

【变式2】如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点, 将△AED,△DCF分别沿, DE DF折起,使,A C两点重合于'A. 求证:'A D EF ⊥; 【变式3】如图,在三棱锥P ABC -中,⊿PAB是等边三角形,∠P AC=∠PBC=90 o。 证明:AB⊥PC 类型二:直线与平面垂直证明 方法○1利用线面垂直的判断定理 【例3】在正方体 1111 ABCD A B C D -中,,求证: 11 AC BDC ⊥平面 【变式1】如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90?.E为BB1的中点,D点在AB上且DE= 3 . 求证:CD⊥平面A1ABB1; B E ' A D F G

P C B A D E 【变式2】如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的 中点,2, 2.CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ; 【变式3】如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =6BC = ()1求证:BD ⊥平面PAC ○ 2利用面面垂直的性质定理 【例4】在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。 【变式1】在四棱锥P ABCD -,底面ABCD 是正方形,侧面PAB 是等腰三角形,且 PAB ABCD ⊥面底面,求证:BC PAB ⊥面

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. 所以3BF k = = 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. E B F C D A

高二立体几何试题(详细答案)

一、选择题: (本大题共12小题,每小题3分,共36分.) 1、已知),1,2,1(),1,1,0(-=-=则与的夹角等于 A .90° B .30° C .60° D .150° 2、设M 、O 、A 、B 、C 是空间的点,则使M 、A 、B 、C 一定共面的等式是 A .0=+++OC OB OA OM B .O C OB OA OM --=2 C .4 13 12 1++= D .0=++ 3、下列命题不正确的是 A .过平面外一点有且只有一条直线与该平面垂直; B .如果平面的一条斜线在平面内的射影与某直线垂直,则这条斜线必与这条直线垂直; C .两异面直线的公垂线有且只有一条; D .如果两个平行平面同时与第三个平面相交,则它们的交线平行。 4、若m 、n 表示直线,α表示平面,则下列命题中,正确的个数为 ①//m n n m αα??⊥?⊥?②//m m n n αα⊥???⊥?③//m m n n αα⊥??⊥??④//m n m n αα??⊥?⊥? A .1个 B .2个 C .3个 D .4个 5、四棱锥成为正棱锥的一个充分但不必要条件是 A .各侧面是正三角形 B .底面是正方形 C .各侧面三角形的顶角为45度 D .顶点到底面的射影在底面对角线的交点上 6、若点A (42 +λ,4-μ,1+2γ)关于y 轴的对称点是B (-4λ,9,7-γ),则λ,μ,γ的值依次为 A .1,-4,9 B .2,-5,-8 C .-3,-5,8 D .2,5,8 7、已知一个简单多面体的各个顶点处都有三条棱,则顶点数V 与面数F 满足的关系式是 A .2F+V=4 B .2F -V=4 C .2F+V=2 (D )2F -V=2 8、侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是 A . 239 B .433 C .233 D .4 3 9 9、正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是θ,则 A .θ=600 B .θ=450 C .52cos = θ D .5 2 sin =θ

立体几何垂直证明

立体几何垂直证明方法技巧授课教师:吴福炬

类型一:线线垂直证明(共面垂直、异面垂直) (1) 共面垂直:掌握几种模型 ①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形 ⑤利用相似或全等证明直角。 例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面

(2) 异面垂直(利用线面垂直来证明) 例1 在正四面体ABCD 中, 求证:AC BD ⊥ 变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形, 已知 60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

变式2 如图,在边长为2的正方形ABCD中,点E是AB的中 点,点F是BC的中点,将△AED,△DCF分别沿, DE DF折起, 使,A C两点重合于'A. 求证:'A D EF ⊥; 变式3如图,在三棱锥P ABC -中,⊿PAB是等边三角形, ∠P AC=∠PBC=90 o证明:AB⊥PC 类型二:直线与平面垂直证明 B E ' A D F G

方法○1利用线面垂直的判断定理 例:在正方体1111ABCD A B C D -中,,求证:1 1AC BDC ⊥平面 变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90?.E 为BB 1 的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1; 变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

相关文档
最新文档