一次函数压轴题(含问题详解)

一次函数压轴题(含问题详解)
一次函数压轴题(含问题详解)

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC

(1)求点C的坐标,并求出直线AC的关系式.

(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在

线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.

考点:一次函数综合题。

分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;

(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;

(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得

出ON.

解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,

∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,

∴∠OAB=∠QBC,

又∵AB=BC,∠AOB=∠Q=90°,

∴△ABO≌△BCQ,

∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,

∴C(﹣3,1),

由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;

(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,

∵AC=AD,AB⊥CB,

∴BC=BD,

∴△BCH≌△BDF,

∴BF=BH=2,

∴OF=OB=1,

∴DG=OB,

∴△BOE≌△DGE,

∴BE=DE;

(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,

∴P(﹣,),

由y=x+2知M(﹣6,0),

∴BM=5,则S△BCM=.

假设存在点N使直线PN平分△BCM的面积,

则BN?=×,

∴BN=,ON=,

∵BN<BM,

∴点N在线段BM上,

∴N(﹣,0).

点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.

3.如图直线?:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)

(1)求k的值.

(2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.

(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.

考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

专题:动点型。

分析:(1)将B点坐标代入y=kx+6中,可求k的值;

(2)用OA的长,y分别表示△OPA的底和高,用三角形的面积公式求S与x的函数关系式;

(3)将S=9代入(2)的函数关系式,求x、y的值,得出P点位置.

解答:解:(1)将B(﹣8,0)代入y=kx+6中,得﹣8k+6=0,解得k=;

(2)由(1)得y=x+6,又OA=6,

∴S=×6×y=x+18,(﹣8<x<0);

(3)当S=9时,x+18=9,解得x=﹣4,

此时y=x+6=3,

∴P(﹣4,3).

点评:本题考查了一次函数的综合运用,待定系数法求一次函数解析式,三角形面积的求法.关键是将面积问题转化为线段的长,点的坐标来表示.

7.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.

(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有10 个(请直接写出结果);

(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标(6,2);(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.

考点:一次函数综合题。

分析:(1)先利用待定系数法求得直线AB的解析式为y=﹣x+6;再分别把x=2、3、4、5代入,求出对应的纵坐标,从而得到图中阴影部分(不包括边界)所含格点的坐标;

(2)首先根据直线AB的解析式可知△OAB是等腰直角三角形,然后根据轴对称的性质即可求出点D的坐标;

(3)作出点C关于直线y轴的对称点E,连接DE交AB于点M,交y轴于点N,则此时△CMN 的周长最短.由D、E两点的坐标利用待定系数法求出直线DE的解析式,再根据y轴上点的坐标特征,即可求出点N的坐标.

解答:解:(1)设直线AB的解析式为y=kx+b,

把(1,5),(4,2)代入得,

kx+b=5,4k+b=2,

解得k=﹣1,b=6,

∴直线AB的解析式为y=﹣x+6;

当x=2,y=4;

当x=3,y=3;

当x=4,y=2;

当x=5,y=1.

∴图中阴影部分(不包括边界)所含格点的有:

(1,1),(1,2),(1,3),(1,4),

(2,1),(2,2),(2,3),

(3,1),(3,2),

(4,1).

一共10个;

(2)∵直线y=﹣x+6与x轴、y轴交于A、B两点,

∴A点坐标为(6,0),B点坐标为(0,6),

∴OA=OB=6,∠OAB=45°.

∵点C关于直线AB的对称点为D,点C(4,0),

∴AD=AC=2,AB⊥CD,

∴∠DAB=∠CAB=45°,

∴∠DAC=90°,

∴点D的坐标为(6,2);

(3)作出点C关于直线y轴的对称点E,连接DE交AB于点M,交y轴于点N,则NC=NE,点E(﹣4,0).

又∵点C关于直线AB的对称点为D,∴CM=DM,

∴△CMN的周长=CM+MN+NC=DM+MN+NE=DE,此时周长最短.

设直线DE的解析式为y=mx+n.

把D(6,2),E(﹣4,0)代入,得

6m+n=2,﹣4m+n=0,

解得m=,n=,

∴直线DE的解析式为y=x+.

令x=0,得y=,

∴点N的坐标为(0,).

故答案为10;(6,2).

点评:本题考查了待定系数法求一次函数的解析式,横纵坐标都为整数的点的坐标的确定方法,轴对称的性质及轴对称﹣最短路线问题,综合性较强,有一定难度.

19.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.

(1)求点P的坐标;

(2)求S△OPA的值;

(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF 与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.

考点:一次函数综合题。

分析:(1)P点的纵坐标就是两个函数值相等时,从而列出方程求出坐标.

(2)把OA看作底,P的纵坐标为高,从而可求出面积.

(3)应该分两种情况,当在OP上时和PA时,讨论两种情况求解.

解答:解:(1)﹣x+4=x

x=3,

y=.

所以P(3,).

(2)0=﹣x+4.

x=4.

4××=2.

故面积为2.

(3)当E点在OP上运动时,

∵F点的横坐标为a,所以纵坐标为a,

∴S=a?a﹣×a?a=a2.

当点E在PA上运动时,

∵F点的横坐标为a,所以纵坐标为﹣a+4.

∴S=(﹣a+4)a﹣(﹣a+4)a=﹣a2+2a.

点评:本题考查一次函数的综合应用,关键是根据函数式知道横坐标能够求出纵坐标,横纵坐标求出后能够表示出坐标作顶点的矩形和三角形的面积以及求两个函数的交点坐标.

24.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).

(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;

(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.

考点:一次函数综合题;一次函数图象上点的坐标特征;待定系数法求一次函数解析式;平移的性质。

专题:计算题。

分析:(1)先求出E点的坐标,根据梯形的面积公式即可求出四边形AECD的面积;

(2)根据已知求出直线1上点G的坐标,设直线l的解析式是y=kx+b,把E、G的坐标代入即可求出解析式;

(3)根据直线l1经过点F()且与直线y=3x平行,知k=3,把F的坐标代入即可

求出b的值即可得出直线11,同理求出解析式y=2x﹣3,进一步求出M、N的坐标,利用三角形的面积公式即可求出△MNF的面积.

解答:解:(1),

当y=0时,x=2,

∴E(2,0),

由已知可得:AD=AB=BC=DC=4,AB∥DC,

∴四边形AECD是梯形,

∴四边形AECD的面积S=×(2﹣1+4)×4=10,

答:四边形AECD的面积是10.

(2)在DC上取一点G,使CG=AE=1,

则S t梯形AEGD=S梯形EBCG,

∴G点的坐标为(4,4),

设直线l的解析式是y=kx+b,代入得:

解得:,

即:y=2x﹣4,

答:直线l的解析式是y=2x﹣4.

(3)∵直线l1经过点F()且与直线y=3x平行,

设直线11的解析式是y1=kx+b,

则:k=3,

代入得:0=3×(﹣)+b,

解得:b=,

∴y1=3x+

已知将(2)中直线l沿着y轴向上平移1个单位,则所得的直线的解析式是y=2x﹣4+1,即:y=2x﹣3,

当y=0时,x=,

∴M(,0),

解方程组得:,

即:N(﹣,﹣18),

S△NMF=×[﹣(﹣)]×|﹣18|=27.

答:△NMF的面积是27.

点评:本题主要考查了一次函数的特点,待定系数法求一次函数的解析式,一次函数图象上点的特征,平移的性质等知识点,解此题的关键是能综合运用上面的知识求一次函数的解析式.

25.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.

(1)求直线l2的解析表达式;

(2)求△ADC的面积;

(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标;

(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H 为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.

考点:一次函数综合题。

专题:综合题。

分析:(1)结合图形可知点B和点A在坐标,故设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;

(2)已知l1的解析式,令y=0求出x的值即可得出点D在坐标;联立两直线方程组,求出交点C的坐标,进而可求出S△ADC;

(3)△ADP与△ADC底边都是AD,面积相等所以高相等,ADC高就是C到AD的距离;(4)存在;根据平行四边形的性质,可知一定存在4个这样的点,规律为H、C坐标之和等于A、D坐标之和,设出代入即可得出H的坐标.

解答:解:(1)设直线l2的解析表达式为y=kx+b,

由图象知:x=4,y=0;

x=3,,

∴,

∴,

∴直线l2的解析表达式为;

(2)由y=﹣3x+3,令y=0,得﹣3x+3=0,

∴x=1,

∴D(1,0);

由,

解得,

∴C(2,﹣3),

∵AD=3,

∴S△ADC=×3×|﹣3|=;

(3)△ADP与△ADC底边都是AD,面积相等所以高相等,

ADC高就是C到AD的距离,即C纵坐标的绝对值=|﹣3|=3,

则P到AB距离=3,

∴P纵坐标的绝对值=3,点P不是点C,

∴点P纵坐标是3,

∵y=1.5x﹣6,y=3,

∴1.5x﹣6=3

x=6,

所以点P的坐标为(6,3);

(4)存在;

(3,3)(5,﹣3)(﹣1,﹣3)

点评:本题考查的是一次函数的性质,三角形面积的计算以及平行四边形的性质等等有关知识,有一定的综合性,难度中等偏上.

26.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.

(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;

(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;

(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.

考点:一次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;三角形的面积;全等三角形的判定。

专题:计算题;动点型。

分析:(1)求出P的坐标,当P在第一、二象限时,根据三角形的面积公式求出面积即可;当P在第三象限时,根据三角形的面积公式求出解析式即可;

(2)把s的值代入解析式,求出即可;

(3)根据全等求出OC、OD的值,如图①所示,求出C、D的坐标,设直线CD的解析式是

y=kx+b,把C(﹣6,0),D(0,﹣8)代入,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可;如图②所示,求出C、D的坐标,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可.

解答:解:(1)∵P(x,y)代入y=x+6得:y=x+6,

∴P(x,x+6),

当P在第一、二象限时,△OPA的面积是s=OA×y=×|﹣6|×(x+6)=x+18(x>﹣8)当P在第三象限时,△OPA的面积是s=OA×(﹣y)=﹣x﹣18(x<﹣8)

答:在点P运动过程中,△OPA的面积s与x的函数关系式是s=x+18(x>﹣8)或s=﹣x ﹣18(x<﹣8).

解:(2)把s=代入得:=+18或=﹣x﹣18,

解得:x=﹣6.5或x=﹣6(舍去),

x=﹣6.5时,y=,

∴P点的坐标是(﹣6.5,).

(3)解:假设存在P点,使△COD≌△FOE,

①如图所示:P的坐标是(﹣,);

②如图所示:

P的坐标是(,)

存在P点,使△COD≌△FOE,P的坐标是(﹣,)或(,).

点评:本题综合考查了三角形的面积,解二元一次方程组,全等三角形的性质和判定,用待定系数法求一次函数的解析式等知识点,此题综合性比较强,用的数学思想是分类讨论思想和数形结合思想,难度较大,对学生有较高的要求.

27.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.

(1)若直线AB解析式为y=﹣2x+12,

①求点C的坐标;

②求△OAC的面积.

(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.

考点:一次函数综合题。

专题:综合题;数形结合。

分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标.

②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可.

(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3.

解答:解:(1)①由题意,(2分)

解得所以C(4,4)(3分)

②把y=0代入y=﹣2x+12得,x=6,所以A点坐标为(6,0),(4分)

所以.(6分)

(2)存在;

由题意,在OC上截取OM=OP,连接MQ,

∵OP平分∠AOC,

∴∠AOQ=∠COQ,

又OQ=OQ,

∴△POQ≌△MOQ(SAS),(7分)

∴PQ=MQ,

∴AQ+PQ=AQ+MQ,

当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.

即AQ+PQ存在最小值.

∵AB⊥OP,所以∠AEO=∠CEO,

∴△AEO≌△CEO(ASA),

∴OC=OA=4,

∵△OAC的面积为6,所以AM=2×6÷4=3,

∴AQ+PQ存在最小值,最小值为3.(9分)

点评:本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.

29.如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),

且a、b满足.

(1)求直线AP的解析式;

(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;

(3)如图2,点B(﹣2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C 在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角

形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.

考点:一次函数综合题;非负数的性质:偶次方;非负数的性质:算术平方根;待定系数法求一次函数解析式;等腰三角形的性质;关于x轴、y轴对称的点的坐标。

专题:代数几何综合题;动点型。

分析:(1)根据非负数的性质列式求出a、p的值,从而得到点A、P的坐标,然后利用待定系数法求直线的解析式;

(2)根据关于y轴的点的对称求出点Q的坐标,再利用待定系数法求出直线AQ的解析式,设出点S的坐标,然后利用两点间的距离公式列式进行计算即可求出点S的坐标,再利用待定系数法求解直线RS的解析式;

(3)根据点B的横坐标为﹣2,可知点P为AB的中点,然后求出点B得到坐标,连接PC,过点C作CG⊥x轴于点G,利用角角边证明△APO与△PCG全等,根据全等三角形对应边相等可得PG=AO,CG=PO,再根据△DCE是等腰直角三角形,利用角角边证明△CDG与△EDF全等,根据全等三角形对应边相等可得DG=EF,然后用EF表示出DP的长度,然后代入两个结论进行计算即可找出正确的结论并得到定值.

解答:解:(1)根据题意得,a+3=0,p+1=0,

解得a=﹣3,p=﹣1,

∴点A、P的坐标分别为A(0,﹣3)、P(﹣1,0),

设直线AP的解析式为y=mx+n,

则,

解得,

∴直线AP的解析式为y=﹣3x﹣3;

(2)根据题意,点Q的坐标为(1,0),

设直线AQ的解析式为y=kx+c,

则,

解得,

∴直线AQ的解析式为y=3x﹣3,

设点S的坐标为(x,3x﹣3),

则SR==,SA==,

∵SR=SA,

∴=,

解得x=,

∴3x﹣3=3×﹣3=﹣,

∴点S的坐标为S(,﹣),

设直线RS的解析式为y=ex+f,

则,

解得,

∴直线RS的解析式为y=﹣3x+2;

(3)∵点B(﹣2,b),

∴点P为AB的中点,

连接PC,过点C作CG⊥x轴于点G,

∵△ABC是等腰直角三角形,

∴PC=PA=AB,PC⊥AP,

∴∠CPG+∠APO=90°,∠APO+∠PAO=90°,

∴∠CPG=∠PAO,

在△APO与△PCG中,,

∴△APO≌△PCG(AAS),

∴PG=AO=3,CG=PO,

∵△DCE是等腰直角三角形,

∴CD=DE,∠CDG+∠EDF=90°,

又∵EF⊥x轴,

∴∠DEF+∠EDF=90°,

∴∠CDG=∠DEF,

在△CDG与△EDF中,,

∴△CDG≌△EDF(AAS),

∴DG=EF,

∴DP=PG﹣DG=3﹣EF,

①2DP+EF=2(3﹣EF)+EF=6﹣EF,

∴2DP+EF的值随点P的变化而变化,不是定值,

②==,

的值与点D的变化无关,是定值.

点评:本题综合考查了一次函数的问题,待定系数法求直线解析式,非负数的性质,等腰直角三角形的性质,全等三角形的判定与性质,以及关于y轴对称的点的坐标的特点,综合性较强,难度较大,需仔细分析找准问题的突破口.

30.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.(1)求点F的坐标和∠GEF的度数;

(2)求矩形ABCD的边DC与BC的长;

(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.

考点:一次函数综合题。

专题:数形结合;分类讨论。

分析:(1)由于直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,因而联立两解析式组成方程组求得解即为F点的坐标.过F点作直线FM垂直X轴交x轴于M,通过坐标值间的关系证得ME=MF=4,从而得到△MEF是等腰直角三角形,∠GEF=45°;

(2)首先求得B(或G)点的坐标、再依次求得点C、D、A的坐标.并进而得到DC与BC

的长;

(3)首先将动点A、B用时间t来表示.再就①在运动到t秒,若BC边与l2相交设交点为N,AD与l1相交设交点为K;②在运动到t秒,若BC边与l1相交设交点为N,AD与l1相交设交点为K;③在运动到t秒,若BC边与l1相交设交点为N,AD与l1不相交.三种情况讨论解得s关于t的函数关系式.

解答:解:(1)由题意得

解得x=﹣2,y=4,

∴F点坐标:(﹣2,4);

过F点作直线FM垂直X轴交x轴于M,ME=MF=4,△MEF是等腰直角三角形,∠GEF=45°;

(2)由图可知G点的坐标为(﹣4,0),则C点的横坐标为﹣4,

∵点C在直线l1上,

∴点C的坐标为(﹣4,6),

∵由图可知点D与点C的纵坐标相同,且点D在直线l2上,

∴点D的坐标为(﹣1,6),

∵由图可知点A与点D的横坐标相同,且点A在x轴上,

∴点A的坐标为(﹣1,0),

∴DC=|﹣1﹣(﹣4)|=3,BC=6;

(3)∵点E是l1与x轴的交点,

∴点E的坐标为(2,0),

S△GFE===12,

若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,

当t秒时,移动的距离是1×t=t,则B点的坐标为(﹣4+t,0),A点的坐标为(﹣1+t,0);

①在运动到t秒,若BC边与l2相交设交点为N,AD与l1相交设交点为K,那么﹣4≤﹣4+t ≤﹣2,即0≤t≤2时.

N点的坐标为(﹣4+t,2t),K点的坐标为(﹣1+t,3﹣t),

s=S△GFE﹣S△GNB﹣S△AEK=12﹣=,

②在运动到t秒,若BC边与l1相交设交点为N,AD与l1相交设交点为K,那么﹣2<﹣4+t 且﹣1+t≤3,即2<t≤4时.

N点的坐标为(﹣4+t,6﹣t),K点的坐标为(﹣1+t,3﹣t),

s=S梯形BNKA==,

③在运动到t秒,若BC边与l1相交设交点为N,AD与l1不相交,那么﹣4+t≤3且﹣1+t>3,即4<t≤7时.

N点的坐标为(﹣4+t,6﹣t),

s=S△BNE==,

答:(1)F点坐标:(﹣2,4),∠GEF的度数是45°;

(2)矩形ABCD的边DC的长为3,BC的长为6;

(3)s关于t的函数关系式.

点评:本题是一次函数与三角形、矩形、梯形相结合的问题,在图形中渗透运动的观点是中考中经常出现的问题.

一次函数压轴题包括答案.doc

))))))))) 1.如图 1,已知直线 y=2x+2 与 y 轴、 x 轴分别交于 A 、 B 两点,以 B 为直角顶点在第二象限作 等腰 Rt△ ABC (1)求点 C 的坐标,并求出直线 AC 的关系式. (2)如图 2,直线 CB 交 y 轴于 E,在直线 CB 上取一点 D ,连接 AD ,若 AD=AC ,求证: BE=DE . ( 3)如图 3,在( 1)的条件下,直线 AC 交 x 轴于 M , P(, k)是线段 BC 上一点, 在线段 BM 上是否存在一点N ,使直线 PN 平分△ BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由. 考点:一次函数综合题。 分析:( 1)如图 1,作 CQ⊥ x 轴,垂足为 Q,利用等腰直角三角形的性质证明△ ABO ≌△ BCQ,根据全等三角形的性质求OQ, CQ 的长,确定 C 点坐标; ( 2)同( 1)的方法证明△ BCH ≌△ BDF ,再根据线段的相等关系证明△ BOE ≌△ DGE,得出结论; ( 3)依题意确定 P 点坐标,可知△BPN 中 BN 变上的高,再由S△PBN= S△BCM,求 BN , 进而得出 ON . 解答:解:( 1)如图 1,作 CQ⊥ x 轴,垂足为 Q, ∵∠ OBA+ ∠ OAB=90 °,∠ OBA+ ∠QBC=90 °, ∴∠ OAB= ∠ QBC, 又∵ AB=BC ,∠ AOB= ∠ Q=90°, ∴△ ABO ≌△ BCQ , ∴BQ=AO=2 , OQ=BQ+BO=3 , CQ=OB=1 , ∴C(﹣ 3, 1), 由 A ( 0, 2),C(﹣ 3, 1)可知,直线 AC : y=x+2 ; (2)如图 2,作 CH⊥ x 轴于 H, DF ⊥x 轴于 F, DG ⊥ y 轴于 G, ∵ AC=AD ,AB ⊥ CB ,∴ BC=BD , ∴△ BCH ≌△ BDF ,∴ BF=BH=2 , ∴ OF=OB=1 , ∴DG=OB , ∴△ BOE ≌△ DGE , ∴BE=DE ;

2020年中考复习之提高篇——二次函数压轴题(包含答案)

2020年中考复习之提高篇——二次函数压轴题(含答案) 1.(2019抚顺)(12分)如图1,在平面直角坐标系中,一次函数334 y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式 (2)是否存在点D ,使得BDE ?和ACE ?相似?若存在,请求出点D 的坐标,若不存在,请说明理由; (3)如图2,F 是第一象限内抛物线上的动点 (不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.

2(2019沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点. (1)求直线DE和抛物线的表达式; (2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF面积是7时,求点P的坐标; (3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2√2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.

3(2018年辽宁本溪).如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE. (1)求抛物线的解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PBE的面积为s,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF 沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

八上期末复习一次函数压轴题附答案解析

一次函数综合题选讲及练习 例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式; (2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B 两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长; (3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③. 问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由. 变式练习: 1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3. (1)求点B的坐标; (2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标; (3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等. ①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.) ②求点P的坐标.

例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB. (1)求直线BC的函数表达式; (2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC; (3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由. 变式练习: 2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO. (1)点A坐标是,BC= . (2)当点P在什么位置时,△APQ≌△CBP,说明理由. (3)当△PQB为等腰三角形时,求点P的坐标. 课后作业: 1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点. (1)求两直线与y轴交点A,B的坐标及交点C的坐标; (2)求△ABC的面积. 2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB (1)求直线AC的解析式; (2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.

精选中考二次函数压轴题[附答案解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 21的图象经过点D ??? ? ?-29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =23.设直线AC (第2(图1) (图

中考数学二次函数压轴题(含答案)

2017年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式. (2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0

一次函数相关的中考压轴题(含分析和答案)

一次函数是初中数学的重点内容之一,也是中考的主要考点。现举几例以一次函数为背景的中考压轴题供同学们在中考复习时参考 一.解答题(共30小题) 1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO 于D,点A的坐标为(﹣3,1). (1)求直线AB的解析式; (2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围; (3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值. 2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式. (2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE. (3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由. 3.如图直线?:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值. (2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围. (3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.

二次函数压轴题(含答案)

面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

初二一次函数压轴题复习精讲

初二一次函数压轴题复 习精讲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初二一次函数压轴题复习精讲 1.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C. (1)求直线l2的函数解析式;(2)求△ADC的面积. 2.如图,在平面直角坐标系中,点A的坐标为(2,3),点B在x轴的负 半轴上,△ABO的面积是3. (1)求点B的坐标;(2)求直线AB的解析式; (3)在线段OB的垂直平分线m上是否存在点M,使△AOM得周长最 短?若存在,直接写出点M的坐标;若不存在,说明理由. (4)过点A作直线AN与坐标轴交于点N,且使AN=OA,求△ABN的 面积. 3.如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6, 动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x 轴垂直. (1)求点C的坐标,并回答当x取何值时y1>y2? (2)求△COB的面积; (3)是否存在点P,使CP将△COB分成的两部分面积之比为1: 2?若存在,请求出点P的坐标;若不存在,请说明理由. (4)设△COB中位于直线m左侧部分的面积为s,求出s与x之 间函数关系式. 4.如图,在平面直角坐标系xOy 中,长方形OABC的顶点A C 、的坐标分别为 (3,0),(0,5).(1)直接写出点B的坐标; (2)若过点C的直线CD交AB边于点D,且把长方形OABC的周长分为1:3两部分,求直线CD的解析式;(3)设点P沿O A B C ---的方向运动到点C (但不与点O C 、重合),求△OPC的面积y与点P所行路程x之间的函数关系式及自变量x的取值范围 A C B x y O

中考数学—反比例函数的综合压轴题专题复习含详细答案

中考数学—反比例函数的综合压轴题专题复习含详细答案 一、反比例函数 1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数 (m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于 D. (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值; (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值; (2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得, 所以一次函数解析式为y= x+ , 把B(﹣1,2)代入y= 得m=﹣1×2=﹣2; (3)解:如下图所示: 设P点坐标为(t,t+ ), ∵△PCA和△PDB面积相等, ∴? ?(t+4)= ?1?(2﹣t﹣),即得t=﹣,

∴P点坐标为(﹣,). 【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到? ?(t+4)= ?1?(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标. 2.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣ 2),与y轴交于点C. (1)m=________,k1=________; (2)当x的取值是________时,k1x+b>; (3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标. 【答案】(1)4; (2)﹣8<x<0或x>4 (3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4). ∴CO=2,AD=OD=4. ∴S梯形ODAC= ?OD= ×4=12, ∵S四边形ODAC:S△ODE=3:1, ∴S△ODE= S梯形ODAC= ×12=4,

一次函数压轴题经典培优

一次函数压轴题训练 典型例题 题型一、A卷压轴题 一、A卷中涉及到的面积问题 例1、如图,在平面直角坐标系xOy中,一次函数 12 2 3 y x =-+与x轴、y轴分别相交于点 A和点B,直线 2 (0) y kx b k =+≠经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分. (1)求△ABO的面积; (2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。

练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :1 2 1 +=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。 (1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。 2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运 动(0y 2 (2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积(10分) A B C O D x y 1 l 2 l

二、A 卷中涉及到的平移问题 例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。 ①直线y=43x-8 3经过点C ,且与x 轴交与点E ,求四边形AECD 的面积; ②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线1l 经过点F ?? ? ??- 0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位 交x 轴于点M ,交直线1l 于点N ,求NMF ?的面积.

最新数学八级与一次函数有关的压轴题word版本

一次函数压轴题 1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1). (1)求直线AB的解析式; (2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围; (3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值. 2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证: BE=DE.(3)如图3,在(1)的 条件下,直线AC交x轴于M, P(,k)是线段BC上一点, 在线段BM上是否存在一点N, 使直线PN平分△BCM的面积? 若存在,请求出点N的坐标;若 不存在,请说明理由.

3.如图直线?:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由. 4.如图,在平面直角坐标系xoy中,点A(1,0),点B(3,0),点,直线l经过点C, (1)若在x轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式; (2)若在x轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在x轴上方直线l上有且只有一个点在函数的图形上,求直线l所表达的函数关系式.

中考二次函数压轴试题分类汇编及答案(1)

中考二次函数压轴题分类汇编 一.极值问题 1.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标. 解:(1)由题设可知A(0,1),B(﹣3,), 根据题意得:,解得:, 则二次函数的解析式是:y=﹣﹣x+1; (2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0). ∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+, 则当x=﹣时,MN的最大值为; (3)连接MN、BN、BM与NC互相垂直平分, 即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC, 即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1, 故当N(﹣1,4)时,MN和NC互相垂直平分.

点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用 二次函数的性质可以解决实际问题中求最大值或最小值问题. 2.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标. 考点:二次函数综合题. 分析:(1)利用待定系数法求出抛物线的解析式; (2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值; (3)△OMD为等腰三角形,可能有三种情形,需要分类讨论. 解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中, 得, 解得 ∴该抛物线的解析式为y=x2+x﹣4. (2)令y=0,即x2+x﹣4=0,解得x 1=﹣4,x 2 =2, ∴A(﹣4,0),S △ABC =ABOC=12. 设P点坐标为(x,0),则PB=2﹣x. ∵PE∥AC, ∴∠BPE=∠BAC,∠BEP=∠BCA, ∴△PBE∽△ABC, ∴,即, 化简得:S △PBE =(2﹣x)2.

中考数学二次函数压轴题精编(含答案)

(2010湖北咸宁)16.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点, 与反比例函数k y x =的图象相交于C ,D 两点,分别过C ,D 两 点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE . 有下列四个结论: ①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是 .( 把你认为正确结论的序号都填上) (2010江苏徐州)25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函 数y= x m 的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-x m <0的解集(直接写出答案). 1. (2009遂宁)把二次函数34 12+--=x x y 用配方法化成()k h x a y +-=2 的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 2. (2009嘉兴)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ ) 3. (2009烟台)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函 数a b c y x ++= 在同一坐标系内的图象大致为( ) 4. (2009黄石)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示, 下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0, 其中正确结论的个数为( ) O y x 1 -1A x y O 1 -1 B x y O 1 -1 C x y O 1 -1 D 1- 1 O x y (第11题图) y x O y x O B . C . y x O A . y x O D . A B O x y (第21题) 2 1 2 3 -3 -1 -2 1 3 -3 -1 -2 y x D C A B O F E (第16题)

一次函数压轴题含答案

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等 腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式. (2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM 上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由. 2.如图直线:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0) (1)求k的值. (2)若P(x,y)是直线在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围. (3)当点P运动到什么位置时,△OPA的面积为9,并说明理由. 3.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C. (1)若直线AB解析式为y=﹣2x+12, ①求点C的坐标; ②求△OAC的面积. (2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q 分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由. 4.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点. (1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式; (2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标; (3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由. 5.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合. (1)求点F的坐标和∠GEF的度数; (2)求矩形ABCD的边DC与BC的长; (3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围. 6.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A 点的坐标是(1,0).

中考二次函数压轴题及答案

二次函数压轴题精讲 1.二次函数综合题 (1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用 将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

例1. 已知:如图,在平面直角坐标系中,直线与x轴、y轴的交点分 别为A、B,将∠对折,使点O的对应点H落在直线上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线上是否存在点P,使得四边形为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线的交点为T,Q为线段上一点,直接写出﹣的取值范围.

2.如图,直线2与抛物线26(a≠0)相交于A(,)和B(4,m),点P是线 段上异于A、B的动点,过点P作⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△为直角三角形时点P的坐标.

初二一次函数压轴题整理

初二一次函数压轴题复习精讲 1.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积. 2.如图,在平面直角坐标系中,点A的坐标为(2,3),点B在x轴的负半轴上,△ABO的面积是3. (1)求点B的坐标;(2)求直线AB的解析式; (3)在线段OB的垂直平分线m上是否存在点M,使△AOM得周长最短?若存在,直接写出点M的坐标;若不存在,说明理由. (4)过点A作直线AN与坐标轴交于点N,且使AN=OA,求△ABN的面积.3.如图,直线OC 、BC的函数关系式分别是 y1=x和y2=-2x+6,动点P (x,0)在OB上运动(0<x<3),过点P 作直线m与x轴垂直. (1)求点C的坐标,并回答当x取何值时y1>y2? (2)求△COB的面积; (3)是否存在点P,使CP将△COB分成的两部分面积之比为1:2?若存在,请求出点P的坐标;若不存在,请说明理由. (4)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式. 4.如图,在平面直角坐标系xOy 中,长方形OABC的顶点A C 、的坐标分别为(3,0), (0,5).(1)直接写出点B的坐标; (2)若过点C的直线CD交AB边于点D,且把长方形OABC的周长分为1:3两部分,求直线CD的解析式;(3)设点P沿O A B C ---的方向运动到点C(但不与点 O C 、重合),求△OPC的面积y与点P所行路程x之间的函数关系式及自变量x的取值范围 A C B x y O

5.已知直线y kx b =+经过点223,5M ? ? ???、120,5N ?? ?? ?.(1)求直线MN 的解析式; (2)当0y >时,求x 的取值范围; (3)我们将横坐标、纵坐标均为整数的点称为整数点.直接写出此直线与两坐标轴围成的三角形的内部(不包含边界)的整数点的坐标. 6.在平面直角坐标系xoy 中,直线m x y +-=经过点)0,2(A ,交y 轴于点B ,点D 为x 轴上一点,且1=?ADB S (1)求m 的值 (2)求线段OD 的长 (3)当点E 在直线AB 上(点E 与点B 不重 合),EDA BDO ∠=∠,求点E 的坐标 7.已知一次函数y=kx+b ,y 随x 增大而增大,它的图象经过点(1,0)且与x 轴的夹角为45°, (1)确定这个一次函数的解析式; (2)假设已知中的一次函数的图象沿x 轴平移两个单位,求平移以后的直线及直线与y 轴的交点坐标. 8.如图①所示,直线l1:y=3x+3与x 轴交于B 点,与直线l2交于y 轴上一点A ,且l2与x 轴的交点为C (1,0). (1)求证:∠ABC=∠ACB ; (2)如图②所示,过x 轴上一点D (-3,0) 作DE ⊥AC 于E ,DE 交y 轴于F 点,交AB 于G 点,求G 点的坐标. (3)如图③所示,将△ABC 沿x 轴向左平移, AC 边与y 轴交于一点P (P 不同于A 、C 两点), 过P 点作一直线与AB 的延长线交于Q 点,与x 轴交于M 点,且CP=BQ ,在△ABC 平移的过程中,线段OM 的长度是否发生变化?若不变,请求出它的长度;若变化,确定其变化范围.

2020中考数学二次函数压轴题(含答案)

中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为.

2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 解答: 解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程: x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有:

相关文档
最新文档