雷达原理笔记之线性调频连续波雷达测距测速原理

雷达原理笔记之线性调频连续波雷达测距测速原理
雷达原理笔记之线性调频连续波雷达测距测速原理

1 雷达原理笔记之LFMCW雷达测距测速

1 雷达原理笔记之LFMCW雷达测距测速

1.1 单边扫频锯齿波

1.1.1 静止目标回波分析

1.1.2 运动目标回波分析

1.1.3 优缺点分析

1.2 双边扫频三角波

1.2.1 运动目标回波分析

调频连续波雷达在当今的雷达行业仍占有较高的地位。由于其无盲区测距的巨大优势,现在人们更多地将其应用在车载雷达行业。

调频连续波雷达现在主要有单边扫频(锯齿波)和双边扫频(三角波)两种调制形式。

1.1 单边扫频锯齿波

上图就是典型的单边扫频连续波雷达的图像,调频斜率。1.1.1 静止目标回波分析

静止目标(或者径向速度为0)的目标没有多普勒频移,因此回波信号在频率轴没有频移而只是在时间上延后时间。雷达接收机前端将发射信号和回波信号进行混频得到差拍频率。有如下关系式:

由此可以解得:

由此便可求出距离目标的距离。而静止目标(或者径向速度为0)。与脉冲体制雷达一样,单边扫频锯齿波雷达同样存在蹴鞠模糊问题:

当回波信号的时间延迟大于单边扫频锯齿波雷达的周期时会出现距离测量的模糊现象。真实目标距离与测量值相差整数个最大不模糊距离()。

1.1.2 运动目标回波分析

由上图可以清楚地看出,目标的多普勒频移、差拍频率以及回波延时,满足如下关系:

进一步整理,得到:

1.2 双边扫频三角波

上图就是典型的单边扫频连续波雷达的图像,调频斜率。

1.2.1 运动目标回波分析

根据上图可以清楚的看出、、、有如下关系:

雷达测速与测距

雷达测速与测距标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分辨力取决于信号带宽。对于给定的雷达系统,可达到的 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大,在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,B=?f=1/τ,此处,τ为发射脉冲宽度。因此,对于简单的脉冲雷达系统,将有 δr=c 2τ() 在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率分脉冲功率和平均功率。雷达在发射脉冲信号期间内所输出的功率称脉冲功率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值,用Pav表示。它们的关系为 P tτ=P av T r()脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨力,因而能较好地解决作用距离与分辨能力之间的矛盾。 在脉冲压缩系统中,发射波形往往在相位上或频域上进行调制,接收时将回波信号加以压缩,使其等效带宽B满足B=?f?1/τ。令τ0=1/B,则 δr=c 2τ0() ()式中,τ0表示经脉冲压缩后的有效脉宽。因此脉冲压缩雷达可用宽度τ的发射脉冲来获得相当于发射有效宽度为τ0的简单脉冲系统的距离分辨力。发射脉冲宽度τ跟系统有效(经压缩的)脉冲宽度τ0的比值便成为脉冲压缩比,即 D=τ τ0 ()则

连续波雷达测速测距原理.doc

连续波雷达测速测距原理 一.设计要求 1、当测速精度达到s,根据芯片指标和设计要求请设计三角调频 波的调制周期和信号采样率; 2、若调频信号带宽为50MHz,载频 24GHz,三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35(m/s),请用 matlab 对算法进行仿真。 二.实验原理和内容 1.多普勒测速原理 x a (t) x(n) FFT P(k ) 峰值f d A/D 谱分析搜索 图频域测速原理 f d max max | f m f d | f s / 2N v r max f d max / 2 f s / 4N/ 4T 依据芯片参数,发射频率为24GHz,由上式可以得出,当测速精度达到 s 时,三角调频波的调制周期可以计算得,T= 信号的采样率,根据发射频率及采样定理可设fs=96GHz。2.连续波雷达测距基本原理 设天线发射的连续波信号为:①x T f0 (t ) cos(2 f0 t0 ) ] 则接收的信号为:② x R f0 (t ) cos[2 f 0 (t t r ) 0 若目标距离与时间关系为:③R ( t ) R 0 v r t

则延迟时间应满足以下关系 :④ t 2 v t) r ( R c r v r 将④代入②中得到 x R f 0 (t ) cos{ 2 f 0 [ t 2 (R 0 v r t )]0 } c v r cos[2 ( f 0 f d 0 )t 2 f 0 2R 0 ] c f d 0 2 v r f 其中 c 根据上图可以得到,当得到 t ,便可以实现测距,要想得到 t ,就必须测得 fd 。 已知三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35( m/s),则可以通过 :③ R ( t ) R 0 v r t ④ t 2 v t ) r ( R c 0 r v r 分别计算出向三个目标发出去信号,由目标反射回来的信号相对 发射信号的延迟时间。

调频连续波雷达简要分析

连续波调频雷达 雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达,常规脉冲雷达是周期性地发射高频脉冲。而连续波雷达即是发射连续波信号的雷达,它的信号可以是单频、多频或者调频(多种调制规律如三角形、锯齿波、正弦波、噪声和双重调频或者是编码调制)的。单频连续波雷达可用于测速,多频(至少三个频点)和调频连续波雷达可用于测速和测距。它的优点是不存在距离盲点、精度高、带宽大、功率低、简单小巧,缺点是测距量程受限、存在多普勒距离耦合和收发很难完全隔离。 f 锯齿波调频 频率-时间特性曲线 调频连续波雷达参数与性能分析: 1、频率: 13.6GHz (±15MHz) (Ku 波段) 2、扫频带宽F ?: 30MHz 距离分辨率:m F C R 51030210326 8 =???==?? 3、调制周期T : ms 06.1=T 理论最大量程:Km C T R 1591031053.02 max 83=???=?=- 0 调制周期T 带宽 F t

4、实际回波最大迟延: s d m 16.0t max = 实际最大量程: Km C R d 241031008.02 t max 83max =???=?= -‘ 实际最大差拍频率: M T t F d b 53.4f max max =?=? 5、相干处理时间间隔:ms s d 9.0m 16.0ms 06.1t -T T max Coherent =-== f 锯齿波调频 频率-时间特性曲线 可采点数: 36000m 9.040T Fs N Coherent =?=?=s MHz 实际频率分辨率: Hz MHz N Fs 111136000 400f === 对应的实际距离分辨率:m F C T R 89.5103021111 1031006.120f 6 83=??????=??= ??‘ (量程越小,差拍频率越小,可获得的越大的相干处理时间,能该晒距离分辨率) 6、速度多普勒耦合: 速度较小不考虑,采用锯齿波调频信号时,一般直接将其影响加到系统误差中去。若采用三角波调频倒可以再信号处理时对其进行补偿。 0 调制周期T 带宽 F t

10米超声波测距

超声波测距仪的制作(常规器件) 这里介绍一款国外的不使用单片机的超声波测距仪。本超声波测距仪通过测量超声波发射到反射回来的时间差来测量与被测物体的距离。可以测量0.35-10m的距离。实物图如下: 原理图如下: 一、电路原理 1 超声波发射电路 由两块555集成电路组成。IC1(555)组成超声波脉冲信号发生器,工作

周期计算公式如下,实际电路中由于元器件等误差,会有一些差别。 条件: RA =9.1MΩ、 RB=150KΩ、 C=0.01μF TL = 0.69 x RB x C = 0.69 x 150 x 103 x 0.01 x 10-6 = 1 msec TH = 0.69 x (RA + RB) x C = 0.69 x 9250 x 103 x 0.01 x 10-6 = 64 msec IC2组成超声波载波信号发生器。由IC1输出的脉冲信号控制,输出1ms频率40kHz,占空比50%的脉冲,停止64ms。计算公式如下: 条件: RA =1.5KΩ、 RB=15KΩ、 C=1000pF TL = 0.69 x RB x C = 0.69 x 15 x 103 x 1000 x 10-12 = 10μsec TH = 0.69 x (RA + RB) x C = 0.69 x 16.5 x 103 x 1000 x 10-12 = 11μsec f = 1/(TL + TH) = 1/((10.35 + 11.39) x 10-6) = 46.0 KHz

IC3(CD4069)组成超声波发射头驱动电路。 2 超声波接收电路 超声波接收头和IC4组成超声波信号的检测和放大。反射回来的超声波信号经IC4的2级放大1000倍(60dB),第1级放大100倍(40dB),第2级放大10倍(20dB)。由于一般的运算放大器需要正、负对称电源,而该装置电源用的是单电源(9V)供电,为保证其可靠工作,这里用R10和R11进行分压,这时在IC4的同相端有4.5V的中点电压,这样可以保证放大的交流信号的质量,不至于产生信号失真。 C9、D1、D2、C10组成的倍压检波电路取出反射回来的检测脉冲信号送至IC5进行处理。 IC5、IC6、IC7、IC8、IC9组成信号比较、测量、计数和显示电路,即比较和测量从发出的检测脉冲和该脉冲被反射回来的时间差。它是超声波测距电路的核心,下面分析其工作原理。

超声波测距电路图

超声波测距电路图 超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振 来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。 < 三、超声波测距系统的电路设计 图2 超声波测距电路原理图

简易超声波测距仪的制作

福建电脑 2006年第7期1.引言 设计一个超声波测距仪,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量、移动机器人、安全线提示,银行及取款机的一米线提示等场合。要求测量范围在0.10 ̄4.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。2.测量原理 超声波为直线传播方式,频率高,反射能力强;在空气中传播速度为340m/s,容易控制;受环境影响小,因此采用超生波传感器作为距离探测的"眼睛"。用于测距领域的超声波频率为 20kHz~400kHz的频段, 空气介质中常用为40kHz。避障系统的超声波测距通常运用超声波的反射原理,采用 渡越时间法(TOF,timeofflight) ,通过测量超声波发射到返回之间的时间间隔来计算距离,其示意图如图2-3所示。由于时间长度与声音通过的距离成正比关系,当发射超声波传感器发出一个短暂的脉冲波时,记时开始;当接收超声波传感器接收到第一个回波脉冲后,计时立即停止。此时,记录得到的时间值为t,那么从超声波发射位置到障碍物之间的实际距离就可按式(2.2)求得。 L=ct/2(I) 式(I)中:L为超声波发射位置到障碍物之间的实际距离; t为超声波发生器发出超声波到接收到超声波的时 间间隔; c为在空气中传播的速度。 由于超声波在空气中传播速度c与环境温度有关,其关系见表2.1 , 因此在要求精度较高的场合中,要进行温度补偿,补偿方法有二种,其中一种用近似表示为式(II)所示: c=331.5+0.607t(m/s)(II) 表2.1波速与温度关系 另一种补偿方法就是用查表法,查上面温度与声速的对应 表,再适当插值补偿。这种方法精确度较高。在这里考虑到设计上的简易性,没有进行补偿,能达到简单应用的基本要求。3电路结构 根据超声波测距基本原理,可以设计出超声波测距系统的组成框图如图3-1所示。 3.1单片机系统及显示电路 单片机用P1.0端口输出超声波换能器所需的40kHz方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用 74LS244驱动, 位码用PNP三极管8550(可用9012替代)驱动。单片机系统及显示电路如图2所示。 图2单片机及显示电路 3.2超声波发射电路 超声波发射电路原理图如图3所示。发射电路主要由反向器74LS04和超声波换能器T构成,单片机P1.0端口输出的40kHz方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极。用这种推挽形式将方波信号加到超声波换能器两端,可以提高超声波的发射强度。输出端采用两个反向器并联,用以提高驱动能力。上拉电阻R10、R11一方面可以提高反向器74LS04(输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡的时间。我们在实验制作和电路改进中,为了增加测量测量,可以考虑提高接收的灵敏度,但是灵敏度也并不是越高就越好。接收灵敏度过高,容易引起自激,结果反而不好,但是其实我们可以从增加发射功率方面着手,我们只要在发射头两端加个线圈。线圈可以自己用0.01mm的铜丝在小磁环绕成大致初级10匝,次级40匝左右。 压电式超声波换能器是利用压电晶体的谐振来工作的。超声波换能器内部结构如图4所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动产生超声波,这时它就是一个超声波发生器;反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转化为电信号,这时它就成为超声波接收换能器了。超声波发射换能器与接收换能器其结构上稍有不同,使用时应分清器件上的标志(一般器件上有标明是T还是R)。 简易超声波测距仪的制作 李永鉴,刘国安 (五邑大学信息学院广东江门529020) 【 摘要】:本系统利用AT89S51产生40kHz的频率驱动超声波换能器的发射头,接收头收到信号后,经CX20106A芯片进行放大、限幅、滤波、整形、比较后输出低电平送到单片机的外部中断0申请中断,单片机响应中断请求,取得定时器内的时间进行距离计算,用四位一体的数码管显示测出的距离,并可根据设定报警距离进行报警。制成的超声波测距仪性能良好,结构简单,达到了方便、快捷、准确地测量距离的目的,有较好的推广价值。 【关键词】:超声波传感器;测距;CX20106A;数码管显示;单片机图3超声波发射电路原理图图4超声波换能器结构图 131

超声波测距电路图

超声波测距电路图超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 2、压电式超声波发生器原理

压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。< 三、超声波测距系统的电路设计 图2 超声波测距电路原理图 本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。电路原理图如图2所示。其中只画出前方测距电路的接线图,左侧和右侧测距电路与前方测距电路相同,故省略之。

提高线性调频连续波雷达测距精度的ZFFT算法

航天电子对抗第22卷第1期 收稿日期:2005-07-06;2005-10-18修回。 作者简介:张红(1982-),女,硕士研究生,主要研究方向是雷达信号处理。 提高线性调频连续波雷达测距精度的ZFFT 算法 张 红,王晓红,郭 昕 (北京理工大学电子工程系,北京 100081) 摘要: 线性调频连续波(LFM CW )雷达在理论上有很高的测距精度,然而在实际系统中,由于FFT 变换的栅栏效应,使得其距离分辨力和测距精度处于同一数量级,满足不了近距离测距时高精度的要求。在传统的FFT 处理的基础上,采用ZFFT 算法,在运算量增加不多的情况下,完成对中频回波主瓣的局部细化,大大提高了LFM CW 雷达的测距精度,以满足高精度测距的要求。 关键词: 雷达;测距;LFM CW;ZFFT 中图分类号: TN958.94 文献标识码: A Improving ra nge measuring precision o f LFMC W radar usin g ZFFT method Zhang Hong,Wang Xiaohong,Guo Xin (Department of Electronic and Engineering,Beijing Institute of Technology ,Beijing 100081,China) Abstract:T he L inea r Fr equency M o dulated Continuous W ave (L FM CW )Radar has high theor etical r ang e measuring precision.But its practical range precision is of the same mag nitude as the rang e resolut ion because of the inher ent frequency space of FFT ,w hich can not satisfy the high precisio n requirement fo r the near r ang e measuring.ZF FT met ho d is adopted to r educe fr equency space of the main lo be of echo r ang e spectr um o n the FFT with incr easing less operat ion.T his method can gr eatly improv e the range precisio n of L FM CW r adar and satisf y the pr actical needs o f high precisio n r adar rang measuring. Key words:rada r;range measur ing;L FM CW;ZFF T 1 引言 线性调频连续波(LFM CW)能实现较高的距离和多普勒频率的分辨力,在各种近距离雷达,防撞雷达,末制导雷达,远距离天波、地波雷达以及飞机高度表中已得到广泛应用。LFM CW 雷达回波中频的处理普遍采用数字信号处理方式来获取回波中频的距离谱,然后根据一定的判决准则来判定目标的有无,并通过计算过门限的目标频谱值来测量目标的距离[1] ,其系统 框图如图1所示。 该方法是通过目标的回波和目标发射波形混频后得到差拍信号,对差拍信号进行FFT 运算,计算出回波中频在距离轴上的功率谱曲线(即距离谱),可以充分利用LFM CW 雷达的高距离分辨和高测距精度的特点,适用于更为复杂的目标环境,是微波、毫米波测 图1 L FM CW 雷达系统示意图 距和成像的重要手段。但是,由于FFT 的 栅栏效应 [2-3],使得通过FFT 变换得到的距离谱具有固定的采样间隔 R ( R 为雷达的距离分辨力),从而产生 R /2的测距误差。当测量的距离较远时, R R ,测量误差远远小于目标的距离,相对误差较小;但当测量距离较近时, R !R ,相对测量误差较大。为此,如何克服FFT 的栅栏效应、提高近距离的测距精度的问题,就成为LFMCW 测距雷达重要的研究课题。本文采用ZFFT 对距离谱进行局部细化,可在增加较少运算量的情况下,大幅提高LFM CW 测距雷达的测距精度。 48

激光测速与雷达测速的原理比较

激光测速与雷达测速的原理与比较 多谱勒效应和雷达测速 你一定有这样的经验,当你站在马路旁边,即使没有去注视路面上车辆的行驶的情况,单凭耳朵的听觉判断,你能感到一辆汽车正在驶过来,或者离你而去. 这里面当然依靠汽车行驶的声音是渐强还是渐弱,但细细想想,主要还是根据汽车行驶的车轮声或喇叭声调的变化. 原来,车辆驶近时,声音要变尖,也就是说,音调要高些;开过以后,远离的时候,声音会越来越低. 为什么会这样呢?原来,声音的形成,首先是由于发声体的振动,然后在它周围的空气中形成了一会疏一会密的声波,传到耳朵里,使耳膜随着它同样地振动起来,人们就听到了声音. 耳膜每秒钟振动的次数多,人就感到音调高;反之,耳膜每秒钟振动的次数少,人就感到音调低. 照这样说,声源发出什么声,我们听到的就是什么调. 问题的关键在于汽车在怎样的运动. 汽车匀速驶来,轮胎与地面摩擦产生的声波传来时“疏”、“密”、“疏”、“密”是按一定规律,一定距离排列的,可当汽车向你开来时,它把空气中声波的“疏”和“密”压得更紧了,“疏”、“密”的距离更近了,人们听到的音调也就高了. 反之,当汽车离你远去时,它把空气中的疏密拉开了,听到的声音频率就小了,音调也就低了. 汽车的速度越大,音调的变化也越大. 在科学上,我们把这种听到音调与发声体音调不同的现象,称为“多谱勒效应”. 有趣的是,雷达测速计也正是根据多谱勒效应的原理研制出来的. 我们知道,小汽车可以开得很快,可是为了保证安全,在某些路段上,交通警察要对车速进行限制. 那么,在汽车快速行进时,交通警察是怎样知道它们行驶的速度呢?最常用的测速仪器叫雷达测速计,它的外形很像一支大型信号枪,它也有枪筒,手柄、板机等部件,在枪的后面有一排数码管. 把枪口对准行驶的车辆,一扣板机,一束微波就射向行驶中的车辆. 微波是波长很短的无线电波,微波的方向性很好,速度等于光速. 微波遇到车辆立即被反射回来,再被雷达测速计接收. 这样一来一回,不过几十万分之一秒的时间,数码管上就会显示出所测车辆的车速. 它所依据的原理依然是“多谱勒效应”. 雷达测速计发出一个频率为1000 MHz的脉冲微波,如果微波射在静止不动的车辆上,被反射回来,它的反射波频率不会改变,仍然是1000 MHz. 反之,如果车辆在行驶,而且速度大,那么,根据多谱勒效应,反射波频率与发射波的频率就不相同. 通过对这种微波频率微细变化的精确测定,求出频率的差异,通过电脑就可以换算出汽车的速度了. 当然,这一切都是自动进行的. 雷达测速计的测速范围大约在每小时24 km到199 km之间,测速范围比较大,精确度也相当高,车速在每小时100 km/h,误差不会超过1 km/h. 测速雷达朝向公路,可以测量车速,如果指向天空,就可以测云层的高度,测云层的速度. 当然,要测几十千米外,甚至上百千米外的飞机,也是这个原理,只不过要向它扫描的空间连续发射微波束,这些微波束遇到飞机再反射回来,已经极其微弱了,要想把它接收到,分辨清并计算出来,就很困难了,这就需要一个庞大的灵敏的雷达. 雷达测速与激光测速的比较

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

雷达测距、测角、测速基本原理

雷达测距、测角、测速基本原理 目标在空间的位置可以用多种坐标系表示。最常见的是直角坐标系,空间任一点目标P 的位段可用x,y,z三个坐标值来确定。在雷达应用中,测定目标坐标常采用极(球)坐标系统. 目标的斜距R为雷达到目标的直线距离OP;方位角a为目标的斜距R在水平面上的投影OB与某一起始方向(一般是正北方向)在水平面上的夹角;仰角B为斜距R与它在水平面上的投影OB在沿垂直面上的夹角,有时也称为倾角或者高低角。 如果需要知道目标的高度和水平距离,那么利用圆柱坐标系就比较方便。在这种坐标系中.目标的位由三个坐标来确定:水平距离D;方位角。;高度H, 球坐标系与圆柱坐标系之间的关系如下: D=RcosB H=RsinB a=a 上述这些关系仅在目标的距离不太远时是正确的;当距离较远时,由于地面的弯曲,必须作适当的修正。 现以典型的脉冲雷达为例来说明雷达测量的基本工作原理。它由发射机、发射天线、接收机和接收天线组成。发射电磁波中一部分能量照射到雷达目标上,在各个方向上产生二次散射。雷达接收天线收集散射回来的能量,并送至接收机对回波信号进行处理,从而发现目标,提取目标位置、速度等信息。实际脉冲雷达的发射和接收通常共用一个天线,以简化结构.减小体积和重量。 脉冲雷达采用的发射波形通常是高频脉冲串.它是由窄脉冲调制正弦载波产生的,调制脉冲的形状一般为矩形,也可采用其他形状。目标与雷达的斜距由电磁波往返于目标与雷达之间的时间来确定;目标的角位置由二次散射波前的方向来确定;当目标与雷达有相对运动时,雷达所接收到的二次散射波的载波频率会发生偏移,测量载频偏移就可以求出目标的相对速度,并且可以从固定目标中区别出运动目标来。

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

线性调频连续波合成孔径雷达成像算法

第6卷 第3期 信 息 与 电 子 工 程 Vo1.6,No.3 2008年6月 INFORMATION AND ELECTRONIC ENGINEERING Jun.,2008 文章编号:1672-2892(2008)03-0167-05 线性调频连续波合成孔径雷达成像算法 杨 蒿,蔡竟业 (电子科技大学 通信与信息工程学院140教研室,四川 成都 610054) 摘 要:线性调频连续波(LFMCW)合成孔径雷达(SAR)因体积小,重量轻,成本相对低,成为 近来研究的热点。连续波SAR 的回波信号通常经过相干解调处理。针对其独特的应用背景和信号模 型,对现有的各种成像处理算法进行了讨论和比较,总结出其优缺点及应用范围。并对LFMCW- SAR 今后的发展提出了展望。 关键词:线性调频连续波;合成孔径雷达;成像算法 中图分类号:TN958 文献标识码:A Linear Frequency Modulated Continuous Wave-Synthetic Aperture Radar Imaging Algorithm YANG Hao,CAI Jing-ye (School of Communication and Information Engineering,UESTC,Chengdu Sichuan 610054,China ) Abstract:Linear Frequency Modulated Continuous Wave(LFMCW)-Synthetic Aperture Radar(SAR) has become a focus in recent researches,due to its compactness and low cost. This paper analyses and compares various imaging algorithms,based on the special application background and signal model derived from its dechirped raw data. Then the advantages,disadvtanges and application fields of the algorithms are presented. Future development of LFMCW SAR is prospected. Key words:Linear Frequency Modulated Continuous Wave;Synthetic Aperture Radar;imaging algorithm 目前机载对地观测受到越来越广泛的关注,其应用领域不仅涵盖搜索救援、区域监测、灾害监视与控制等民用方面,还包括小型无人机对地侦察等军事领域。合成孔径雷达与光电成像设备相比可以全天候、全天时工作,如在云雨雾等恶劣气候及夜晚条件下工作,而且具有实时大面积连续成像能率[1]。但是,传统的脉冲SAR 由于其设备复杂,体积大,重量重,成本相对较高等缺陷限制了其应用层面,特别是不能安装到小型飞机如直升机和无人机上完成一些紧急任务,也不适于低成本的民用项目[2]。因此,LFMCW ?SAR [3]以其紧凑、低耗、相对便宜且高分辨力的优点逐渐发展起来[4?10]。连续波SAR 概念自1988年被提出,并应用于飞机高度计之后,特别是连续波SAR 在发射能量一定的前提下,与脉冲SAR 相比拥有更低的发射功率,并且具有更好的隐蔽性,发射机也可以使用全固态设计,使得系统具备了高可靠性和较少维护的优点[11?14]。同时,连续波SAR 接收机前端通过相干混频处理得到差频信号,在成像带较窄的情况下,可以大大降低信号带宽,从而降低对信号高速采集与处理的需求。 本文描述了LFMCW ?SAR 的去调频信号模型,在该信号模型的基础上,讨论针对去调频信号的各种成像处理算法,对各种算法进行了比较总结,最后对未来LFMCW ?SAR 的发展进行了展望。 1 LFMCW ?SAR 的信号模型 LFMCW ?SAR 接收到的回波信号经去斜、下变频后可表示为: 2 022444(,;)exp (j )exp [j ()()]exp [j ()]c r r a r t r t c t c r k k S t t r C r t r r r r c c c λπππ=????? (1) 收稿日期:2007-11-22;修回日期:2008-01-08

雷达测速测距原理简介

雷达测速测距原理简介 一、FMCW模式下测速测距 1、FMCW模式下传输波特征 调频连续波雷达系统通过天线向外发射一列线性调频连续波,并接收目标的反射信号。发射波的频率随时间按调制电压的规律变化。 2、FMCW模式下基本工作原理 一般调制信号为三角波信号,发射信号与接收信号的频率变化如图所示。 反射波与发射波的形状相同。只是在时间上有一个延迟,t与目标距离R的关系为: Δt=2R/c公式1 其中 Δt:发射波与反射波的时间延迟 R:目标距离 c:光速c=3×108m/s 发射信号与反射信号的频率差为混频输出中频信号频率f如图所示:

根据三角关系,得: ΔtT2= ΔfB公式2 其中: Δf:发射信号与反射信号的频率差为|f1-f0| T:调制信号周期——1.5ms B:调制带宽——700MHz 由以上公式1和公式2得出目标距离R为: R=cTΔf 4B公式3 3、FMCW模式下测距原理 由公式3可以得出,目标距离R与雷达前端输出的中频频率f成正比 4、FMCW模式下测速原理 当目标与雷达并不是相对静止时,也就是有相对运动时,反射信号中包含一个由目标的相对运动所引起的多普勒频移fd,如图所示: 此时发射信号与接收信号的频率差如图所示:

在三角波的上升沿和下降沿分别可得到一个差频,用公式表示为: f+= f-fd 公式4 f-= f+fd 公式5 其中 f为目标相对静止时的中频频率 f+代表前半周期正向调频的差频 f-代表后半周期负向调频所得的差频 fd为针对有相对运动的目标的多普勒频移 根据多普勒效应得: fd=2fc 公式6 其中: 为目标和雷达的径向速度 f0为发射波的中心频率 由公式4、5、6可得: f+f f=+2 公式7 c|f-f|v=2f02 公式8 速度v的符号与相对运动方向有关系,当目标物相对雷达靠近时v为正值。当目标相对雷达离开时v为负值。 由公式3和公式7进一步得出: cTf+fR=4B2 公式9

超声波测距仪毕业设计论文

For personal use only in study and research; not for commercial use 第一章绪论 1.1课题设计目的及意义 For personal use only in study and research; not for commercial use 随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。但就目 前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌一新的测距仪将发挥更大的作用。 For personal use only in study and research; not for commercial use 超声波测距系统主要应用于汽车的倒车雷达、机器人自动避障行走、建筑施工工地以及一些工业现场例如:液位、井深、管道长度等场合。因此研究超声波测距系统的原理有着很大的现实意义。对本课题的研究与设计,还能进一步提高自己的电路设计水平,深入对单片机的理解和应用。 1.2超声波测距仪的设计思路

超声波测速

12 =12×s=0.4s= =9×s=0.3s=vt -t+t v==17.9m/s. 超声波测速 超声波测速 适合作流动物质中含有较多杂质的流体的流速测量,超声多普勒法只是其中一种,还有频差法和时差法等等。 时差法测量沿流体流动的正反两个不同方向发射的超声播到达接收端的时差。需要突出解决的难题是这种情况下,由于声速参加运算(作为分母,公式不好写,我积分不够没法贴图),而声速收温度的影响变化较大,所以不适合用在工业环境下等温度变化范围大的地方。 频差法是时差法的改进,可以把分母上的声速转换到分子上,然后在求差过程中约掉,这就可以避开声速随温度变化的影响,但测频由于存在正负1误差,对于精度高的地方,需要高速计数器。 还有就是回鸣法了,可以有效改进由于计数器正负1误差带来的测量误差。 以上这些东东都是关于流体的流速的超声测量方法。对于移动物体的速度测量多采用超声多谱勒法。 根据声学多普勒效应,当向移动物体发射频率为F的连续超声波时,被移动物体反射的超声波频率为f,f 与F服从多普勒关系。如果超声发射方向和移动物体的夹角已知,就可以通过多普勒关系的v,f,F,c表达式得出物体移动速度v。 设超声波速度为V两次发出超声波的时间间隔为T第一次用时为T1第二次为T2则车速为V1=V×(T2-T1)/T(以上数据均可测出) 超声波测速仪测量车速,图B中P1、P2是测速仪发出的超声波信号,n1,n2... 如图所示,图A是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差测出被测物体的速度。图B中P1、P2是测速仪发出的超声波信号,N1、N2分别是P1、P2由汽车反射回来的信号。设测速仪匀速扫描,

相关文档
最新文档