笛卡尔坐标系下三维非稳态导热微分方程推导

笛卡尔坐标系下三维非稳态导热微分方程推导
笛卡尔坐标系下三维非稳态导热微分方程推导

笛卡尔坐标系下的推导过程:(接PPT 第7页)

① 通过 x=x 、 y=y 、 z=z 三个微元表面而导入微元体的热流量:x Φ、y Φ、z Φ的计算。 根据傅立叶定律得:

dydz x t x ??-=Φλ

dzdx y t y ??-=Φλ

dxdy z

t z ??-=Φλ ② 通过 x=x+dx 、 y=y+dy 、 z=z+dz 三个微元表面而导出微元体的热流量dx x +Φ 、

dy y +Φ、dz z +Φ的计算。

根据傅立叶定律得:

dx dydz x

t x dx x x x dx x )(??-??+Φ=?Φ?+Φ=Φ+λ 需要理解好热流量Φ的意义,Φ(x,y,z)是一个空间场函数,它是x 、y 、z 的函数。(此处有一个难点,就是如何在x+dx 微元面处运用傅里叶定律,dx x +Φ并不能直接求得。方法是先求出x 处的X Φ,再运用微分增量推移至x+dx 处的dx x +Φ,类似于一次函数中的斜率乘间距=增量,你可以把

x ?Φ?理解成斜率,那么dx x ?Φ?就是增量。第二个等号后面是再次运用傅里叶定律。)

dy dzdx y t y dy y y y dy y )(??-??+Φ=?Φ?+

Φ=Φ+λ dz dxdy z

t z dz z z z dz z )(??-??+Φ=?Φ?+Φ=Φ+λ ③列等式

内能增量=导入热流量-导出热流量+内热源生成热

于是,

dxdydz dxdydz t c dz z dy y dx x z y x ?+++Φ+Φ+Φ+Φ-Φ+Φ+Φ=??)()(τ

ρ ρ——密度,dxdydz ρ——微元体的质量

c ——比热容,单位)./(c kg W ?或)./(K kg W

t ——温度场函数;τ——时间;?

Φ——单位时间单位体积内热源生成热

代进去后,消去dxdydz,就可以得到PPT第8页的公式了。

迪卡尔座标各种曲线方程式

1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 此主题相关图片如下:1.jpg 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 此主题相关图片如下:2.jpg 3.螺旋线(Helical curve) 圆柱坐标(cylindrical ) 方程: r=t theta=10+t*(20*360) z=t*3 此主题相关图片如下:3.jpg 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 此主题相关图片如下:4.jpg 5.渐开线 采用笛卡尔坐标系 方程:r=1

ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 此主题相关图片如下:5.jpg 6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 此主题相关图片如下:6.jpg 7.对数曲线 笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 此主题相关图片如下:7.jpg 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 此主题相关图片如下:8.jpg 9.双弧外摆线 卡迪尔坐标 方程: l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 此主题相关图片如下:9.jpg

2020最新部编版版五年级数学上册:笛卡尔坐标系的由来 教学资料

笛卡尔坐标系的由来 关于笛卡尔创建坐标系的过程,有一个生动的小故事,据说有一天,笛卡尔生病卧床,病情很重,尽管如此,他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来,突然,他看见屋顶上的一只蜘蛛,拉着丝垂了下来,一会儿功夫,蜘蛛又顺着丝爬了上去,在上边左右拉丝,蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数组确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把叫出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上有顺序的三个数来表示。反过来,任意给一组三个有顺序的数也可以在空间中找出一点与之对应。同样道理,用一组数(x,y)可以表示平面上的一个点,平面上的一个点也可以用一个有顺序的数组(x,y)来表示。 那么,当笛卡尔创立解析几何时,使用的是哪种坐标系呢?当时,笛卡尔取定一条直线当基线(即现在所说的x轴),再取定一条与基线相交成定角方向的直线(即现在所说的y轴,但当时并没有明确出现y轴,100年后,一个瑞士人(克拉美)才正式引入y轴),他没有要求x轴与y轴互相垂直。所以当初笛卡尔使用的并不是现在我们所用的只限制在第一象限内。“横坐标”和“纵坐标”的名称笛卡尔也没有使用过,“纵坐标”是由莱布尼茨在1694年正式使用的,而“横坐标”到18世纪才由沃尔夫等人引入。至于“坐标”一词,也是莱布尼茨在1692年首次使用的。 可见当初笛卡尔的坐标系并不完善,经过后人不断地改善,才形成了今天的直角坐标系。然而,笛卡尔迈出的最初一步具有决定意义,所以人们仍把后来使用的直角坐标系称为直角坐标系。

非稳态导热习题

第三章 非稳态导热习题 例3.1一腾空置于室内地板上的平板电热器,加在其上的电功率以对流换热和辐射换热的方式全部损失于室内。电热器表面和周围空气的平均对流换热系数为h ,且为常数,室内的空气温度和四壁、天花板及地板的温度相同,均为t f 。电热器假定为均质的固体,密度为ρ,比热为c ,体积为V , 表面积为A ,表面假定为黑体,因其导热系数足够大,内部温度均布。通电时其温度为t 0。试写出该电热器断电后温度随时间变化的数学描述。 [解] 根据题意,电热器内部温度均布,因此可用集中参数分析法处理。 电热器以辐射换热方式散失的热量为: 44r f ()A T T σΦ=- (1) 以对流换热方式的热量为: c f ()hA T T Φ=- (2) 电热器断电后无内热源,根据能量守恒定律,散失的热量应等于电热器能量的减少。若只考虑电热器的热力学能 r c d d T cV ρτ -Φ-Φ= (3) 因此,相应的微分方程式为: 44f f d ()()d T A T T hA T T cV σρτ -+-=- (4) 初始条件为: τ=0, t =t 0 (5) 上述两式即为该电热器断电后温度随时间变化的数学描述。 例 3.2 电路中所用的保险丝因其导热系数很大而直径很小可视为温度均布的细长圆柱体,电流的热效应可视为均匀的内热源。如果仅考虑由于对流换热的散热量,保险丝表面和温度为t f 的周围空气之间的平均对流换热系数为h ,且为常数。试求该保险丝通电后温度随时间的变化规律。 [解] 根据题意,保险丝内部温度均布,因此可用集中参数分析法处理。 保险丝表面以对流换热方式散失的热量为: c f ()hA T T Φ=- (1) 保险丝的内热源为: Q 0=IR 2 (2) 式中:I ——保险丝通过的电流,(A ); R ——保险丝的电阻,Ω。 根据能量守恒,散失的热量与内热源所转变成的热量的和应等于保险丝能量的变化。若只考虑保险丝的热力学能 c 0d d T Q cV ρτ -Φ+= (3)

笛卡尔与直角坐标系

课题:笛卡尔与直角坐标系 一、教学目标 (一)知识与技能 通过展示,系统本节知识,提高知识应用能力; 2.在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系; 3.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。 (二)过程与方法 1.通过图形在直角坐标系的变换, 感悟在直角坐标系中点坐标与图形位置的对应,发展学生的形象思维能力和数形结合意识; 2.通过课前收集与学生介绍,了解笛卡尔与直角坐标系的相关故事,了解数学发展史。 (三)情感态度和价值观 1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维; 2.通过有趣的图形的研究,激发学生对教学学习的好奇心与求知欲,使他们能积极参与数学学习活动。 二、教学重点和难点 1.重点:加深对平面直角坐标系有关知识的了解 2.难点:点坐标与图形位置的对应 三、课前准备 学生课前查找笛卡尔与直角坐标系的相关故事 四、教学过程 (一)创设情境,引出课题 1.欣赏激趣 出示在直角坐标系中动态的笛卡尔心形线让学生欣赏,在学生一片赞叹声中教师引出课题:笛卡尔与直角坐标系 (设计意图:动态的笛卡尔心形线是很美的,容易引发学生对笛卡尔与直角坐标系的兴趣) 2.介绍笛卡尔 由于学生课前做过这方面的功课,所以教师请学生代表上台来介绍笛卡尔及 与直角坐标系的故事。 3.导题:在前几节课中我们学习了平面直角坐标系的有关知识,我们知道点 的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。如果坐标中 的横坐标不变,纵坐标按一定的规律变化,或者横纵坐标都按一定的规律变化, 那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

简介笛卡尔坐标系

简介笛卡尔坐标系 (Cartesian coordinates)(法语:les coordonnées cartésiennes )就是直角坐标系和斜角坐标系的统称。相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。 推广放射坐标系和笛卡尔坐标系平面向空间的推广。相交于原点的三条不共面的数轴构成空间的放射坐标系。三条数轴上度量单位相等的放射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。笛卡尔坐标,它表示了点在空间中的位置,但却和直角坐标有区别,两种坐标可以相互转换。举个例子:某个点的笛卡尔坐标是493 ,454, 967,那它的X轴坐标就是4+9+3=16,Y轴坐标是4+5+4=13,Z轴坐标是9+6+7=22,因此这个点的直角坐标是(16, 13, 22),坐标值不可能为负数(因为三个自然数相加无法成为负数)。 笛卡尔和笛卡尔坐标系的产生据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找出一点P与之对应,同样道理,用一组数(x、y)可以表

笛卡尔坐标系、柱坐标系、球坐标系都有啥区别

笛卡尔坐标系、柱坐标系、球坐标系都有啥区别 什么是坐标系 坐标系,是理科常用辅助方法。为了说明质点的位置、运动的快慢、方向等,必须选取其坐标系。在参照系中,为确定空间一点的位置,按规定方法选取的有次序的一组数据,这就叫做“坐标”。在某一问题中规定坐标的方法,就是该问题所用的坐标系。 坐标系有几种形式 在数学中,坐标系的种类很多,常用的坐标系有以下几种,一是平面直角坐标系(笛卡尔坐标系),二则是平面极坐标系,三是柱坐标系,四是球坐标系坐标系的种类很多。物理学中常用的坐标系,为直角坐标系,或称为正交坐标系。 为什么会有这么多种坐标系,难度不能统一用1种 为什么我们需要多个坐标系统呢?任何一个坐标系统都是无限的,包括了空间中的所有点。所以,我们用任意一个坐标系统,然后规定它是“世界空间”,然后所有的点位置都可以用这个坐标系统来描述了。难道就不能更简单点了么? 实践证明的答案是不能。很多人发现在不同的场景下使用不同的坐标系统更方便。

使用多个坐标系统的原因是,在一个特定的场景上下文中,可以拥有一份确定的信息。也许整个世界上的所有点都可以在一个坐标系里表示,然而,对于一个确定的顶点a,我们可能不知道它在世界坐标中的位置,但是我们可能可以明确它在相对于某些坐标系统中的位置。 比如,有两个相邻的城市A,B。A城市聪明的居民们在代价公认的一个城市的中心建立了坐标原点,然后用罗盘所指的方向来作为坐标轴,而B城市的居民可能在他们的城市中一个任意的位置建立了坐标原点,然后然坐标轴的方向在一个任意的方向,两座城市的居民都觉得他们各自的坐标系统十分便利。然而,这时候有一名工程师被分配了一个任务,要求他在两个城市之间建立第一条公路,而且需要一个地图来清楚地看两个城市以及城市间的所有细节。因此引入了更为便利的第三坐标系,这个坐标系对于两座城市的居民没有任何影响。两座城市中各自的坐标点都需要从本地坐标转换成新的坐标系的坐标来绘制新地图。 几种坐标系有什么区别 笛卡尔坐标系: 平面直角坐标系

传热学传热学--第三章 第三节 一维非稳态导热问题

传热学--第三章第三节一维非稳态导热问题 §3 — 3 一维非稳态导热的分析解 本节介绍第三类边界条件下:无限大平板、无限长圆柱、球的分析解及应用。如何理解无限大物体,如:当一块平板的长度、宽度>> 厚度时,平板的长度和宽度的边缘向四周的散热对平板内的温度分布影响很少,以至于可以把平板内各点的温度看作仅是厚度的函数时,该平板就是一块“无限大”平板。若平板的长度、宽度、厚度相差较小,但平板四周绝热良好,则热量交换仅发生在平板两侧面,从传热的角度分析,可简化成一维导热问题。 一、无限大平板的分析解 已知:厚度的无限大平板,初温t0,初始瞬间将其放于温度为的流体中,而且> t0,流体与板面间的表面传热系数为一常数。 试确定在非稳态过程中板内的温度分布。 解:如图3-5 所示,平板两面对称受热,所以其内温度分布以其中心截面为对称面。对 于x 0 的半块平板,其导热微分方程:(0

(边界条件) (边界条件) 对偏微分方程分离变量求解得: (3-10 ) 其中离散值是下列超越方程的根,称为特征值。 其中Bi 是以特征长度为的毕渥数。 由此可见:平板中的无量纲过余温度与三个无量纲数有关:以平板厚度一半为特 征长度的傅立叶数、毕渥数及即:(3-12) 二、非稳态导热的正规状况阶段 1 、平板中任一点的过余温度与平板中心的过余温度的关系 前述得到的分析解是一个无穷级数,计算工作量大,但对比计算表明,当Fo>0.2 时,采用该级数的第一项与采用完整的级数计算平板中心温度的误差小于1% ,因此,当Fo>0.2 时,采用以下简化结果:(3-13 ) 其中特征值之值与Bi 有关。 由上式(3-13 )可知:Fo>0.2 以后平板中任一点的过余温度(x ,τ) 与平板中心的过余温度(0 ,τ)=(τ )之比为:(3-14 ) 此式反映了非稳态导热过程中一种很重要的物理现象:即当Fo>0.2 以后,虽然(x ,τ) 与(τ )各自均与τ 有关,但其比值则与τ 无关,而仅取决于几何位置(x/ )及边界条件(Bi )。也就是说,初始条件的影响已经消失,无论初始条件分布如何,只要

笛卡尔坐标系

笛卡儿坐标系 (在这篇文章内,向量与标量分别用粗体与斜体显示。例如,位置向量通常用表示;而其大小则用来表示。) 在数学里,笛卡儿坐标系(Cartesian坐标系),也称直角坐标系,是一种正交坐标系。参阅图1 ,二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。 采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。例如,一个圆圈,半径是 2 ,圆心位于直角坐标系的原点。圆圈可以用公式表达为:。 图1 历史 笛卡尔坐标系是由法国数学家勒内·笛卡尔创建的。1637年,笛卡尔发表了巨作《方法论》。这本专门研究与讨论西方治学方法的书,提供了许多正确的见解与良好的建议,对于后来的西方学术发展,有很大的贡献。为了显示新方法的优点与果效,以及对他个人在科学研究方面的帮助,在《方法论》的附录中,他增添了另外一本书《几何》。有关笛卡儿坐标系的研究,就是出现于《几何》这本书内。笛卡儿在坐标系这方面的研究结合了代数与欧几里得几何,对于后来解析几何、微积分、与地图学的建树,具有关键的开导力。 二维坐标系统 参阅图 2 ,二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为x-轴和y-轴;两个坐标轴的相交点,称为原点,通常标记为O ,既有“零”的意思,又是英

语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为xy-平面,又称为笛卡儿平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(见右图),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系,称为二维的右手坐标系,或右手系。如果把这个右手系画在一张透明纸片上,则在平面内无论怎样旋转它,所得到的都叫做右手系;但如果把纸片翻转,其背面看到的坐标系则称为“左手系”。这和照镜子时左右对掉的性质有关。 图2 为了要知道坐标轴的任何一点,离原点的距离。假设,我们可以刻画数值于坐标轴。那么,从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是刻画的次数,也是离原点的正值整数距离;同样地,背着坐标轴所指的方向,我们也可以刻画出离原点的负值整数距离。称x-轴刻画的数值为x-坐标,又称横坐标,称y-轴刻画的数值为y-坐标,又称纵坐标。虽然,在这里,这两个坐标都是整数,对应于坐标轴特定的点。按照比例,我们可以推广至实数坐标和其所对应的坐标轴的每一个点。这两个坐标就是直角坐标系的直角坐标,标记为。 任何一个点P 在平面的位置,可以用直角坐标来独特表达。只要从点P画一条垂直于x-轴的直线。从这条直线与x-轴的相交点,可以找到点P的x-坐标。同样地,可以找到点P 的y-坐标。这样,我们可以得到点P 的直角坐标。例如,参阅图 3 ,点P 的直角坐标 是。 直角坐标系也可以推广至三维空间与高维空间 (higher dimension) 。 参阅图 3 ,直角坐标系的两个坐标轴将平面分成了四个部分,称为象限,分别用罗马数字编号为,,,。依照惯例,象限的两个坐标都是正值;象限的x-坐标是负值,y-坐标是正值;象限的两

一维非稳态导热的数值计算

一维非稳态导热的数值计算 一、实验名称 一维非稳态导热的数值计算 二、实验内容 一块无限大平板(如图3所示),其一半厚度为L=0.1m ,初始温度T 0=1000℃,突然将其插入温度T ∞=20℃的流体介质中。平板的导热系数λ=34.89W/m ℃,密度ρ=7800 kg/m 3,比热c=0.712310 J/kg ℃,平板与介质的对流换热系数为h=233W/m 2.℃,求平板内各点的温度分布。 三、实验编程 #include #include #define S 3.14 #define L 10 #define Dx (1.0/L) #define Dy (0.5/L) int main(int argc, char* argv[]) { Int i, j, k; double a = 2/(1+sin(S/L)); double T[L+1][L+1]; for(i=0; i<=L; i++) T[0][i] = T[i][0] = 100; for(i=1; i<=L; i++) T[i][L] = 100 + 400*Dx*i; for(j=1; j<=L-1; j++) T[L][j] = 100 + 800*Dy*j; for(i=1; i<=L-1; i++) T[i][j] = 100;

for(k=0; k<=1000; k++) {for(i=1; i<=L-1; i++) for(j=1; j<=L-1; j++) {T[i][j] = T[i][j] + (a/4)*(T[i+1][j] + T[i][j+1] + T[i-1][j] + T[i][j-1] - 4*T[i][j]); } } printf(" a = %lf\n", a); printf("T[x][y] = ...\n"); for(i=0; i<=L; i++) for(j=0; j<=L; j++) {printf("%.1lf\t", T[i][j]); if(j == L) putchar(10); } return 0; } 四、运行结果

一维非稳态导热的数值计算

传热学C 程序源 二维稳态导热的数值计算 2.1物理问题 一矩形区域,其边长L=W=1,假设区域内无内热源,导热系数为常数,三个边温度为T1=0,一个边温度为T2=1,求该矩形区域内的温度分布。 2.2 数学描述 对上述问题的微分方程及其边界条件为:2222T T 0x y ??+=?? x=0,T=T 1=0 x=1,T=T 1=0 y=0,T=T 1=0 y=1,T=T 2=1 该问题的解析解:112121(1)sin n n n sh y T T n L x n T T n L sh W L ππππ∞=??? ?---????=? ?-????? ??? ∑ 2.3数值离散 2.3.1区域离散 区域离散x 方向总节点数为N ,y 方向总节点数为M ,区域内任一节点用I,j 表示。 2.3.2方程的离散 对于图中所有的内部节点方程可写为:2222,,0i j i j t t x y ??????+= ? ??????? 用I,j 节点的二阶中心差分代替上式中的二阶导数,得: +1,,-1,,+1,,-1222+2+0i j i j i j i j i j i j T T T T T T x y --+= 上式整理成迭代形式:()()22 ,1,-1,,1,-12222+2() 2()i j i j i j i j i j y x T T T T T x y x y ++=++++ (i=2,3……,N-1),(j=2,3……,M-1) 补充四个边界上的第一类边界条件得:1,1j T T = (j=1,2,3……,M) ,1N j T T = (j=1,2,3……,M) ,1i j T T = (i=1,2,3……,N)

笛卡尔和费马确定直角坐标系的思想方法

笛卡尔和费马确定直角坐标系的思想方法 1.费马的思想方法. (1)引进坐标,系统地研究曲线的方程.1629年费马写成《平面和立体轨迹引论》,在这篇文章中他把希腊数学中使用立体图而苦心研究发现的曲线的特征,通过引进坐标译成了代数语言,从而使各种不同的曲线有了代数方程一般的表示方法.费马还具体地研究了直线、圆和其它圆锥曲线的方程. (2)通过坐标的平移和旋转化简方程.费马注意到了坐标可以平移或旋转.他曾给出一些较复杂的二次方程,然后通过平移或旋转将它们化为简单的形式. (3)空间解析几何思想的萌芽.1643年,费马在一封信中,曾简短地描述了三维解析几何的思想. 2.笛卡尔的思想方法. 有这么一个故事:有一天,笛卡尔生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。 突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。 笛卡尔的中心思想是要建立起一种普遍的数,使算术、代数和几何统一起来.其思想方法主要表现在以下几方面:

笛卡尔坐标系方程资料

1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 此主题相关图片如下:1.jpg 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 此主题相关图片如下:2.jpg 3.螺旋线(Helical curve) 圆柱坐标(cylindrical)

方程:r=t theta=10+t*(20*360) z=t*3 此主题相关图片如下:3.jpg 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8

此主题相关图片如下:4.jpg 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 此主题相关图片如下:5.jpg

6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 此主题相关图片如下:6.jpg 7.对数曲线 笛卡尔坐标系

方程:z=0 x = 10*t y = log(10*t+0.0001) 此主题相关图片如下:7.jpg 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 此主题相关图片如下:8.jpg 9.双弧外摆线 卡迪尔坐标 方程:l=2.5

各种坐标系的定义

各种坐标系的定义 一:空间直角坐标系 空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点, Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。 空间直角坐标系可用如下图所示: 二:大地坐标系: 大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间的点沿着参考椭球的法线方向到参考椭球面的距离。 附:经度和纬度的详细概念,呵呵。 经度和纬度都是一种角度。经度是个面面角,是两个经线平面的夹角。因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。本初子午线平面是起点面,终点面是本地经线平面。某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。在赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西经度。由此可见,一地的经度是该地对于本初子午线的方向和角距离。本初子午线是0°经度,东经度的最大值为180°,西经度的最大值为180°,东、西经180°经线是同一根经线,因此不分东经或西经,而统称180°经线。 纬度是个线面角。起点面是赤道平面,线是本地的地面法线。所谓法线,即垂直于参考扁球体表面的线。某地的纬度就是该地的法线与赤道平面之间的夹角。纬度在本地经线上 三:平面坐标系(这里主要将gis中高斯-克吕格尔平面直角坐标系,不是数学里面的平面坐标系) 高斯-克吕格尔平面直角坐标系 Gauss-Krüger plane rectangular coordinates system

笛卡尔曲线方程和图

圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 3.螺旋线(Helical curve) 圆柱坐标(cylindrical) 方程:r=t theta=10+t*(20*360) z=t*3

球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0

笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 7.对数曲线 笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20

卡迪尔坐标 方程:l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 10.星行线 卡迪尔坐标 方程:a=5 x=a*(cos(t*360))^3 y=a*(sin(t*360))^3 11.心脏线 圓柱坐标 方程:a=10 r=a*(1+cos(theta)) theta=t*360

非稳态导热例题

“非稳态导热”例题 例题1:一温度为20℃的圆钢,长度为0.3m ,直径为60mm ,在一温度为1250℃的加热炉 内被加热。已知圆钢的导热系数为35 W/(m ?K),密度为7800kg/m 3,比热容为0.460kJ/(kg ?K), 加热炉长为6m ,圆钢在其中匀速通过,其表面和炉内烟气间的表面传热系数为100 W/(m 2?K)。现欲将该圆钢加热到850℃,试求该圆钢在加热炉内的通过速度。 解 特征尺寸A V /为 m 0136.0)1060(14.34 13.0)1060(14.33.0)1060(14.3414124133322=???+???????=?+=---d dL L d A V πππ 则毕渥数v Bi 为 05.02 11.01.0039.0350136.0100)/(v =?=<=?==M A V h Bi λ 因此可以采用集总参数法求解。 θθρτ0ln hA cV = 即 s 548.14 1250 850125020ln 100)10460.0(78003=--??=τ 则该圆钢在加热炉内的通过速度为 m /s 0109.014 .5486===τL v 例题2:两块厚度均为30mm 的无限大平板,初始温度为20℃,分别用铜和钢制成。平板 两侧表面的温度突然上升至60℃,计算使两板中心温度均达到56℃时两板所需时间之比。 已知铜和钢的热扩散率分别为610103-?m 2/s 和6 109.12-?m 2/s 。

(125.0==铜 钢钢铜a a ττ) 例题3:无内热源、常物性的二维导热物体在某一瞬时的温度分布为x y t cos 22=。试说明 该导热物体在x =0,y =1处的温度是随时间增加而逐渐升高,还是逐渐降低? 例题4:一初始温度为20℃的钢板,厚度为10cm ,密度为为7800kg/m 3,比热容为460.5 J/(kg ?K),导热系数为53.5W/(m ?K),放置到温度为1200℃的加热炉中加热,钢板与烟气间 的表面传热系数为407 W/(m 2?K)。试求单面加热30min 时该钢板的中心温度以及两面加热 到相同的中心温度需要的时间。 解:(1) 考虑单面加热时,特征尺寸为1m .0cm 10==δ,则毕渥数Bi 为 1.076.05 .531.0407>=?==λδ h Bi 因此不能采用集总参数法求解,可采用图解分析法。钢板中心处无量纲尺寸η为 5.01.01052 =?==-δηx 30min 时的傅里叶数Fo 为 68.21.0)6030()]5.4607800/(5.53[)/(2 22=???= ==δρλδτc a Fo 而毕渥数的倒数1-Bi 为 31.176.011==-Bi 查诺模图可得 93.0 ,21.0m 0m ==θθθθ 则钢板中心的无量纲过余温度0/θθ为 195.093.021.0m 0m f 0f 0=?==--=θθθθθθt t t t 因此钢板中心温度t 为 970)120020(195.01200)(f 00 f =-?+=-+=t t t t θθ℃ (2) 考虑两面加热时,特征尺寸为0.05m cm 2/102/==δ,则毕渥数Bi 为 1.038.05 .5305.0407>=?==λδ h Bi 因此仍不能采用集总参数法求解,可应用图解分析法。此时钢板中心的无量纲过余温度为

一维非稳态导热问题的数值解

计算传热学程序报告 题目:一维非稳态导热问题的数值解 : 学号: 学院:能源与动力工程学院 专业:工程热物理 日期:2014年5月25日

一维非稳态导热问题数值解 求解下列热传导问题: ? ?? ????=====≤≤=??- ??1,10),(,1),0(0)0,()0(01T 22ααL t L T t T x T L x t T x 1.方程离散化 对方程进行控制体积分得到: dxdt t T dxdt x T t t t e w t t t e w ? ?? ??+?+??=??α 1 2 2 ? ? -=??-???+?+e w t t t w e t t t dx T T dt x T x T )(1])()( [α 非稳态项:选取T 随x 阶梯式变化,有 x T T dx T T t p t t p e w t t t ?-=-?+?+? )()( 扩散项:选取一阶导数随时间做显示变化,有 t x T x T dt x T x T t w t e w e t t t ???-??=??-??? ?+])()[(])()[( 进一步取T 随x 呈分段线性变化,有 e P E e x T T x T )()( δ-=?? , w W P w x T T x T )()(δ-=?? 整理可以得到总的离散方程为: 2 21x T T T t T T t W t P t E t P t t E ?+-=?-?+α 2.计算空间和时间步长 取空间步长为: h=L/N 网格Fourier 数为: 2 2 0x t x t F ??= ??= α(小于0.5时稳定)

笛卡儿坐标系

笛卡儿坐标系 维基百科,自由的百科全书 图 1 - 红色的圆圈,半径是 2 ,圆心位于直角坐标系的原点。圆圈的公式为 。 在数学里,笛卡儿坐标系,也称直角坐标系,是一种正交坐标系。参阅图 1 ,二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。 采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。例如,一个圆圈,半径是 2 ,圆心位于直角 坐标系的原点。圆圈可以用公式表达为。 历史

笛卡儿坐标系是由法国数学家笛卡儿创建的。1637年,笛卡儿发表了巨作《方法论》(Discours de la méthode) 。这本专门研究与讨论西方治学方法的书,提供了许多正确的见解与良好的建议,对于未来的西方学术发展,有很大的贡献。为了显示新方法的优点与果效,以及对他个人在科学研究方面的帮助,在《方法论》的附录中,他增添了另外一本书《几何》。有关笛卡儿坐标系的研究,就是出现于《几何》这本书内。笛卡儿在坐标系这方面的研究结合了代数与欧几里德几何,对于后来解析几何、微积分、与地图学的建树,具有关键的开导力。 二维坐标系统 图 2 - 直角坐标系。图中四点的坐标分别为,绿点:,红点:,蓝点:,紫点:。

图 3 - 直角坐标系的四个象限,按照逆时针方向,从象限到象限。坐标轴的头部象征著,往所指的方向,无限的延伸。 参阅图 2 ,二维的直角坐标系通常由两个互相垂直的坐标轴设定。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为xy-平面,又称为笛卡儿平面。通常,横轴称为x-轴。纵轴称为y-轴。两个坐标轴的相交点,称为原点,通常标记为 O 。 为了要知道坐标轴的任何一点,离原点的距离。假设,我们可以刻画数值于坐标轴。那么,从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是刻画的次数,也是离原点的正值整数距离;同样地,背着坐标轴所指的方向,我们也可以刻画出离原点的负值整数距离。称 x-轴刻画的数值为x-坐标,又称横坐标,称 y-轴刻画的数值为y-坐标,又称纵坐标。虽然,在这里,这两个坐标都是整数,对应于坐标轴特定的点。按照比例,我们可以推广至实数坐标和其所对应的坐标轴的每一个点。这两个坐标就是直角坐标系的直 角坐标,标记为。 任何一个点 P 在平面的位置,可以用直角坐标来独特表达。只要从点 P 画一条垂直于 x-轴的直线。从这条直线与 x-轴的相交点,可以找到点 P 的 x-坐标。同样地,可以找到点 P 的 y-坐标。这样,我们可以得到点 P 的直角坐标。例 如,参阅图 3 ,点 P 的直角坐标是。 直角坐标系也可以推广至三维空间与高维空间 (higher dimension) 。

各种坐标系下的曲线参数方程

PRO-E环境下,各种坐标系下的曲线参数方程 /* 为笛卡儿坐标系输入参数方程 /*根据t (将从0变到1) 对x, y和z /* 例如:对在x-y平面的一个圆,中心在原点 /* 半径= 4,参数方程将是: /* x = 4 * cos ( t * 360 ) /* y = 4 * sin ( t * 360 ) /* z = 0 /*------------------------------------------------------------------- (这里是曲线的参数方程) /* 对圆柱坐标系,输入参数方程 /* 根据t (将从0变到1)对r, theta和z /* 例如:对在x-y平面的一个圆,中心在原点 /* 半径= 4,参数方程将是: /* r = 4 /* theta = t * 360 /* z = 0 /*------------------------------------------------------------------- (这里是曲线的参数方程) /* 对球坐标系, 输入参数方程 /* 根据t (将从0变到1) 对rho, theta和phi /* 例如:对在x-y平面的一个圆,中心在原点 /* 半径= 4,参数方程将是: /* rho = 4 /* theta = 90 /* phi = t * 360 /*------------------------------------------------------------------- (这里是曲线的参数方程) ·锥形螺旋线-柱坐标 r=t theta=t*(20*360) +2 z=r*t+10 ·螺旋线-柱坐标 r=50 theta=t*360*5

传热学上机C程序源答案之二维非稳态导热的数值计算

二维稳态导热的数值计算 2.1物理问题 一矩形区域,其边长L=W=1,假设区域内无内热源,导热系数为常数,三个边温度为T1=0,一个边温度为T2=1,求该矩形区域内的温度分布。 2.2 数学描述 对上述问题的微分方程及其边界条件为:2222T T 0x y ??+=?? x=0,T=T 1=0 x=1,T=T 1=0 y=0,T=T 1=0 y=1,T=T 2=1 该问题的解析解:112121(1)sin n n n sh y T T n L x n T T n L sh W L ππππ∞=??? ?---??? ?=? ?-????? ??? ∑ 2.3数值离散 2.3.1区域离散 区域离散x 方向总节点数为N ,y 方向总节点数为M ,区域内任一节点用I,j 表示。 2.3.2方程的离散 对于图中所有的内部节点方程可写为:2222,,0i j i j t t x y ??????+= ? ??????? 用I,j 节点的二阶中心差分代替上式中的二阶导数,得: +1,,-1,,+1,,-1222+2+0i j i j i j i j i j i j T T T T T T x y --+= 上式整理成迭代形式:()()22 ,1,-1,,1,-12222+2() 2()i j i j i j i j i j y x T T T T T x y x y ++=++++ (i=2,3……,N-1),(j=2,3……,M-1) 补充四个边界上的第一类边界条件得:1,1j T T = (j=1,2,3……,M) ,1N j T T = (j=1,2,3……,M) ,1i j T T = (i=1,2,3……,N)

三维笛卡儿坐标系

19.1.1 三维笛卡儿坐标系 三维笛卡儿坐标系是在二维笛卡儿坐标系的基础上根据右手定则增加第三维坐标(即Z 轴)而形成的。同二维坐标系一样,AutoCAD中的三维坐标系有世界坐标系(WCS)和用户 坐标系(UCS)两种形式。 1. 右手定则 在三维坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。 要标注X、Y和Z轴的正轴方向,就将右手背对着屏幕放置,拇指即指向X轴的正方向。伸出食指和中指,如右图所示,食指指向Y轴的正方向,中指所指示的方向即是Z轴的正方向。 要确定轴的正旋转方向,如右图所示,用右手的大拇指指向轴的正方向,弯曲手指。那么手指所指示的方向即是轴的正旋转方向。 2. 世界坐标系(WCS) 在AutoCAD中,三维世界坐标系是在二维世界坐标系的基础上根据右手定则增加Z轴而形成的。同二维世界坐标系一样,三维世界坐标系是其他三维坐标系的基础,不能对其重新定义。 3. 用户坐标系(UCS) 用户坐标系为坐标输入、操作平面和观察提供一种可变动的坐标系。定义一个用户坐标系即改变原点(0,0,0)的位置以及XY平面和Z轴的方向。可在AutoCAD的三维空间中任何位置定位和定向UCS,也可随时定义、保存和复用多个用户坐标系。详见本章第3节。19.1.2 三维坐标形式 在AutoCAD中提供了下列三种三维坐标形式: 1. 三维笛卡尔坐标 三维笛卡尔坐标(X,Y,Z)与二维笛卡尔坐标(X,Y)相似,即在X和Y值基础上增加Z值。同样还可以使用基于当前坐标系原点的绝对坐标值或基于上个输入点的相对坐标值。 2. 圆柱坐标 圆柱坐标与二维极坐标类似,但增加了从所要确定的点到XY平面的距离值。即三维点的圆柱坐标可通过该点与UCS原点连线在XY平面上的投影长度,该投影与X轴夹角、以及该点垂直于XY平面的Z值来确定。例如,坐标“10<60,20”表示某点与原点的连线在XY 平面上的投影长度为10个单位,其投影与X轴的夹角为60度,在Z轴上的投影点的Z值为20。 圆柱坐标也有相对的坐标形式,如相对圆柱坐标“@10<45,30”表示某点与上个输入点连线在XY平面上的投影长为10个单位,该投影与X轴正方向的夹角为45度且Z轴的距离为30个单位。 3. 球面坐标 球面坐标也类似与二维极坐标。在确定某点时,应分别指定该点与当前坐标系原点的距离,二者连线在XY平面上的投影与X轴的角度,以及二者连线与XY平面的角度。例如,坐

相关文档
最新文档