水下及架空管道停输温降计算

水下及架空管道停输温降计算
水下及架空管道停输温降计算

蒸汽管道温度损失计算及分析

蒸汽管道温度损失计算 及分析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο?/ p t —管内热媒的平均温度 C ? k t —环境温度C ? G —热媒质量流量s Kg / C —热水质量比热容 C Kg J ??/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο?2/ n d ,w d —分别为管道(含保温层)内外径m i λ—管道各层材料的导热系数 C m w ο?/(金属的导热系数很高,自身热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: t λ—管道埋设处的导热系数。

t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取t h = E.保温材料为:聚氨酯,取λ= C m w ο?/ F. 保温层外包皮材料是:PVC ,取λ= C m w ο?/ G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为: 管径为300mm 时,保温层厚度为:50mm ,保温外包皮厚度为:7mm ; 管径为400mm 时,保温层厚度为:51mm ,保温外包皮厚度为:; 管径为500mm 时,保温层厚度为:52mm ,保温外包皮厚度为:9mm ; 管径为600mm 时,保温层厚度为:54mm ,保温外包皮厚度为:12mm ; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量q 1是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析 总传热系数k 式中:h 1—蒸汽对工作钢管内壁的换热系数 λ1—蒸汽管道各层材料的导热系数 1 1 1 1 1 1 ln 2 1 1 1 ? ? ? ? ? ? ? n i i n i i d d d d h k ?? ?? ?

蒸汽管路计算公式

9.1蒸汽网路系统 一、蒸汽网路水力计算的基本公式 计算蒸汽管道的沿程压力损失时,流量、管径与比摩阻三者的关系式如下 R = 6.88×10-3×K0.25×(G t2/ρd5.25),Pa/m (9-1) d = 0.387×[K0.0476G t0.381/ (ρR)0.19],m (9-2) Gt = 12.06×[(ρR)0.5×d2.625 / K0.125],t/h (9-3) 式中 R ——每米管长的沿程压力损失(比摩阻),Pa/m ; G t ——管段的蒸汽质量流量,t/h; d ——管道的内径,m; K ——蒸汽管道的当量绝对粗糙度,m,取K=0.2mm=2×10-4 m; ρ ——管段中蒸汽的密度,Kg/m3。 为了简化蒸汽管道水力计算过程,通常也是利用计算图或表格进行计算。附录9-1给出了蒸汽管道水力计算表。 二、蒸汽网路水力计算特点 1、热媒参数沿途变化较大 蒸汽供热过程中沿途蒸汽压力P下降,蒸汽温度T下降,导致蒸汽密度变化较大。 2、ρ值改变时,对V、R值进行的修正 在蒸汽网路水力计算中,由于网路长,蒸汽在管道流动过程中的密度变化大,因此必须对密度ρ的变化予以修正计算。 如计算管段的蒸汽密度ρsh与计算采用的水力计算表中的密度ρbi 不相同,则应按下式对附表中查出的流速和比摩阻进行修正。 v sh = ( ρbi / ρsh) · v bi m/s (9-4) R sh = ( ρbi / ρsh) · R bi Pa/m (9-5) 式中符号代表的意义同热水网路的水力计算。 3、K值改变时,对R、L d值进行的修正 (1)对比摩阻的修正、

蒸汽管道计算实例

、尸■、亠 前言 本设计目的是为一区VOD-40t 钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250C,压力1.0MP;蒸汽管道 终端温度240C,压力0.7MP (设定); VOD用户端温度180C,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠 近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达

不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250C查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1 —3得蒸汽在该状态下的密度p为 4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240C查《管道设计》表1 —3得蒸汽在该状态下的密度p为2.98kg/m3。 (一)管道压力损失:

2、压力损失 式中△ p —介质沿管道内流动的总阻力之和,Pa; Wp —介质的平均计算流速,m/s ;查《管道设计》表5-2 取 Wp=40m/s ; g —重力加速度,一般取 9.8m/s "; u p —介质的平均比容,m 3/kg ; 入—摩擦系数,查《动力管道手册》(以下简称《管道》) 表4— 9得 管道的摩擦阻力系数 入=0.0196 ; d —管道直径,已知d=200mm ; L —管道直径段总长度,已知 L=505m ; 艺E —局部阻力系数的总和,由表(一)得 艺E =36 H 1、战一管道起点和终点的标高,m ; 1/Vp= p p —平均密度,kg/m 3 ; 1.15—安全系数。 在蒸汽管道中,静压头(H2-H1)10/Vp 很小,可以忽略不计所以 2 103 d 厶+工? + (禺+駕)-1。5 2— 1

蒸汽管道设计计算

项目名称:XX 蒸汽管网设计输入数据: 1.管道输送介质:蒸汽 工作温度:240 C 工作压力: 0.6MPa 流量:1.5t/h 管线长度:1500 米设计计算: 设计温度260 C 设计压力:0.6MPa 比容:0.40m 3/kg ⑴管径: Dn=18.8 X(Q/w) 0-5 D n —管子外径,mm ; D0 —管子外径,mm ; Q —计算流量,m3/h w —介质流速,m/s ①过热蒸汽流速 DN》200 流速为40?60m/s DN v 100 流速为20 ?40m/s ②w=20 m/s Dn=102.97mm w=40 m/s Dn=72.81mm ⑵壁厚: DN100~DN200 流速为30 ?50m/s

ts = PD o/{2 (〔c〕Ej+PY)} tsd=ts+C C=C1+C2 ts —直管计算厚度,mm ; D0 —管子外径,mm ; P —设计压力,MPa ; 〔c〕t —在操作温度下材料的许用压力,MPa ; Ej—焊接接头系数; tsd —直管设计厚度,mm ; C—厚度附加量之和;:mm ; C1—厚度减薄附加量;mm ; C2—腐蚀或磨蚀附加量;mm ; 丫一系数。 本设计依据《工业金属管道设计规范》和《动力管道设计手册》在260 C 时20#钢无缝钢 管的许用应力〔c〕t为101Mpa , Ej取1.0 , Y取0.4 , C i 取0.8 , C2 取0. 故ts = 1.2 X133/【2 X101 x i+1.1 X0.4】=0.78 mm C= C 1+ C 2 =0.8+0=0.8 mm Tsd=0.78+0.8=1.58 mm 壁厚取4mm 所以管道为? 133 X4。

蒸汽管道计算实例

、八、、》 刖言 本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250C,压力1.0MP;蒸汽管道终端温度240C,压力0.7MP (设定); VOD用户端温度180C,压力0.5MP; 耗量主泵11.5t/h辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠 近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。

5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、 滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250C查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1 —3得蒸汽在该状态下的密度p为 4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240C查《管道设计》表1 —3得蒸汽在该状态下的密度p为2.98kg/m3。 (一)管道压力损失: 1、管道的局部阻力当量长度表(一) 名称 阻力系数 (0数量 管子公称直径 (毫米) 总阻力 数 止回阀旋启式312003 煨弯R=3D0.3102003 方型伸缩煨弯5620030 器R=3D 2 、蒸汽管道的水力计算

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

蒸汽管道计算实例之欧阳歌谷创编

前言 欧阳歌谷(2021.02.01) 本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250℃,压力1.0MP;蒸汽管道终端温度240℃,压力0.7MP(设定); VOD用户端温度180℃,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。

3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得蒸汽在该状态下的密度ρ1为4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240℃查《管道设计》表1—3得蒸汽在该状态下的密度ρ2为2.98kg/m3。(一)管道压力损失: 1、管道的局部阻力当量长度表(一)

煨弯R=3D0.3102003 煨弯 5620030方型伸缩器 R=3D 2、压力损失 2—1式中Δp—介质沿管道内流动的总阻力之和,Pa; Wp—介质的平均计算流速,m/s;查《管道设计》表5-2取Wp=40m/s ; g—重力加速度,一般取9.8m/s2; υp—介质的平均比容,m3/kg; λ—摩擦系数,查《动力管道手册》(以下简称《管道》)表4—9得管道的摩擦阻力系数λ=0.0196 ; d—管道直径,已知d=200mm ; L—管道直径段总长度,已知L=505m ; Σξ—局部阻力系数的总和,由表(一)得Σξ=36; H1、H2—管道起点和终点的标高,m; 1/Vp=ρp—平均密度,kg/m3; 1.15—安全系数。 在蒸汽管道中,静压头(H2-H1)10/Vp很小,可以忽略不计所以式2—1变为

天然气物性参数及管线压降与温降的计算

整个计算过程的公式包括三部分: 一.天然气物性参数及管线压降与温降的计算 二.天然气水合物的形成预测模型 三.注醇量计算方法 一.天然气物性参数及管线压降与温降的计算 天然气分子量 标准状态下,1kmol 天然气的质量定义为天然气的平均分子量,简称分子量。 ∑=i i M y M (1) 式中 M —气体的平均分子量,kg/kmol ; y i —气体第i 组分的摩尔分数; M i —气体第i 组分的分子量,kg/kmol 。 天然气密度 混合气体密度指单位体积混合气体的质量。按下面公式计算: 0℃标准状态 ∑= i i M y 14.4221ρ (2) 20℃标准状态 ∑ = i i M y 055 241.ρ (3) 任意温度与压力下 ∑∑= i i i i V y M y ρ (4) 式中 ρ—混合气体的密度,kg/m 3 ; ρi —任意温度、压力下i 组分的密度,kg/m 3; y i —i 组分的摩尔分数; M i —i 组分的分子量,kg/kmol ; V i —i 组分摩尔容积,m 3 /kmol 。 天然气密度计算公式 g pM W ZRT ρ= (5) 天然气相对密度 天然气相对密度Δ的定义为:在相同温度,压力下,天然气的密度与空气密度之比。 a ρρ?= (6) 式中 Δ—气体相对密度; ρ—气体密度,kg/m 3; ρa —空气密度,kg/m 3,在P 0=101.325kPa ,T 0=273.15K 时,ρa =1.293kg/m 3; 在P 0=101.325kPa ,T 0=273.15K 时,ρa =1.293kg/m 3。

因为空气的分子量为28.96,固有 28.96 M ?= (7) 假设,混合气和空气的性质都可用理想气体状态方程描述,则可用下列关系式表示天然气的相对密度 28.96g g g a a pM W M W M W RT pM W M W RT ?= == (8) 式中 MW a —空气视相对分子质量; MW g —天然气视相对分子质量。 天然气的虚拟临界参数 任何气体在温度低于某一数值时都可以等温压缩成液体,但当高于该温度时,无论压力增加到多大,都不能使气体液化。可以使气体压缩成液态的这个极限温度称为该气体的临界温度。当温度等于临界温度时,使气体压缩成液体所需压力称为临界压力,此时状态称为临界状态。混合气体的虚拟临界温度、虚拟临界压力和虚拟临界密度可按混合气体中各组分的摩尔分数以及临界温度、临界压力和临界密度求得,按下式计算。 ∑=i ci i c T y T (9) ∑ =i ci i c P y P (10) ∑= i ci i c y ρρ (11) 式中 T c —混合气体虚拟临界温度,K ; P c —混合气体虚拟临界压力(绝),Pa ; ρc —混合气体虚拟临界密度,kg/m 3; T ci —i 组分的临界温度,K ; P ci —i 组分的临界压力(绝),Pa ; ρci —i 组分的临界密度,kg/m 3; y i —i 组分的摩尔分数。 天然气的对比参数 天然气的压力、温度、密度与其临界压力、临界温度和临界密度之比称为天然气对比压力、对比温度和对比密度。 c r P P P = (12) c r T T T = (13)

蒸汽管道损失理论计算及分析

1.计算基本公式 温损计算公式为: 式中:—管道单位长度传热系数 —管内热媒的平均温度 —环境温度 —热媒质量流量 —热水质量比热容 ——管道长度由于计算结果为每米温降,所以L取1m .管道传热系数为 式中: ,—分别为管道内外表面的换了系数 ,—分别为管道(含保温层)内外径 —管道各层材料的导热系数(金属的导热系数很高,自身热阻很 i 小,可以忽略不计)。 —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算:

Pr为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: —管道埋设处的导热系数。 —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢() B. 查表得:碳钢在75和90摄氏度时的导热系数都趋近于 C.土壤的导热系数= D. 由于本文涉及到的最大管径为,所以取= E.保温材料为:聚氨酯,取= F. 保温层外包皮材料是:PVC,取= G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为:

管径为300mm时,保温层厚度为:50mm,保温外包皮厚度为:7mm; 管径为400mm时,保温层厚度为:51mm,保温外包皮厚度为:; 管径为500mm时,保温层厚度为:52mm,保温外包皮厚度为:9mm; 管径为600mm时,保温层厚度为:54mm,保温外包皮厚度为:12mm; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

蒸汽管径流量对照表

蒸汽胶管: 蒸汽胶管,即蒸气软管。用于制冷设备冷却水、发动机引擎冷热水、食品加工,尤其乳制品厂的热水和饱和蒸汽,可耐稀酸碱。 胶管: 用以输送气体、液体、浆状或粒状物料的一类管状橡胶制品。由内外胶层和骨架层组成,骨架层的材料可用棉纤维、各种合成纤维、碳纤维或石棉、钢丝等。一般胶管的内外胶层材料采用天然橡胶、丁苯橡胶或顺丁橡胶;耐油胶管采用氯丁橡胶、丁腈橡胶;耐酸碱,耐高温胶管采用乙丙橡胶、氟橡胶或硅橡胶等。 结构: 蒸汽软管和普通工业软管一样,都有内胶、外胶和中间层组成。 常用内外胶材料为耐热、耐蒸气、耐臭氧紫外线和化学品性能卓越的EPDM材料制成,外胶水包带包裹。 组成: 蒸汽胶管是由内胶层,多层夹布缠绕层和外胶层组成。夹布吸引胶管是由内胶层,多层夹布缠绕层,螺旋钢丝增强层和外胶层组成。主要由耐液体的内胶层、中胶层、2或4或6层钢丝缠绕增强层、外胶层组成,内胶层具有使输送介质承受压力,保护钢丝不受侵蚀的作用,外胶层保护钢丝不受损伤,钢丝层是骨架材料起增强作用。 蒸汽管径流量对照表: 可以按照《动力管道设计手册》中的方式计算。 计算公式是d(内径mm)=18.8*(Q/V)^0.5这里面Q是体

积流量M3/h,V是流速m/s。 蒸汽管道管径计算 Dn=594.5 Dn--------管道内径mm;G---------介质质量流量t/h; -------介质比容m3 /kg;(查蒸汽表) ω-------介质流速m/s,常规30m/s 饱和蒸汽流速低压蒸汽<10kgf/cm2是15~20 m/s中压蒸汽10~40kgf/cm2是20~40 m/s高压蒸汽40~120kgf/cm2是40~60 m/s

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

水系统管道阻力计算

空调水系统的水力计算 根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。 一、沿程阻力(摩擦阻力) 流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即 (1-1) 若直管段长度l=1m时, 则 式中λ——摩擦阻力系数,m; ——管道直径,m; R——单位长度直管段的摩擦阻力(比摩阻),Pa/m; ——水的密度,kg/m3; ——水的流速,m/s。 对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。根据管径、流速,查出管道动压、流量、比摩阻等参数。 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。所以这种空调末端承担负荷应计算精确,以避免负荷叠加。同时应清楚了解水管系统的方式,如同程式,异程式。不同的接管方式对沿程阻力具有一定的影响。在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。 二、局部阻力 (一)局部阻力及其系数

在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数; ——水流速度,m/s。 常用管道的配件可以通过相应的表格进行查询。根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。 对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。 在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。可参见设备安装详图,其中会画出相应的管道配件。 (二)当量长度 利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m): 式中——管道配件的局部阻力系数。 根据各种阀门、弯头、三通以及特殊配件(突扩、突缩、胀管、凸出管等)的工程直径,可以查出相应的当量长度。 三、设备压力损失 空调系统中含有很多制冷、制热设备,如冷凝器、蒸发器、冷却水塔、冷热盘管等等。这些设备自身都有一定的压力损失。在水系统的水力计算中,除了管道部分的阻力之外,还有设备的压力损失。将这两部分加起来,才是整个系统的水力损失。 但是因为设备的生产厂家、型号、运行条件及工况的不同,压力损失相差比较大,一般情况下,是由设备厂家提供该设备的压力损失。若缺乏该方面的资料,可以按照经验值进行估算。估算值见表3-1。

蒸汽管道计算实例

前言 本设计目的就是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数就是由动力一车间与西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250℃,压力1、0MP;蒸汽管道终端温度240℃,压力0、7MP(设定); VOD用户端温度180℃,压力0、5MP; 耗量主泵11、5t/h 辅泵9、0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。

5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1、0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得蒸汽在该状态下的密度ρ1为4、21kg/m3。 假设:蒸汽管道的终端压力为0、7Mp,温度为240℃查《管道设计》表1—3得蒸汽在该状态下的密度ρ2为2、98kg/m3。 (一)管道压力损失: 1、管道的局部阻力当量长度表(一)

2、压力损失 2—1 式中Δp—介质沿管道内流动的总阻力之与,Pa; Wp—介质的平均计算流速,m/s; 查《管道设计》表5-2取Wp=40m/s ; g—重力加速度,一般取9、8m/s2; υp—介质的平均比容,m3/kg; λ—摩擦系数,查《动力管道手册》(以下简称《管道》)表4—9得管道的摩擦阻力系数λ=0、0196 ; d—管道直径,已知d=200mm ; L—管道直径段总长度,已知L=505m ; Σξ—局部阻力系数的总与,由表(一)得Σξ=36; H1、H2—管道起点与终点的标高,m;

一次管网温降及失水分析

一次管网温降及失水分析 1一次管网温降分析 1.1一次管网温降统计表 宣化集中供热一次管网温降统计表 见附1:一次管网系统实际运行温降分析报告 通过实验分析,宣化一次管网每公里温降为℃,热损失达22%,影响热耗,远高于十二五规划目标值℃,同时也高于设计计算值℃及规范估算值℃。良好的保温效果,热损失可控制在5%。 1.2设计值 根据华北设计院提供,宣化供热一次管网设计计算温降为:℃/km。 1.3供热管网改造规划目标 城市集中供热管网改造“十一五”规划编制提纲改造规划目标及相关地区城市集中供热管网改造“十二五”规划编制提纲改造规划目标,按照直埋管道能够达到的要求,热水管道散热损失应控制在每公里温降小于℃

(参考值)。 1.4规范 C JJ34-2002《城市热力网设计规范》中第11.1.2条:供热介质设计温度高于50℃的热力管道、设备、阀门应保温; 第11.1.4条:管道保温材料在平均工作温度下的导热系数值不得大于; 第11.2.2条:按规定的散热损失,……应选取满足技术条件的最经济的保温层厚度组合。 根据GB4272-92《设备及管道保温技术通则》第5.1.1条规定:对于季节运行工况允许最大散热损失≤116w/m2(保温层外表温度按50℃计)。 根据城镇建设行业标准CJT-140-2001《供热管道保温结构散热损失测试与保温效果评定方法》第5.4.1.2条,对于热水介质供热管道计算全程散热损失公式: Q=(c1t1- c2t2)----------------------公式1 式中:Q---管段的全程散热损失; G---热水质量流量; c1,c2---管段进出口热水比热容; t1,t2---管段进出口热水温度。 1.5计算 由于供热管网热水一次温度一般低于150℃,热水介质的温度对热水的比热容的影响可忽略不计。根据公式:Q=(c1t1- c2t2)可推导出每公里温差计算公式: △T≤Q/水)---------------------公式2 式中:Q---每公里管段的全程散热损失(w/s),Q= A×q(A:每公里管道

供热管网压降温降计算

1.1.1 压降、温降计算公式 根据《动力管道手册》压降计算公式: )(10)(10215.11232 H H Ld L d w p -++?=?ρλ ρ 式中:1.15——安全系数; p ?——介质沿管道内流动总阻力,Pa ; L ——为管道直线长度m ; Ld ——为管道局部阻力当量长度m ; W ——蒸汽管道平均流速m/s ; d ——管道内径mm ; ρ——蒸汽介质平均密度kg/m 3; λ——管道摩擦阻力系数,根据管道绝对粗糙度K 值选择,对过热蒸汽管道,按管道绝对粗糙度K=0.1mm 取用; H2-H1——管道终端与始端的高差,m 。 根据《设备及管道绝热设计导则》GB/T8175-2008 单层保温的管道单位热损失计算公式: Do Di Do In Ta T R R Ta T q ?+-=+-=αλαπ2 1)(21 W/m.h 式中:T ——设备和管道的外表面温度(℃),T 应取管道蒸汽介质的平均温度即22 1t t T +=; t1——管道始端蒸汽温度℃; t2——管道终端蒸汽温度℃;

Ta ——环境温度,根据工程情况定℃; R1——保温层热阻 对管道(m.K )/W ;对平面:(m 2.K)/W ; R2——保温层表面热阻 对管道(m.K )/W ; λ——保温材料制品在平均温度下导热系数W/(m.K ); Do ——保温层外径 m ; Di ——保温层内径 m ; α——保温层外表面与大气的换热系数 W/(m 2.K ),w 36α+= GB/T8175-2008规范推荐 .K W/m .α26311= 此时风速w 为3.5m/s 。 管径计算是按照正常负荷计算管径,同时以最大负荷及最小负荷校核计算后综合选取的。

蒸汽管道计算实例

前言 本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数是由动力一车间和向阳喷射技术提供的。 主要参数:蒸汽管道始端温度250℃,压力1.0MP;蒸汽管道终端温度240℃,压力0.7MP(设定); VOD用户端温度180℃,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。

5、蒸汽管道通过厂房部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得蒸汽在该状态下的密度ρ1为4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240℃查《管道设计》表1—3得蒸汽在该状态下的密度ρ2为2.98kg/m3。 (一)管道压力损失: 1、管道的局部阻力当量长度表(一)

2、压力损失 2—1 式中Δp—介质沿管道流动的总阻力之和,Pa; Wp—介质的平均计算流速,m/s;查《管道设计》表5-2取Wp=40m/s ; g—重力加速度,一般取9.8m/s2; υp—介质的平均比容,m3/kg; λ—摩擦系数,查《动力管道手册》(以下简称《管道》)表4—9得管道的摩擦阻力系数λ=0.0196 ; d—管道直径,已知d=200mm ; L—管道直径段总长度,已知L=505m ; Σξ—局部阻力系数的总和,由表(一)得Σξ=36; H1、H2—管道起点和终点的标高,m;

蒸汽管道损失理论计算及分析

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο ?/ p t —管内热媒的平均温度C ? k t —环境温度 C ? G —热媒质量流量 s Kg / C —热水质量比热容 C Kg J ? ?/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 ∑=++ += n i w w i i i n n g d a d d d a k 111 ln 2111 ππ λπ 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο ?2/ n d , w d —分别为管道(含保温层)内外径 m i λ—管道各层材料的导热系数C m w ο ?/(金属的导热系数很高,自身 热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m

内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: 42 .075 .0Pr )180(Re 037.0-≈= λ n n n d a N Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: ]1)2(2ln[22-+ = w t w t w t w d h d h d a λ 式中: t λ—管道埋设处的导热系数。 t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取 t h = E.保温材料为:聚氨酯,取λ= C m w ο?/

(整理)管道总传热系数计算

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。 1.1 利用管道周围埋设介质热物性计算K 值 管道总传热系数K 指油流与周围介质温差为1℃时,单位时间通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: 1112ln 111ln 22i i n e n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌? (1-1) 式中:K ——总传热系数,W /(m 2·℃); e D ——计算直径,m ;(对于保温管路取保温层外径的平均值,对于无保温埋地管路可取沥青层外径); n D ——管道直径,m ; w D ——管道最外层直径,m ; 1α——油流与管壁放热系数,W/(m 2·℃); 2α——管外壁与周围介质的放热系数,W/(m 2·℃); i λ——第i 层相应的导热系数,W/(m·℃); i D ,1i D +——管道第i 层的外直径,m ,其中1,2,3...i n =; L D ——结蜡后的管径,m 。 为计算总传热系数K ,需分别计算部放热系数1α、自管壁至管道最外径的导 热热阻、管道外壁或最大外围至周围环境的放热系数2α。 (1)部放热系数1α的确定 放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。 在层流状态(Re<2000),当Pr 500Gr

蒸汽计算

蒸汽作为热媒主要用于工厂的生产工艺用热上。热用户主要是工厂的各生产设备,比较集中且数量不多,因此单根蒸气管和凝结水管的热网系统形式是最普遍采用的方式。 关键词:定压比热局部阻力系数散热损失线膨胀系数 前言 本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250℃,压力1.0MP;蒸汽管道终端温度240℃,压力0.7MP(设定); VOD用户端温度180℃,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。

二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m 。 蒸汽管道的始端压力为1.0MP ,温度为250℃查《动力管道设计手册》第一册 热力管道(以下简称《管道设计》)1—3得蒸汽在该状态下的密度ρ1为4.21kg/m 3。 假设:蒸汽管道的终端压力为0.7Mp ,温度为240℃查《管道设计》表1—3得 蒸汽在该状态下的密度ρ2为2.98kg/m 3。 (一)管道压力损失: 1、管道的局部阻力当量长度 表(一) 2、压力损失 2—1 式中Δp—介质沿管道内流动的总阻力之和,Pa ; Wp —介质的平均计算流速,m/s ; 查《管道设计》表5-2取Wp=40m/s ; g —重力加速度,一般取9.8m/s 2; υp—介质的平均比容,m 3/kg ;

相关文档
最新文档